
89

Ada Conformity Assessments:
A Model for Other Programming Languages?

Michael Tonndorf
IABG

Ada Conformity Assessment Laboratory
 D-85521 Ottobrunn Germany

Tel: +49 89 6088 2477
 Tonndorf@iabg.de

1 ABSTRACT

This paper presents the actual status of Ada
Conformity Assessments after the transition
of Ada Conformity Assessments from the
Ada Joint Program Office to ISO. The
principles of Ada Conformity Assessments
according to the ISO/IEE Final Committee
Draft 18009 are summarized and the
commonalties and differences to the previous
practices are discussed. In the main part of
the work conformity assessments for Ada C,
C++, and Java are compared. It is shown
that the process as practiced with Ada is
unique compared to other programming
languages. This can be understood by
looking at the special culture of the language
Ada and its validation system. Both were
sponsored by one single party (the US DoD)
and not the IT industry. The paper concludes
with an assessment and outlook on the future
development on compiler conformity
assessments in general.

1.1 Keywords

Ada Conformity Assessments, Ada Standardization,
Programming Language Validations

2 INTRODUCTION

An important requirement that accompanied the
introduction of the Ada language was to develop a
testsuite simultaneously with the language definition for
Ada implementations. Thus an efficient and practicable
procedure, impartial of manufacturer influences, was to
be introduced. This allowed to test an Ada processor
could be reviewed for standard conformity. This
procedure was named by the DoD environment
connected with this Ada Compiler Validation although
the term validation in quality management has quite a
different meaning. We shall be looking at the
development of terms later in greater detail. After the
closing of the AJPO October 1998 the assessment process
of Ada compilers had to be re-organized. This is realized
by moving Ada validation, or as it is called now
conformity assessment under the sole roof of ISO. This
leads to the question how conformity assessment is
practiced for other main programming languages in use,
e.g. C, C++, and Java.

The achievements until the end of the sponsorship of the
US Department of Defense were described in [5]. After
the closing of the AJPO in October 1998 the assessment
process of Ada compilers had to be re-organized. The
claim, which is linked to the distinction ’certified
conforming’ can at this point not be finally assessed.
Naturally there is no implication with the distinction
validated or certified conforming that the implementation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
SIGAda’99 10/99 Redondo Beach, CA, USA
© 1999 ACM 1-58113-127-5/99/0010...$5.00

90

tested is error-free or 100% standard conforming. Also
conformity assessments may not be considered solely as
quality-promoting measures for compilers. Seen as a tool
for software development a compiler is firstly the pre-
requisite for the development of an application with
special reliability requirements.

3 DEVELOPMENT OF THE ADA
CERTIFICATION SYSTEM

The history of validations or conformity assessments for
Ada cannot be described at this point in detail.
Nevertheless, the most important stages and the process
after the closing of the Ada Joint Program Office are
reflected here.

ISO with its headquarters in Geneva, Switzerland, is the
world’s top level organization for standardization. ISO’s
policy is put into effect by the national member bodies.
As long as the national member bodies implement the
standardization procedures, ISO itself then does not
directly participate in the procedures. In the case of the
standardization of Ada 83 the role of the US national ISO
member was carried out by NIST (the National Institute
for Standards and Technology). This comprised the
(further) development of the ACVC testsuite and the
setting up of infrastructure for the performance of the
Ada Compiler Validation (the so-called Certification
Body). However NIST transferred the right to implement
the Ada standardization policy to DoD’s Ada Joint
Program Office for practical reasons. And as an Ada
Validation Facility the NIST was always in the loop.

During the prospering period of Ada 83 from 1985 to
1993 the world of validation was well ordered:

À The Ada Joint Program Office as sponsor and
political instance,

À The Ada Validation Organization (AVO) as
technical coordinator of the validation process and
the Ada Validation Facilities;

À Five Ada Validation Facilities (AVFs; USA: NIST,
Wright Patterson Airforce Base; UK: NCC; France:
AFNOR; Germany: IABG) as testing laboratories
responsible for conducting validations,

À an ACVC team contracted for the maintenance of the
ACVC testsuite.

However with the upcoming standard Ada 9X this world
started to crumble. At first the number of annually
conducted validations decreased significantly. The
French AFNOR and the British NCC went out of
business due to a lack of validation contracts. What then
occurred in USA in connection with responsibility for
validation may be described as curious. First AJPO

announced it would withdraw completely from Ada
standardization by September 1997. Thus NIST would
again be responsible in accordance with the original
distribution of responsibilities. In fall 1997 however
NIST announced it was giving up all direct IT
standardization activities in spring 1998. This brought
back AJPO with respect to IDA’s Ada Validation
Organization to validation business until September
1998. So after the closing of the Wright Patterson
Airforce Base AVF and NIST only EDS and Germany’s
IABG remained operational. IABG’s experiences in the
first decade of Ada Validation is described in more detail
in [5].

In parallel the trend accelerated to withdraw the Ada
mandate in general. This development must however be
seen as part of the general movement of the State
standardization organizations (regardless of whether
military or civilian) of withdrawing from direct
standardization of products. This resulted in April 1997
in the Ada mandate being terminated, i.e. the general
obligation to use Ada for all defense projects. Even in the
case that Ada was used, a validation certificate was no
longer required. In the spring of 1998, it became obvious
that the responsibility for Ada validation would again be
vacant from the fall of 1998. In WG9, the ISO working
group responsible for Ada, the idea was developed to
build up a workable infrastructure for Ada validation
under ISO.

A number of groups had already announced their interest,
what was missing were the organizational basics. In all
procedures, reference was always made to the decision-
making chain Ada Validation Facility – Ada Validation
Organization – Ada Joint Program Office. However, the
last two do not exist from September 1998 on. So in the
course of the year 1998 a decision between two
alternatives had to be made:

À No technical and organizational umbrella
organization for Ada at all. This would mean that the
work of the validation facilities would not be
coordinated. The certificates would no longer be
comparable and each AVF would follow its own
policy. In particular uniform maintenance of the
testsuite would no longer be guaranteed. Further
consequences would be no structured Ada
certification body; no coordination of validation
laboratories; no coordinated maintenance and
development of the Ada testsuite, no mutual
recognition of validation certificates,

À establishing of an authority, that ensures a uniform
validation process, using the same testsuite with the
same procedures and rules.

In fall 1998 the Ada community made a movement for
this second alternative. It was again only not clear who

91

would provide the funding for this, for this task utilizes
on average one person for more than half a year. After
several weeks of to and fro between USA and Europe,
finally a solution was proposed. The Ada Resource
Association accepted applications for an institution
named Ada Conformity Assessment Authority (ACAA).
This authority is to be represented by an ACAA
Technical Agent. The basic funding for this is provided –
and this closes the loop – by the DISA (Defense
Information Systems Agency). The authority of the US
DoD for information systems. Thus DoD is involved
again – or rather still – in the system for Ada conformity
assessments. However, it has no co-determination rights.

4 ACTUAL SITUATION FOR ADA

An ISO standard exists for all major programming
languages. As this is true for Ada as well it was obvious
to integrate the new Ada certification system under ISO.
With its Working Group 9 (WG9) ISO was already
continuously involved in the Ada standardization. So the
main goal under direct ISO participation was to develop a
uniform terminology, compatible with the other ISO
standardized programming languages, and to otherwise
continue with the proven and accepted validation process
as developed under the AJPO. Since spring 1999 draft
procedures exist containing requirements on the "new"
validation process and certification body: ISO/IEC Final
Committee Draft 18009 Information Technology –
Programming Languages – Ada: Conformity Assessment
of Language Processor [3]. This document reflects the
basic requirements in the following areas:

À Ada Conformity Assessment Testsuite,

À Ada Conformity Assessment Authority,

À Ada Conformity Assessment Laboratory,

À Operating Procedures for Ada Conformity
Assessments.

The possibilities for influence of ARA as association of
Ada manufacturers cannot however be compared with
those which were once available to the former AJPO.
What is missing here is quite simply the economic clout.

The starting point for the new orientation under ISO is
[3]. Minimum requirements are formulated there into the
following topics:

À Ada Conformity Assessment Testsuite

À Ada Conformity Assessment Authority

À Ada Conformity Assessment Laboratory

À Operating Procedures for Ada Conformity
Assessments

This standard is rather a collection of requirements than a
set of rules. The requirements are then converted in
subordinate standards into rules and procedural
instructions. This certification system has been in place in
this form since October 1998. Randy Brukardt from R.R.
Software was commissioned to be the technical agent for
ACAA. In addition, an ACAA Advisory Board was set
up to provide advice for ACAA. Currently there are 9
members from industry, users, universities and ACA test
laboratories.

All languages for which an ISO working group exists are
listed in Table 2 for arrangement into the standardization
of the programming languages in general. These groups
are structured into the Subcommittee (SC) 22
Programming Languages and Their Environments and
Software System Interfaces in ISO/IEC Joint Technical
Committee (JTC).

Moreover there are working groups which are no longer
active but have not been deleted from the list of SC 22
working groups.

ISO-WG Programming Language

WG3 APL

WG4 COBOL

WG5 FORTRAN

WG9 Ada

WG11 Binding Techniques

WG13 Modula-2

WG14 C

WG15 POSIX

WG16 ISLisp

WG17 Prolog

WG19 Formal Specification Languages

WG20 Internationalization

WG21 C++

SC22/
JSG

Java Study Group

Table 1

The Ada Letters from March 1999 contain two
contributions that reflect the current changes from the
point of view of the US Ada Conformity Assessment
Laboratory and the Ada Conformity Assessment
Authority (see [4] and [5]). Both papers also provide a

92

mapping of terms used under DoD to terms now defined
in the ISO procedures. Therefore we do not list the table
here again.

This paper doesn’t go into further details of the actual
Ada testsuite ACATS Vers. 2.2. The testsuite and all
relevant information can be retrieved from
www.adaic.org.

5 ADA AS A MODEL FOR
COMFORMITY ASSESSMENTS OF
PROGRAMMING LANGUAGES

Which characteristics do we expect from a „Model for
Compiler Conformity Assessments“? For that purpose we
start with some basics in software quality and build a
framework of terms yielding the unified terminology of
ISO. Interlaced with the general situation the realization
in Ada is examined.

An obvious requirement in conjunction with an
international standard is to have a single worldwide
certification system, in this case a certification system for
the programming language Ada.

Testing object is an identified language processor. Test
objective is to verify that the testing object complies with
ISO standard, here ISO/IEC 8652:1995 (Ada). Test
conducting requires a testing method. The testing method
for Ada is the Ada Compiler Validation Capability
(ACVC) which was developed in parallel with the first
standardization of Ada as ANSI/Mil-Std 1815A in 1983.
The ACVC is the foundation of a testing procedure that
comprises a defined set of test cases. These test cases can
be partitioned into two groups: negative and positive test
cases. A positive test case is a program sequence that
complies with the Ada standard. The tested
implementation has to process this sequence in
accordance with the standard. A negative test case is the
intended violation of the standard which has to be
detected by the implementation. For efficiency reasons
usually a test is built by a series of related test cases
which have equal or similar test objectives. Thus a test is
the smallest component of the test suite, identified by a
name. Furthermore part of a testing procedure are rules
guiding the evaluator of a test result by grading the test
result as conforming or not conforming. Obviously it’s
inefficient for the tester to lookup the language reference
manual every time in order to grade the test result. For
negative test cases these rules are source code comments
at appropriate places, positive test cases report their
results usually automatically, following a self-checking
mechanism. This method is described in more detail in
[4].

The tight interpretation of the term test procedure – as a
systematic way of conducting tests - leads to the broader

understanding of a test procedure as a detailed set of
rules. The procedures cover the whole process of a
conformity assessment including the rules how to
interpret and grade test rest results.

Although it seems obvious; it is not: for a programming
language there shall be only one generally accepted
testsuite. Only this condition guarantees that
implementations can be compared. Notwithstanding the
Plum Hall testsuite (see Chapter 6) praises itself to be
winner of the one and only once held contest for C-
testsuites. A testsuite itself is like any other large and
complex piece of software subject to quality management
and configuration management. The ISO procedures
define requirements for a sensible use of the testsuite. For
Ada the testsuite is controlled and maintained by a single
instance (the Ada Conformity Assessment Authority).

Result of a conformity assessment is always a report
listing a detailed log of all test results. If all test results
for the implementation comply with the grading criteria
then a Mark of Conformity can be issued by the testing
laboratory.

Conducting conformity assessments requires a certain
qualification. Therefore these shall only be executed by
recognized testing laboratories. The meaning of
recognized or accredited has to be discussed later. [3]
requires that the testing laboratory works according to the
principles proposed by ISO. This means it shall be
embedded in a well defined organization and operate on
the basis of an approved quality manual. Finally it is
required that all testing laboratories recognize themselves
equally in order to provide a uniform conformity
assessment process.

In addition to the executing role of a testing laboratory a
technical instance is needed that performs general tasks.
The technical authority has to enforce the language
policy by taking care of the issues

À quality management and configuration management
of the testsuite,

À future maintenance of the testsuite,

À accompanying individual conformity assessments:

À approve special test modifications,

À disputes ruling,

À quality control of the test reports.

For Ada there was always a discussion how general a
certificate should be, which platforms are be covered by a
specific certificate. In Ada a common understanding
emerged, although the opinions never converged
completely. A conformity assessment is always
conducted on a specific base platform. Following up the
vendor then has the choice to extend the status certified

93

conforming to related implementation classes which were
obtained by

À maintaining an implementation within certain limits,

À rehosting an implementation.

The Operating Procedures for Ada Conformity
Assessments [6] provide the principles for extending the
certified conforming status. Finally this infrastructure
does not operate for free. The costs cannot entirely be
covered by the fees for a compiler conformity
assessment. An important role for conformity

assessments is a sponsor representing the interests of the
users. They expect to find a working certification system
which is kept alive by the sponsor. However the sponsor
must not use his influence to control the policy of the
certification system. Since 1998 the Ada Resource
Association (ARA) is sponsor of the Ada certification
system.

In summary the features for a model we postulate are
presented below together with the actual realization in the
new Ada certification system as required by [3]:

1. worldwide unique authority controlling the evolution
of the language standard (here: ISO WG9 Ada),

2. sponsor and authority for public relations (here:
ARA and Ada Information Clearinghouse),

3. (technical) Conformity Assessment Authority,

4. operational Conformity Assessment Laboratories,

5. testsuite including user- and version-documentation,

6. Operating Procedures for Ada Conformity
Assessments.

Fig. 1 shows the parties involved in Ada conformity
assessments and their dependencies.

6 THE SITUATION WITH OTHER
PROGRAMMING LANGUAGES

A direct comparison of Ada’s certification system with
that one of other programming languages is difficult. This
is due to the unique situation of Ada. Ada is the only
language for which a certification system was built up by
the sponsor and customer of that language and will

Sponsor

Ada Resource
Association

Ada Conformity
Assessment

Authority

Ada Conformity
Assessment

Laboratory IABG

Ada Conformity
Assessment

Laboratory EDS

Ada Conformity
Assessment

Authority
Advisory Board

ISO

ISO
JTC1/SC22

Working Group 9
Ada

DIN Certco
(accreditation in

Germany)
NIST

Testsuite
Development and

Maintenance

Fig. 1

94

continue to be centrallistically organized in this way by
ISO. Therefore Ada is the only language for which
information about certified implementations is freely
available. To this extent, the question posed in the title of
this presentation can be answered in advance with ’yes’.
However, there are restrictions concerning user-
friendliness for Ada. The remainder of this paper is
intended to support this premise by means of
characteristic examples.

As mentioned already the NIST discontinued IT
standardization, especially standardization and validation
of programming languages. There are many implications
of this decision: first of all there is no party entitled to
accredit conformity assessment laboratories. This means
that any organization or institution can declare itself as an
accreditation facility and thus accredit new testing
laboratories. Moreover nothing prevents an organization
form declaring itself as a testing facility. The only
controlling mechanism for that is the market.

 Furthermore the information pool role is changing.
NIST was the editor of a „validated products list“ which
was also available in printed form until 1995. Basis of
these products are US „Federal Processing Information
Standards (FIPS). After all Ada is also a FIPS Standard
(FIPS Pub 119-1). From 1997 on however there are no
new entries to this list. This means that the length of the
list is continuously approaching zero, which is expected
for the end of 1999. It is obvious that this list does not
reflect the actual status of validated implementations by
any means.

For a comparison of conformity assessment candidates
for Ada living languages should be selected for which
conformity assessments are actually being conducted.
This statement is actually true for C, C++, and Java. In
addition conformity assessment for the Draft Standard
Embedded C++ and for the C++ standard library are
emerging. On the market of compiler conformity
assessments two main players can be identified: Perennial
and Plum Hall. They gathered their experience with
conformity assessments during the involvement of their
staff in the standardization process of C, C++, and Java.

Information about the testsuites was retrieved from the
internet. Below two tables with some characteristic
figures are given. The metrics of the test suites (size of
code, numbers of test cases etc.) are not given in a
consistent manner so that a direct comparison is
impossible.

The development of the testsuites for C and C++ at
Perennial reflects also the development of the languages.
ACVS was contracted by the US government after the
standardization of C early 1990. The suite was developed
further as commercial product CVSA which contains
ACVC as a subset. CVSA eventually was extended from

1992 on to result in C++VS. The suites have an open
architecture allowing a customer to add individual tests to
the suite. All testsuites are structured according to the
resp. language reference manual.

The test suites of Perennial and Plum Hall are constructed
according to the same principles. Contrary to Ada
however they are delivered together with script programs
that allow immediate processing on standard operating
systems (Unix, WinNT). Thus the user has a tool at hand
allowing him to process arbitrary parts of the testsuite
and to display the evaluated results in a human readable
form. The scripts also support regression testing. In these
aspects the commercial testsuites must be clearly attested
increased user friendliness. However this also has a price,
with license fees in the range of man-months. The
philosophy of testing is the same for every language:
using positive and negative test cases grouped together in
identified test programs. It is remarkable however that
Ada puts increased emphasis on negative test cases (the
"B-tests" for those who are familiar with).The goal of
using the testsuites is again different for Ada and
C/C++/Java. For Ada the ultimate goal is to go through a
formal testing procedure and obtain a certificate issued by
a neutral third party testing organization. For the other
languages the testsuite is primarily the basis for compiler
vendors' self tests. Issuing a certificate is an exception,
branding is offered on demand. This means that compiler
validation or conformity assessment is subject to free
enterprise. Except for Ada there is no direct
comparability of the tested implementations:

À competing testsuites,

À no single list of tested implementations,

À no expiration of validated status,

À conformity assessment by independent testing
laboratories not as the regular case.

Along the lines with the new development for Ada there
is no national accreditation for any testing laboratory for
C, C++, or Java. Moreover after NIST's move out of
standardization there will be no national accreditation for
IT testing laboratories in the US anymore. The same
statement holds true for Europe except IABG's valid DIN
accreditation, which was actually renewed for Ada 95 in
February 1999 by Certco, DIN's subsidiary for national
accreditation.

Eventually there is no link between the C/C++/Java
certification systems and ISO. As a consequence there
can be no recognition of any conformity assessment
result by an impartial standardization organization.

It should be noted that under ISO the term language
processor is preferred over the term compiler, as there are
language processors which are different from a compiler.

95

6.1 A Brief Sketch of the Family of Plum
Hall Testsuites

In the following the family of testsuites from Plum Hall
shall be presented as an example for non Ada validations.
Presenting Plum Hall in more detail does not express any
preference or recommendation for or against any vendor
of validation suites. However a detailed overview over all
testsuites on the market is not the goal of this paper. The
reader is invited to search the Web Sites of Plum Hall and
Perennial for their latest products and announcements.

Tracking the development from C over C++ to Java is a
good way to demonstrate the evolution of the testsuites in
parallel. For CVS, the Plum Hall validation suite for C,
the simple objectives

À checking conformance with the ANSI/ISO C
Standard (the Conform part of the testsuite),

À compiler testing and bug finding (the Testing part of
the testsuite),

are identified. Note that the first enumeration is an
extension to the approach taken with Ada. This goal
implies that exhaustive error detection is performed, e.g.
a permutation of operands in expressions. Specifically
within the test procedures new tests are produced
dynamically, which means that a number of tests only
exist in a volatile manner. This kind of test processing is
not practiced for Ada. With Ada validation the objective
of the ACVC was a coverage of all features of the
language as defined in the Ada Reference Manual. A
repeated testing of features by generating test code is not
part of the Ada testing philosophy. At the time the ACVC
was designed no one simply was willing to spend
additional effort to provide such coverage testing.

The following information was compiled using actual
Web pages from Plum Hall. More material on their
validation testing offerings can be found there.

6.1.1 CVS Testing

The components of CVS are

À EXIN, the EXecutive INterpreter is a script language
processor. When it is built and passes its own test
set, the script processing is used as a basic tool in
subsequent sections of the Suite.

À COVER, this section uses EXIN scripts to generate
self-checking C programs that test coverage of all
permutations of operators and data types. The
standard scripts in the COVER section will generate
almost 200 megabytes of test files.

À NCOVER, A variation of the COVER scripts. These
scripts produce the same set of C language tests, but
they are more compact (and less readable). This is

intended for systems where the entire set of tests is
generated and kept on disk (approximately 35 MB).

À LIMITS, more EXIN scripts that are used to
determine the size of certain compile time limits (e.g.
significant length of identifiers or how deeply
include files may be nested).

À EGEN, the Expression GENerator is a test program,
written in C, which generates self-checking
expressions of arbitrary complexity. It is the tool
used by the STRESS section.

À EGEN64, as above but with support for 64 bit
integer types.

À STRESS, since it is impossible to test all possible
legal expressions, a sampling approach is taken.
Under the control of EXIN scripts, EGEN is used to
generate complex self-checking expressions. These
can be completely random, under the control of a
basis expression template, or driven from an EGEN
script file. (continuous runs in the background to
check for compiler errors)

The test harness of CVS allows to feed in additional user-
supplied tests. This is feasible for Ada ACATS testing
too, but is not along the lines of Ada validation policy. In
summary conformance testing is only one part of CVS
validation testing.

6.1.2 CVS COVER

This part of the testsuite is used to test conformance of
compilers against the ISO/ANSI C language standard.
The entire suite consists of the above, plus the following
which enables quality evaluation of compilers.

Test
Class

Number
of Tests

Target of Tests

Lang 1223 language syntax and
semantics

Prec 2001 precedence of
operators

Lib 8781 standard library

Exprtest 12471 expression code
generation

Errtests 431 error handling

Capacity 1 translation-
environment limits

Environ 20 Section 2 of the
Standard

Interp91 28 C standard defect
report tests

Table 2

96

The conformance validation section of the CVS suite
COVER currently consists of the following tests listed in
table 2.

6.1.3 Suite++®

Suite++ is Plum Hall’s testsuite for C++. In Suite++ a
test fact is defined as one sentence from the C++
standard, or one alternative rule of syntax, which
embodies a change from C. Those sentences that imply
both positive tests and negative tests are counted as two
cases. By this criterion, Plum Hall estimate the total test
facts in the (1995) C++ draft as 1800 positive test facts
and 1192 negative test facts, for a total exceeding 2992
test facts. (These totals cover the language definition of
C++, and do not include any cases for the library.) Each
positive fact may embody several executable tests in its
source code. There are over 4700 executable tests in
Suite++. It also includes tests for the more difficult
features like templates and exceptions.

Each test fact, as defined above, is individually designed
C++ executable code. Plum Hall claim to provide a level
of coverage comparable to that CVS. Each test fact is
individually written: sometimes the simplest possible
example and sometimes more complicated. The examples
are all meant to be intuitively graspable pieces of code;
enormous constructs whose correctness is beyond human
parsing are avoided. Attempting to cover all possible
interactions of features in every test fact would be
infeasible, and each extra case would contribute little
marginal utility.

For Suite++ the issue of interaction of features is
identified as a problem but cannot be solved entirely,
which holds true for Ada as well. The approach taken is
to provide examples of all important interactions
somewhere, in one or more facts.

Suite++ consists of three sections:

À Conform: positive tests coverage for C++ standard,

À Conform/Negtests: each test contains an erroneous
construct that should lead to an error message from
the compiler,

À Conform/Ctests: the sections testing the C-like part
of C++ (CVS must be accessible for that).

The Delivery Harness of Suite++ has among others the
following properties:

À Multiple Trees: support of multiple installations and
products,

À Distinction between host and target: support of
multiple platforms,

À Uniform batch-script conventions: these integrate the
use of MAKE and the SNAP tool.

6.1.4 LibSuite++™

LibSuite++, the Plum Hall Validation Suite for the C++
Library, is a set of C++ programs for testing and
evaluating a C++ library implementation. LibSuite++
covers Chapters 17 through 27 and Normative Annex D
of ISO/IEC 14882:1998 (the ANSI/ISO Standard for
C++) which was published by ISO and ANSI in
September 1998. Each test in the suite is derived from a
specific statement in the Standard.

The subdirectories of the CONFORM section provide 80
C++ programs, each covering part of a clause in the
Library section of the Working Paper.

If a particular C++ compiler cannot compile a special test
case, that case can be disabled using a flag. In addition
DISALLOW flags can be defined to globally disable
certain language features that a compiler may not be able
to handle. These mechanisms were introduced to cope
with the still dynamic development in the interpretation
of the standard and certain target or runtime
dependencies.

6.1.5 Plum Hall JVS™

Java is the youngest language among those presented
here. The JVS Plum Hall validation suite for Java is still
under development

À JVS-Grinder
A selection of self-checking Java programs that test
permutations of operators, primitive and reference
data types.

À Expresso Tests
A selection of machine generated Java programs of
arbitrary complexity which are designed to test the
expression processing capability of a Java compiler.
Expressions are generated using each of the
applicable operators, compiled and executed, and
calculated results are compared against similarly
derived results using the smallest component
subexpressions.

À Language Validation Tests
JVS contains a large number of hand written
language conformance tests. To date the suite has
tests for chapters 4, 5, 8, 9, 10, 20, 21 of The Java
Language Specification (JLS) and the majority of the
available Core library 1.1 specifications.
Statements in the specifications have been translated
into two categories of tests:
• positive tests for valid assertions of statements,

which should compile and run successfully, and

97

• negative tests for generation of diagnostics for
invalid conditions, checking the compiler’s
capability to detect bad code.

À Class Library Validation Tests

The JVS currently has over 2,000 test programs for the
original core library as described by the JLS, with the
following packages upgraded to Java 1.1 level

• java.lang

• java.lang.reflect

• java.util

The java.io package currently covers the methods
described in JLS. Both this and java.util .zip are work in
progress.

6.2 Validation of Embedded C++

For sake of completeness it must be stated that Perennial
offer testsuites for C/C++/Java as well. Whereas they do
not seem to support explicit testing of the C++ library
they have an Embedded C++ Validation Suite named
EC++VS since August 1998, supporting tests according
to the Embedded C++ Technical Committee Draft from
August 1997. There are currently 22_000 test cases.

6.3 Overview of the Testssuites for C, C++,
and Java

A summary of the testsuites from Plum Hall and
Perennial is given in Table 3 and Table 4. The numbers
given in the tables should not be taken as any quality
metric of the testsuites. Up to date information can be
retrieved from the Internet pages www.peren.com and
www.plumhall.com.

Plum Hall

Language / Library Testsuite Metric

C CVS 9.00 1998 24_956 test cases,
56_000

C++ Suite++
Vers. XVS5

>4_700 executable tests,
1_800 positive test facts,
1_192 negative test facts

C++ standard library LibSuite++ 2_000 test cases

Java JVS 6_200 test cases, 2.4 Mega
Lines of Java source Code,
800_000 executable items

Table 3

Perennial

Language Testsuite Version / Release-
Date

Number of
test cases

C ACVS Vers. 4.5 Jan. 98 8_000

C CVSA Vers. 6.7 Oct. 98 43_000

C++ C++VS Vers. 5.1 Feb. 99 72_000

Embedded C++ EC++VS Vers. 1.0 Aug. 98 22_000

Java JETS Vers. 1.1 Oct. 98 18_000

Table 4

98

7 SUMMARY AND ASSESSMENT

It has been shown that conformity assessments for Ada
play a special role. A considerable investment by the
DoD led to a single testsuite and to a working
certification infrastructure. The achievements of the
certification system could be preserved after DoD’s
withdrawal from validation. The testsuite covers the
whole language and is freely available, however the
development of the ACATS cannot be regarded as
completed. The approach of exhaustive testing by
generating new tests out of the testsuite is not pursued.
Information about test implementations can be always be
retrieved from a central internet site (www.adaic.org).
For C, C++, and Java there are competing testsuites
available as commercial products. The purpose of these
testsuites is primarily self-testing for the compiler
developers and vendors. Neither conformity assessments
of independent testing laboratories nor certificates as
evidence for successful testing are the regular case. In

contrary to Ada these testsuites contain elements of
performance testing of a language implementation.
However this approach seems not to be neither systematic
nor complete. For Ada the understanding always was to
strictly separate conformance testing from performance
testing.

Table 5 summarizes the main differences between the
conformity assessments of Ada and C/C++/Java.

Assuming a realistic viewpoint the importance of
compiler conformity assessments shows a downward
tendency. Vendors use testsuites as part of their internal
quality management cycles. A certificate demonstrating
a successful conformity assessment does not really
increase the market chances for a compiler. Seen
positively compiler technology is becoming more and
more mature while still being away from a satisfactory
maturity level. This reduces the demand for an expensive
third-party-testing procedure. The concentration process
on a handful of platforms also contributes to a

Criteria Ada C, C++, Java

(Plum Hall, Perennial)

Objective of Testing À Demonstrate conformance
with the ISO language
standard and implicitly
detect compiler errors

À No performance testing

À Demonstrate conformance with the
ISO language standard and
explicitly detect compiler errors

À Elements of performance testing

Certificates Part of the process Branding on demand

Third-party-testing Regular Exceptional (e.g.. "Perennial
Conformance Test Center")

Independent testing laboratories Yes Identical with testsuite vendors

Accreditation Germany: yes (IABG with DIN
CERTCO), USA: no (EDS)

No national accreditation at present

List of tested implementations Yes, available on the internet No, competing testsuites

Testsuites price Free High: testsuites as trademarks

Testsuite maintenance Independent of the customer
contract

Maintenance as part of the customer
contract (6/12 months)

Testsuite comfort Only tests themselves are
under configuration
management

Testsuite includes execution/evaluation
scripts

Regression Testing Not directly supported Supported by the scripts

Technical authority as a separate
organization

Yes No

Table 5

99

consolidation in compiler development.

In summary the thesis of this paper can be answered by
yes with restrictions. With Ada validation a model was
created which is leading with regard to objectivity,
impartiality, and completeness. The development of the
last decade has shown that this is not a general need of
the compiler business outside of Ada. In this domain
primarily a comfortable tool for compiler self-tests is
sought. However as Ada is the first choice in the growing
safety critical domain Ada conformity assessment will
not loose its importance, just the opposite holds true.
Moreover the use of certified tools is only one
requirement within the software certification cycle for
safety critical software. And the need for the propagation
of vendor independent standards in the software industry
is more urgent than ever.

8 REFERENCES

[1] Ada Validation := Ada Conformity Assessment.
Phil Brashear, EDS Conformance Testing
Center. Ada Letters Volume XIX Number 1,
ACM SIGAda, March 1999.

[2] Ada 95 Conformity Assessment – Only the
Names Have Changed. Randall Brukardt, Steven
Deller, Joyce L. Tokar. Ada Letters Volume
XIX Number 1, ACM SIGAda, March 1999.

 [3] ISO/IEC Final Committee Draft 18009.
Information Technology – Programming
Languages – Ada: Conformity Assessment of a
Language Processor, 1999.

[4] An Efficient Compiler Validation Method for
Ada 9X. Michael Tonndorf, Ada-Europe '93
Conference Proceedings, Lecture Notes in
Computer Science 688, Springer Berlin,
Heidelberg, New York.

[5] Ten Years of Tool Based Ada Compiler
Validations. An Experience Report. Michael
Tonndorf, Ada-Europe '98 International
Conference on Reliable Software Technologies.
Conference Proceedings, Lecture Notes in
Computer Science 1411, Springer Berlin,
Heidelberg, New York.

[6] Operating Procedures for Ada Conformity
Assessments, Version 2.0. Ada Resource
Association, Fairfax VA, USA.

100

