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There are many characteristics of a good mathematical problem solver: having 

wide mathematical knowledge, understanding content thoroughly, being confident 

and persistent, having experience of solving problems, being able to use heuristic 

strategies and having metacognitive knowledge. Factors such as these work together 

to create good problem solvers. Sometimes, for example, extensive knowledge and 

experience makes problem solving simple; at other times good use of heuristic 

strategies, metacognitive expertise, confidence and persistence can compensate for 

lack of knowledge.  

In this chapter, we analyse sample protocols of graduate and undergraduate 

mathematics students working on a problem in number theory. The problem lends 

itself to the use of numerical examples, and so the major heuristic strategy employed 

is to try examples. The chapter highlights how problem solvers used the strategy “try 

some examples” in very different ways. Some used numerical examples to gain 

insight; others only collected evidence. Most tried too many examples but another 

tried too few and consequently lost contact with the problem. Such issues of 

metacognitive control will also be illustrated. Examples were often used to discover 

the facts of “what” was true—what we will call the surface features of the solution—

but only some participants used examples to uncover reasons for these facts—what 

we will call the deep structure of the problem. The problem solvers oriented to deep 

structure knew to look beyond patterns in the “data” obtained by trying examples and 

use their mathematical techniques and skills to expose mathematical structure. Some 

observations of the role of teaching in the development of orientation to problem 

solving conclude the chapter. 

Try Some Examples: A Heuristic for Seeking Surface Features or Deep Structure 

“Trying some examples” is probably the simplest of all problem solving 

heuristics. Mason, Burton and Stacey (1982) place it into the somewhat wider 

category of “specialising”, which they identify as one of four basic processes of 



thinking mathematically. In their analysis, specialising and generalising are dual 

processes that drive mathematical thinking, along with the second dual pair of 

conjecturing and convincing. They advocate specialising as a simple technique that 

everyone can use to get started on a question or to make progress when otherwise 

unable to proceed. 

Commentaries by experienced problem solvers such as Polya (1957) and Mason et 

al (1982) point out several roles for the heuristic of trying examples—to become 

familiar with a situation, to find out what might be the case and to gather clues about 

why it might be so. Mason et al, for example, comment: 

“Your aim in [trying examples] is two-fold: to get an idea of what the answer to 

the question might be, and at the same time to develop a sense of why your answer 

might be correct. Put another way, by doing examples you make the question 

meaningful to yourself and you may also begin to see an underlying pattern in all 

the special cases which will be the clue to resolving the question completely.” (p. 

2) 

Elsewhere, they describe how specialising can be carried out randomly, systematically 

and artfully. In this chapter, we will show how some participants used examples in all 

of these ways, whilst others limited their use to finding out what rather than why.  

Despite the agreement of experts on the importance of specialising, there are very 

few research studies of how students implement it. In one of the few studies of 

students’ understanding of the use of examples in problem solving, Stacey (1992) 

noted that groups of 14 year old students had difficulty generalising from specific 

numerical examples, but that there was good understanding of the role of numerical 

examples to disprove conjectures.  

Studies of expertise in problem solving have frequently identified how experts 

focus on deep structure, whereas novices focus on surface features. Now classic 

experiments, summarised by Schoenfeld (1985), have shown that expert chess players 

perceive positions of pieces on a chessboard in terms of broad arrangements (deep 

structure), rather than as separate placements of pieces (surface structure). Similarly, 

physics problems are sorted by experts according to the physical principles involved 

in their solution (deep structure) rather than according to the objects in the problem 

statements (surface structure). Similar differences have been observed in successful 



and less successful students’ memories of mathematics problems. The successful 

students were said to have recalled deep structure whereas the less successful students 

were said to have recalled surface features.  

Our use of the terms deep and surface is slightly different. We will describe the 

facts (or partial facts) of what is true about a mathematical situation as the surface 

features and the reasons (or partial reasons) why they are true as deep structure. In 

terms of the processes underlying mathematical thinking described by Mason et al 

(1982), searching for surface features ends at conjecturing whereas deep structure is 

concerned with convincing.  

Describing Problem Solving Protocols with Episode Graphs. 

In the field of mathematics education, Schoenfeld (1985, 1992) has produced the 

most influential insights into control behaviour during mathematical problem solving 

episodes. He observes: 

“With good control, problem solvers can make the most of their resources and 

solve rather difficult problems with some efficiency. Lacking it, they can squander 

their resources and fail to solve problems easily within their grasp.” 

(1985, p. 44) 

In his 1985 book Mathematical Problem Solving, Schoenfeld details a method for 

graphically representing the various changes in behaviour that result from control 

decisions during a problem solving episode. He used these “episode graphs” of the 

problem solving sessions to characterise the differences in control behaviour 

exhibited by novice and expert problem solvers. These graphs will be used in this 

chapter to summarise some aspects of the problem solving protocols that we have 

collected. 

Schoenfeld makes several claims about episode graphs, especially that the type of 

episode graph is linked to the success in problem solving and also to the solver’s 

general expertise in problem solving. One qualification of the last claim is that the 

problem should be challenging to the solver. An expert working on a routine problem, 

for example, would not exhibit a great deal of control because this is not needed in a 

straightforward task. Despite the impact of Schoenfeld’s work on thinking about 

control behaviour—and the attractiveness of the graphical representation he 



developed—there have been very few articles published which have used the graphing 

technique, analysed it from a methodological viewpoint, or further explored the links 

between control and expertise. In Mathematical Problem Solving Schoenfeld 

describes only six protocols in detail. This chapter therefore provides an opportunity 

to extend the very small data-base on which the conclusions about the link between 

episode graphs, expertise, control and problem solving behaviour have been built and 

tested. Several methodological points relating to the parsing technique have been 

investigated in relation to the protocols that are described in this chapter. These are 

not presented here but are discussed thoroughly by Scott (1996). 

OVERVIEW OF METHODOLOGY 

For this study, we obtained detailed descriptions of nine solutions from 

participants “thinking aloud” as they worked on a challenging mathematical problem. 

The protocols documented cognitive actions and metacognitive control actions, to the 

extent that these can be observed or confidently inferred. The participants were ten 

first year undergraduate students specialising in mathematics (about 19 years old) and 

four postgraduate students enrolled in research degrees in mathematics. The post-

graduate students and one exceptional undergraduate who had represented Australia 

in an International Mathematical Olympiad were classified as experts and worked 

alone. The others were classified as novices and solved the problem in pairs, as in 

Schoenfeld’s work. 

Participants worked on a problem, Staircase Numbers (see Figure 1) from Stacey 

and Groves (1985). This was chosen because it is challenging yet amenable to a range 

of solution approaches and accessible to problem solvers of varying levels of 

mathematical ability and training. A full solution to this problem can be found in 

Mason et al (1982). The concrete presentation of the staircase numbers was selected 

(rather than the abstract presentation of the same problem as “which numbers are 

sums of consecutive numbers?”) to increase accessibility and increase the possibility 

of visual and intuitive methods. One of the features of this problem is that it is easy to 

try numerical examples to gain information about many different aspects of the 

problem. The degree of success achieved by each solution attempt is measured 

crudely by recording the number of aspects of the solution to the problem that were 



stated. Eight aspects of the solution, described in Figure 2, were chosen for these 

measures. This is a very rich problem and much more can be found out about it than 

these eight solution outcomes, but only one participant found more than these in the 

half hour available for each recording session. 

Schoenfeld’s (1985) methodology for collecting and parsing protocols was 

followed as closely as circumstances permitted. The problem solving sessions were 

videotaped and then transcribed. Transcripts were parsed and episode graphs were 

constructed. 



 

Staircase numbers 
A staircase number is a number that can be expressed as the sum of 
consecutive integers. For example, 10, 7 and 12 are staircase numbers 
because 

10 = 1 + 2 + 3 + 4 
  7 = 3 + 4 
 12 = 3 + 4 + 5 

We can imagine the ‘staircases’: 

            
            
    10   7    12 
            
            

 

In the case of 10, the heights of the stairs are 1, 2, 3 and 4. 

The number 4 is not a staircase number because the only way of writing it 
as a sum of consecutive integers is the trivial and uninteresting way with 
one stair, of height 4. 

Which numbers are staircase numbers and which are not? 

Find a recipe or rule that will give the heights of the stairs for any 
staircase number. 

 (Adapted from ‘Strategies for Problem Solving’, K. Stacey and S.  Groves, 1985) 

Figure 1. Staircase Numbers problem sheet used in this study. 

 
Outcome Description of Outcome 

1 Identifying that all odd numbers (after 1) are staircase numbers 
2 Informally demonstrating how odd numbers can be written as the sum of two 

consecutive numbers (e.g. half of 17 is 8.5 and so 17 = 8 + 9)  
3 Stating outcome 2 in a general way, possibly algebraically  

[e.g. n = (n-1)/2 + (n+1)/2] 
 4 Identifying that powers of two are not staircase numbers 
5 Identifying that staircase numbers with an odd number of stairs are multiples of that 

number, or vice versa. 
6 Using outcome 5 in some way to provide some reasons for outcome 4 e.g. by observing 

that powers of two have no odd factors other than one and so cannot be staircase 
numbers with an odd number of stairs.  

7 Devising a rule for expressing even numbers (other than powers of two) as staircase 
numbers. 

8 Describing how to write for any given number, other than a power of two, as a staircase 
number. 

  
Figure 2. Description of the main outcomes in the solutions to Staircase Numbers problem.  



SUMMARY OF SOLUTIONS AND PROTOCOLS 

In total nine useable protocols were collected. Table 1 shows that two of the 

experts found all eight of the outcomes specified in Figure 2 whereas the other two 

experts and the five novice pairs found from two to four of them. After examining the 

protocols, there seemed to be four different types. Three of the protocols, those by 

experts LI, LR and SF, display individual features. However, substantial commonality 

was found in the other six protocols (one by expert DW and all those of novices) and 

so in the discussion below, the protocol of NW & JM will be discussed as 

representative of them all. 

Table 1: Solution outcomes for participants.  

Solution outcome 
Participant(s) Category 

1 2 3 4 5 6 7 8 

LI Expert × × × × × × × × 

LR Expert × × ×  ?    

SF Expert × × × × × × × × 

DW Expert ? × × ?     

NW & JM Novices × × × ×     

SC & DH Novices ×    ?   ? 

SL & WS Novices × ? ? ? ?    

AC & BC Novices ×   ×     

JL & MC Novices × × × × ?    

KEY  × outcome achieved  ? some aspects of outcome achieved  
Note: Participants classified as experts worked alone, novices worked in pairs. 
 
 

Participant LI 

LI is a very talented undergraduate mathematics student. His protocol shows a 

solution that seeks the deep structure of the problem, operationalised by using an 

algebraic formulation. A summary is given in Appendix 1. His high success on the 

problem came from the use of targeted examples and strategically important global 

assessments and his confidence in the various algebraic formulations that he devised, 

even to the point of ignoring small errors. Although there was much more to be 

discovered in this rich problem, in sixteen minutes, LI produced a solution covering 

all outcomes expected, as shown in Figure 2. He used numerical examples in several 



ways: 

• to reduce unnecessary generality from algebraic expressions, 

• to search for deep structure by looking for the general in the particular, 

• to identify algebraic errors. 

Possibly because LI did not try a wide range of examples, he did not realise there 

was a limitation to the formula that he had developed (it sometimes gave negative 

stairs). Had he tried a wider range of numerical examples, he may have been lead to 

investigate the substantially deeper results linking odd factors with staircases with 

even numbers of stairs (See Mason et al, 1982).  

LI’s episode graph is shown in Figure 3. In constructing an episode graph, 

behaviours identified from the participants’ speech and writing are divided into 

episodes and the episodes are categorised into six types: read, analyse, explore, plan, 

implement and verify. Points where control activities occur (such as assessing the 

amount of progress that has been made) are highlighted using the triangles that can be 

seen in the graph. The episodes are then arranged on a timeline that indicates episode 

duration, transition between episodes, and managerial activity. Further details can be 

found in Schoenfeld (1985). 

(Insert Figure 3) 

Figure 3. Episode graph for LI 

The episode graph of LI (see Figure 3) was similar to the episode graphs that 

Schoenfeld associated with experts.  This reflects the fact that LI constantly monitored 

his work—assessing the results of calculations and procedures to see how they fit 

with expectations and continually refining his global solution plan in light of these 

assessments. Two aspects of the episode graph show evidence of this control. Firstly, 

the triangles indicate individual instances of control. Secondly, the graph moves up 

and down showing that LI’s work consisted of various categories of episodes and that 

the solution moved frequently between episode types. Schoenfeld claims that the 

transitions between episodes of different types are the result of metacognitive control. 

This graph shows the characteristics that Schoenfeld (1985) identifies in the episode 

graphs of other expert problem solvers. 



Participant LR 

A doctoral topology student, LR had an exceptional record of study in 

mathematics. However, in his solution (see Appendix 2), LR covered only four 

outcomes from Figure 2 (see Table 1). He justified an algorithm for writing all odd 

numbers as staircase numbers and made preliminary assertions about staircase 

numbers with three columns being divisible by three. Much of his time was spent 

investigating subgoals; the criteria for staircase numbers to have three, four or five 

stairs. Like LI, he sought deep structure in the problem, evidenced by an algebraic 

formulation. However, LR used very few examples, so lost touch with the problem 

and hence made very little progress towards a solution. LR used examples to: 

• gain initial familiarity with the problem (briefly), 

• identify algebraic errors. 

His algebraic representations were primary and numeric work was done in the 

context of the algebra. For example, 21 was demonstrated to be the sum of m and  

(m – 1) where N = 21 and m =(N+1)/2. LR did not seek to illustrate the algebra with 

examples, although in two instances numeric examples pointed him to errors in 

reasoning and manipulation (N = 12 and N = 14). Had he looked at more examples 

systematically, he may have been able to move away from his one approach, which he 

had assessed early on as “not really getting anywhere”. 

(Insert Figure 4) 

 

Figure 4. Episode graph for LR 

The episode graph (see Figure 4) was similar to the episode graphs that 

Schoenfeld associated with experts. There were many instances of control, but it was 

local, assessing progress towards subgoals rather than the overall goals of the 

problem. 

Participant SF 

Expert participant SF was a Masters student in operations research, having been 

an excellent student throughout her career. Her protocol (see Appendix 3) shows that 

she also looked at the deep structure in the problem, but she did this differently to LI 



and LR, by collecting structural evidence from examples. She used a wide range of 

examples and she chose them systematically and with care. Like participant LI, SF 

made strategically important global assessments, which probably contributed to her 

successful solution. All eight outcomes from Figure 2 were covered by her 

investigation.  

Despite her success and her “expert” status, her episode graph (see Figure 5) was 

similar to the graphs that Schoenfeld associated with novice problem solvers. There is 

little control behaviour, as evidenced by few triangles indicating solution assessments 

and few transitions from one category of behaviour to another. Schoenfeld asserted 

that the graphs of protocols done by novices generally appeared like that of SF. 

SF used algebra only as a notation to signify quantities in her written work. 

However, her use of examples was highly systematic and thoughtful. She used 

examples: 

• to look for patterns and suggest conjectures, 

• as carriers of general structure, 

• as a source of further directions for investigation. 

 

 

(Insert Figure 5) 

Figure 5. Episode graph for SF 

 

Participants NW & JM 

The other protocols, one from an expert and five from novice pairs, exhibited 

many commonalities, and so only one example is given. NW and JM were a pair of 

novice problem solvers, who asked to work as a team and worked well in this way. 

They were both above average students in mathematics at school and neither found 

the mathematics they were currently studying too difficult. Their protocol displays 

concentration only on the surface features of the problem. They used examples to 

collect data about what happens, but not about why it happens. In one instance, they 

used a numerical example to explain a rule also stated algebraically. Table 1 shows 

that they discovered the main solution outcomes for the problem, but they did not 



know why these results were true. Their global assessments did not impact on their 

solution process. The episode graph (Figure 6) was similar to the episode graphs that 

Schoenfeld associated with novices.  

(Insert Figure 6) 

Figure 6. Episode graph for NW & JM 

ANALYSIS OF THE PROTOCOLS 

Table 2 summarises differences between the four protocols. Analysis of the 

protocols showed that the major differences contributing to success on the problem 

seemed to lie in the following dimensions, which will be illustrated below: 

• whether the participant looked at the deep structure of the problem or 

concentrated  on surface features, 

• how the participant used examples and 

• the nature of some of the assessments of solution progress that were made. 



Table 2. Characteristics of Selected Protocols 

Participant(s) LI LR SF NW & JM 
Category Expert Expert Expert Novice* 
Outcomes reached 8 3 8 4# 
Structure Deep Deep Deep Surface 
Formulation Algebraic Algebraic Numeric Numeric 
Examples chosen Few, targeted Too few Wide, targeted Too many 
Episode graph Expert-type Expert-type Novice-type Novice-type 
Assessment of progress Strategic and 

global 
Frequent but 
local 

Strategic and 
global 

Low 

 
* The NW & JM protocol is typical of six protocols obtained, including one from an expert.  
 # The NW & JM protocol was the most successful of the six that it represents.  
 

Deep Structure and Surface Features 

As indicated in the descriptions above, a major division was found in how 

participants approached and thought about the problem. LI, LR and SF all considered 

the problem from what we call a “deep structure” perspective. Their work acted on 

the problem at a structural level. This was either in terms of an algebraic formulation 

of the problem (in the case of LI and LR), or through the reconciliation of evidence 

from examples perceived in structural terms (participant SF). These protocols 

explained both why the solution (or part solution) worked as well as how it worked. 

These solutions involved formulation of structural components of the problem.  

The other six protocols focussed on “surface features” of the problem. These 

solutions did not go beyond summarising information noted from the generation of 

numeric examples, usually systematically. There was no real attempt to formulate the 

problem to make it amenable to analysis. Consequently, they were limited in what 

they were able to discover (see Table 1). For example, three of the six protocols 

included a rule for writing odd numbers as staircases of the form  

N =
N −1

2
+

N +1
2

. 

However, this generalisation was a summary of observations rather than the result 

of reasoning. As another example, SC & DH looked at dividing numbers by various 

factors as a basis for determining stairs, but they could never take this beyond a trial 

and error process, and it was never fully tested. 



Deep Structure and Success 

Table 1 shows that only two solutions, both exhibiting deep structure, succeeded 

in achieving more than half the solution outcomes for this problem. Consideration of 

deep structure however was not enough to ensure success. LI and SF covered all the 

solution outcomes described in Figure 2, although there was certainly more to be 

found in this rich problem. The deep structure solution of LR, on the other hand, was 

less successful than the novice, surface feature pair of NW & JM.  

To see what else might be required, compare the solutions of LI and SF to that of 

LR. Although LR worked within a framework that helped to elicit structural elements 

of staircase numbers, he did not note some simple properties like powers of 2 not 

being staircase numbers (outcome 4). He had a representation for describing and 

manipulating staircase number descriptions but he had no examples within which he 

could ground his thinking. In contrast, both LI and SF used examples to “point them 

in the right direction” so that they could focus their investigations on one or two 

salient aspects. Some of LR’s work, on the other hand, became so abstracted from the 

“real” situation that he began to lose touch and make algebraic slips. It was quite a 

while before LR was able to follow an example through his algebraic work far enough 

to detect a simple mistake. The combination of deep structural investigation along 

with targeted examples seemed to be required for progress. 

The Episode Graphs 

The three expert deep structure solutions show two different types of episode 

graph. LI and LR have similar graphs, both of the type Schoenfeld associates with 

experts, although one was successful and the other not. This shows that success is not 

implied by an expert-type episode graph. On the other hand, the highly successful 

solution of SF gave a graph of the form that Schoenfeld would associate with non-

expert problem solving behaviour.  

In contrast to the variation in the deep structure episode graphs, all the surface 

feature protocols resulted in episode graphs that looked like Schoenfeld’s typical 

novice episode graph. (Some methodological points relating to this claim can be 

found in Scott, 1996). However, it was noticeable that quality of thinking was not 

reflected in the episode graphs. For example, the pair JL & MC looked at uniqueness 



of staircase representations and discussed ideas about averaging stairs around an 

average stair height. They also worked on a way of algebraically representing staircase 

numbers—but with little success. The fact that their episode graph was similar to the 

graphs of the others and did not highlight the clear differences in the quality of their 

investigation is an important point to consider when using episode graphs.  

Trying Examples 

NW & JM used the examples they generated to identify that powers of 2 were not 

staircase numbers. They acknowledged that they had not proven this assertion, but did 

not attempt to do so. The pair found a rule and a reason expressed diagrammatically 

for odd numbers (outcome 2), but otherwise they looked for patterns in the examples 

they generated, without ever considering what properties of staircase numbers led to 

these patterns. Similarly, AC & BC exhibited little in the way of analytic behaviour, 

spending the majority of their time checking examples on a calculator. When stuck, 

they often went back to more example generating simply because it was something 

they knew they could do. AC & BC justified these actions with comments like “at 

least we’re still collecting data”. 

All six sets of participants in the surface feature group showed this behaviour of 

“try a few more examples”. In contrast, when participants providing deep structure 

protocols were stuck and chose to turn to examples, their behaviour was different. The 

move back to generating more examples was not handled in the same way. For 

instance, when LI stopped to try some examples when he did not know how to 

proceed, his choice of examples for consideration was very particular. He knew 

exactly the type of examples he needed to generate in order to confirm or refute his 

current ideas about the problem. He only worked with these examples for as long as 

they provided him with new information. Then he went back to analysis to 

accommodate this information into his previous work. This made the exploration 

focussed and useful. In a similar fashion, SF’s solution depended on her systematic 

generation and interpretation of examples. 

Two contrasting uses of examples are seen in the protocols of LR and of NW & 

JM, whose achievement of outcomes (Table 1) was comparable. LR’s solution 

suffered from too few examples, whilst NW & JM suffer from too extensive a use of 



examples. LR spent the majority of his session working with an algebraic formulation 

of the problem intended to model the structure of staircase numbers. He generated few 

examples and spent little time considering which of his examples were staircase 

numbers and which weren’t. His local and global solution assessments were well 

placed and accurate when he made them, but unfortunately, the lack of assessment of 

the examples he worked with meant that he never discovered that powers of two were 

not staircase numbers. On the other hand, NW & JM were very good at spotting 

patterns and consolidating information collected during their explorations. They 

“discovered” important points relating to odd staircase numbers and powers of 2 but 

left them unproven. In the end LR knew less, but knew it better; while NW & JM 

“knew” a little more, but in an unsubstantiated way. 

It is hard to tell from the protocols whether concentration on surface features was 

due to reluctance to consider deep structure or inability. Some of the surface feature 

protocols show that participants did try to go beyond simple pattern spotting from 

examples. For instance, SC and DH attempted to generalise their finding that the 

stairs of a 2-stair staircase number balanced around the mean value (e.g. stairs of 8 

and 9 balance around 8.5) to staircases of other sizes as illustrated in Figure 7. 

Unfortunately they were unable to refine the process of choosing the best factor and 

this left their resulting procedure at the “trial and error” level.  

 

(Insert Figure 7) 
 

Figure 7. SC & DH balance stairs around a mean stair height 
 

In summary, while “try a few examples” was a strategy that all participants knew 

and employed at some point in their work on the problem, there were significant 

differences in the way in which the strategy was implemented and how the 

information collected was used. Where examples were specifically designed to 

illuminate insights or to confirm or refute assertions, they could be effectively used as 

a way of advancing in the problem (see participants LI or SF). For the six sets of 

participants in the surface feature group, examples were generally not used in this 

way. They generally used the strategy “try some more examples”, just collecting more 

data in the hope of spotting some more results.  



CONCLUSIONS 

Necessary Resources for Solving the “Staircase Numbers” Problem 

The protocols in this study provide an interesting set of contrasting examples of 

problem solving. As summarised in Table 2, some but not all of the deep structure 

solutions were successful as were some but not all of the solutions corresponding to 

expert-type episode graphs. Moreover, both experts and novices produced surface 

structure solutions, which seemed to result in similar episode graphs.  

This was a hard problem for many of the participants because their initial 

behaviour in generating examples was generally not conducive to progression towards 

considering the underlying structure of staircase numbers. Only two participants made 

any real attempt at algebraically formulating general expressions for staircase 

numbers that they could then investigate. Two other participants made some use of 

the visual representations of staircases provided with the problem to think about 

“balancing” stairs around some central “mean” stair height. This work did not 

generally move beyond “drawing pictures” however and did not translate into 

additional solution outcomes being demonstrated.  

While “try some examples” is a common strategy advocated in the problem 

solving literature and in teaching, it was used poorly by many participants in this 

study. It certainly seems that to solve the “Staircase Numbers” problem, the use of 

examples was essential. The two complete solutions provided by participants in this 

study made use of examples that were specifically designed to illuminate insights or 

confirm or refute assertions. The other participant in the deep structure group—one of 

the strongest mathematics students in the study—suffered from not trying enough 

examples. He was unable to discover some simple facts about staircase numbers. 

For the six sets of participants in the surface feature group, the difficulty generally 

lay in trying too many examples. In some respects, these participants seemed to equate 

trying examples with solving the problem. They only used examples to “discover” 

facts about the problem, or when they were stuck and did not know what else to do. 

Their solution attempts demonstrated very little “targeting” of examples to suit 

specific questions. Most of their time was spent lost in a sea of examples with nothing 

but surface features obvious in the information to guide participants. In general, only a 



combination of deep structural investigation along with targeted examples seemed to 

assist solution progress. 

There was substantial commonality amongst the degree of success and the episode 

graphs of the surface feature solutions (as would be predicted from Schoenfeld’s 

work) but there was variation in quality of thinking amongst them that neither 

measure revealed. It seemed that the episode graphs could be used effectively for the 

identification of changes in behaviour brought about by local assessments of the 

knowledge state and solution progress. In this respect Schoenfeld’s parsing approach 

had real value. It can also be concluded that graphs that indicate control behaviour 

through repeated variations in episode categorisations are indeed indicative of control-

related problem solving practice. However good control may well exist in cases where 

such features are not prominent in an episode graph, as in the case of SF.  

Implications for Teaching 

The younger participants in this study (all the novice pairs and LI) attended 

secondary school when the teaching of problem solving first achieved wide popularity 

in our education system. Our personal observations and anecdotal evidence indicates 

that in many classes, strategies like “try some examples” have been taught to students 

in a superficial way. Stacey (1991) provides some documentation of this. The use of 

examples to identify surface features of solutions and as an aid to guessing patterns 

has been foremost, with little attention given to the use of examples to gain deeper 

insight into a problem. Discussions with some of the participants in this study indicate 

that the message that gets across in teaching is that trying examples is an adequate 

method of problem solving. As one said, “you can solve almost any problem if you 

work out enough examples”. It may not be coincidental that, apart from LI, the 

undergraduate participants showed little interest in uncovering the deep structure in 

the problem. They were good at collecting information, but their inability to reconcile 

it in meaningful ways let them down. Along with lessons about how, when and where 

to use the “try some examples” strategy, it is important to build students’ skills in 

formulating problems structurally so that patterns observed are more than surface 

level indicators of a possible answer.  

Our assessment of some of the ways in which curricula valuing problem solving 



have been implemented in many Australian schools is that students have been 

exposed to a strongly empirical approach to mathematics. Gathering data and 

observing and describing patterns have become common activities in classrooms, 

whilst proving results or questioning why results hold (or indeed if they always hold) 

have a low profile. General reasoning is often not expected by the teacher. Moreover, 

the problems chosen for students to work on are often puzzles, where solutions can be 

found by trial and error but are too difficult for students to prove (Stacey, 1995). 

Accompanying this has been a marked decrease in proof in areas of the curriculum 

where it was traditionally found. For example, a common textbook series justifies the 

theorems about angles in circles only by measurement of a few examples. It may have 

been expected that an emphasis on open problem solving may have provided many 

opportunities for students to make conjectures and to prove them, even if not 

formally. However, these possibilities seem not to have become reality. 

In the light of these curriculum trends, it is perhaps not surprising that the novice 

students did not use examples to search for deep structure in the problems. However, 

it does set a clear goal for changing teaching so that students learn to use “try some 

examples” as the powerful strategy that it is.  
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APPENDIX 1 

Protocol of LI (Expert with a Successful Deep Structure Solution) 

After reading the problem, LI began an algebraic formulation of the problem 

based on the sum of a general arithmetic progression, to investigate the effect of 

varying the size of the starting stair and the total number of stairs. After 30 seconds of 

silent contemplation at the 1.05 minute mark, he made some important observations 

about the conditions of the problem (e.g. there are a minimum of two stairs and the 

smallest staircase number is three). This work removed some of the generality from 

his algebraic formulation. 

After a silent transition at 2:43 minutes, LI decided to “try some more examples”. 

LI appeared to be in deep thought during this transition; perhaps he knew that he was 

having difficulty with the algebra of the problem and that trying some examples 

would help him to get a better feel for the variables that he was working with. LI 

systematically checked all the numbers from 1 to 7 during which he noted that “odd 

numbers can obviously be done just by taking the integer part of the half” (outcome 

2). With the resulting information LI quickly moved back to analysis. He seemed 

loath to try any more examples at this stage (as would have been reasonable—he 

hadn’t encountered many numbers that were not staircase numbers at that point). This 

action reinforces the view that he was confident of his original formulation of the 

problem, and preferred to focus on the structure and relationships between the 

variables, rather than look for surface level patterns in the data generated during this 

episode. 

From 3.34 to 6.22 minutes, LI focussed his analysis on even numbers, finally 

considering what happens if the sum is four times a square. This unproductive 

approach was abandoned and not considered again. During this work, he further 

reduced unnecessary generality from his algebraic formulation. 

At 6:45 minutes, LI began systematically checking all the numbers to 19 to see 

which were staircase numbers, summarising these results in a table.  

At 9:15 minutes, LI said “OK, let’s go back to the start again” and he began 



implementing an approach based on parity that would have been familiar to him from 

his Olympiad training. Going back to the start meant right back before his arithmetic 

progression work. In the subsequent implementation episode, LI covered solution 

outcomes 4 and 6 from Figure 2. 

LI made several algebraic slips during this episode (e.g. writing n+m instead of  

n-m) which might have prevented him from deriving his result. However, he still 

reached the correct conclusions. Because LI did not verify his solution at this point or 

at any later stage, or use it to generate some staircase number examples, he did not see 

that his algebra was wrong until he used it sometime later on a sample number, 23.  

At 12 minutes, he then moved on to generating a procedure for producing the 

stairs for any staircase number, with a straightforward implementation of his previous 

results. This work covered solution outcomes 5, 7 and 8 from Figure 2. The problem 

solving session finished at 16.25 minutes. 

APPENDIX 2 

Protocol of LR (Expert with an Unsuccessful Deep Structure Solution) 

LR read the question, listed the first few staircase numbers and noted that they 

included the set of “triangular” numbers. Then he formulated the problem 

algebraically as the sum of n + 1 stairs with largest stair m: 

S = m + (m - 1) + (m - 2) + … + (m - n) 

He summed this expression, which culminated in an algebraic description of the 

set ∑ of staircase numbers: 

= n +1( ) m − 1
2 n( ): m,n natural numbers,  n < m{ }∑  

At 5.58 minutes he asked: “Well, what’s there to know [about ∑]? It’s got, … it’s 

a countable set …” and the interviewer suggested he move onto the second part of the 

question, trying, perhaps to write 23 as a staircase number. 

LR did this by solving the equation m + (m – 1) = 23 after deciding that 23 must 

have at least two stairs. He went on to write the equation above as a more general 

expression for 2-stair representations: 



m =
N +1

2
 and m + m −1( ) = 23 

and concluded that this expression always has a solution if N is odd. This work 

covered solution outcomes 1, 2 and 3 from Figure 2. He then turned to expressing 

even numbers as staircase numbers with three stairs. From the equations: 

m + (m – 1) + (m - 2) = N, ∴ 3(m – 1) = N 

he concluded: "So 3 outside (m - 1) is equal to an even number so there’s no 

solution." He then checked the problem sheet and asked (rhetorically): "Well, hang 

on, there’s a solution here for 12, [points to the question sheet] so what have I done 

wrong?" 

He soon realised that the (m – 1) term in his expression above must be even, that 

N must be a multiple of 3 and that if a number is not divisible by 3 then it cannot have 

a  

3-stair representation. 

Then LR then worked on the case of staircase numbers with 4 stairs, concluding 

that “N on 2 plus 3 must be even”, and that “that’s not such a nice looking formula... 

We’re not really getting anywhere”. Working occasionally with N = 14 as an 

example, he concluded that in a 4-stair representation, “N  is congruent to 1 mod 4”, 

an incorrect result deriving from the algebraic error 2(28 + 1) = 4ξ + 1. He did not 

pick up this mistake until 23.56 minutes, when he looked again at the case N = 14. 

Later he also worked similarly on staircases with 5 stairs eventually concluding that “I 

need 2N plus 15 to be divisible by 10”. His algebraic approach is illustrated in Figure 

8. 

  

(Insert Figure 8) 
 

Figure 8. Extract from participant LR’s transcript working on the 4 stairs case demonstrating his 
algebraic approach. 

 
 

APPENDIX 3 



Protocol of SF (Expert with a Successful Deep Structure Solution) 

SF’s transcript was difficult to interpret because periods of silence and incoherent 

sentences made behaviour and underlying thinking difficult to interpret. Also because 

of this, there was more interaction from the interviewer than in other protocols. 

SF began by writing down several algebraic ways of describing the structure of a 

staircase number as and, like LR, asked if more was required. The interviewer 

suggested that SF try to determine whether 47 was a staircase number. In response to 

this, SF moved into what was to become a very productive exploration episode that 

lasted until 23:18 minutes. 

SF started this episode by systematically recording what happens when i and n 

vary: “to see what happens”. This quote gives an indication of the nature of this 

episode. SF wasn’t sure of the type of answer she should expect and so was 

effectively “searching the problem space” without much direction. SF set up an 

ingenious table (see Figure 9) for looking for patterns by recording the staircase 

number against x, the “starting stair” and n, the number of stairs. 

 

(Insert Figure 9) 
 

Figure 9. Extract from participant SF’s transcript 
 

Her first attempts at filling out these tables for n = 2 and 3 steps included some 

arithmetical errors which she later rectified. These initial errors were propagated 

throughout the n = 4, 5 and 6 rows. She did not fix these. After looking for patterns in 

the table in Figure 9 with little success, she then extended her table to include 

staircase numbers with starting stairs of 5, 6 and 7. She then quickly noted that two 

stairs could represent any odd number (from the second row of the table) and that 

even staircase numbers would need at least three stairs. During this phase, SF was 

taking note of observable patterns without a clear idea of why they were occurring. 

SF’s table was probably responsible for her ease in picking up patterns in the 

problem. It seems likely that SF must have had an idea about the important structural 

elements of the problem before she chose to establish her table as she did. After 9.00 

minutes, SF had covered solution outcomes 1 and 2 as well as part of 5.  

However, there were long periods which were incoherent to the interviewer (but 



not to SF). The interviewer therefore began to intervene, asking about a rule for 

generating odd numbers as 2-stair staircase numbers (given at 9:44 minutes) and SF 

began to describe “balancing” numbers around a middle stair. For example, 18 ÷ 3 = 6 

so that three stairs balanced around 6 will give 18: 18 = 5 + 6 + 7. The difficulty of 

understanding SF’s “think aloud” protocol when she was lost in thought is illustrated 

by the following utterance, her first attempt at describing which numbers aren’t 

staircase numbers: 

“So basically that means that … any number by an even number … may not … and 

not by other numbers … are not going to be able to be written as staircase 

numbers. Because we can’t sort of add and subtract …” . 

Because of the incoherence, at 14:22 minutes the interviewer interjected and 

prompted with a request to try writing 28 as a staircase number. SF used part trial and 

error and part “balancing” to come up with 28 = 1 + 2 + 3 + 4 + 5 + 6 + 7. After a 35 

second pause from 16.17–16.52 minutes SF noted that she could have done this 

example by “considering the pairs” either side of 4—the result of dividing 28 by the 

odd factor 7.  

SF continued working with the balancing process, largely in silence to the end of 

the session on the example numbers 26 and 44, both suggested by the interviewer. 

Finally, SF wrote the description in Figure 10 of how to express a number with an odd 

factor as a staircase number.  

(Insert Figure 10) 
 
 
 
 

Figure 10. Extract from participant SF’s transcript 
 

This iterative procedure for generating staircases relied on identifying an odd 

factor; writing it as a 2-stair staircase number; and then adding pairs of stairs either 

side of this starting pair until the staircase had the correct value. For example, for 44 

take the odd factor 11. Write it as 5 + 6 first and then as 4 + 7, 3 + 8 and 2 + 9. As a 

result  

44 = 2+3+4+5+6+7+8+9. She did not resolve the question of what happens when this 

procedure leads to negative numbers, although she knew it was a difficulty.  

The transcript from SF does not provide explicit justification of her assertions. 



However, the interviewer accepted that SF knew the solution and knew why. SF’s 

conviction was in her x/n table, and in her procedure that entailed balancing based on 

an odd factor. 

APPENDIX 4 

Protocol of NW &JM (Novice Pair with a Surface Features Solution) 

This novice team was able to identify (but not prove) that powers of 2 were not 

staircase numbers and write a procedure for finding a staircase representation for odd 

numbers (of the form N =
N −1

2
+

N +1
2

). They were able to use this procedure 

successfully on a number of examples. They had little success devising a similar 

algorithm for even staircase numbers. They covered most of the elements of solution 

outcomes 1, 2, 3 and 4 from Figure 2. They were able to collect and summarise useful 

information relating to the problem but could not integrate this information through 

any form of analysis. 

NW & JM began by clarifying what they meant by the “heights” of stairs and 

considered a number of examples which lead by 5:40 minutes to the conclusion that 

powers of two were not staircase numbers. Until 19:00, they looked at ways of 

systematically generating staircase numbers and discussed the uniqueness of the 

representations sparked by the example of 18 = 5 + 6 + 7 and 18 = 3 + 4 + 5 + 6. JM 

argued from a diagram that all odd numbers could be written as 2-stair staircase 

numbers and NW agreed, using algebraic symbols and a numeric example to write 

down the rule (although not to prove it) as shown in Figure 11. By 22:05 minutes they 

were discussing possible patterns amongst their representations of the even numbers 

from 6 to 22, but had made no progress except to continue the list of data points to 

around 30 when the session stopped at 30:00 minutes.  

(Insert Figure 11) 
 

Figure 11. Written work by NW & JM.  
 


