

for America's Army

TACOM

ARDEC

Laser Technology Update: Pulsed Impulsive Kill Laser (PIKL)

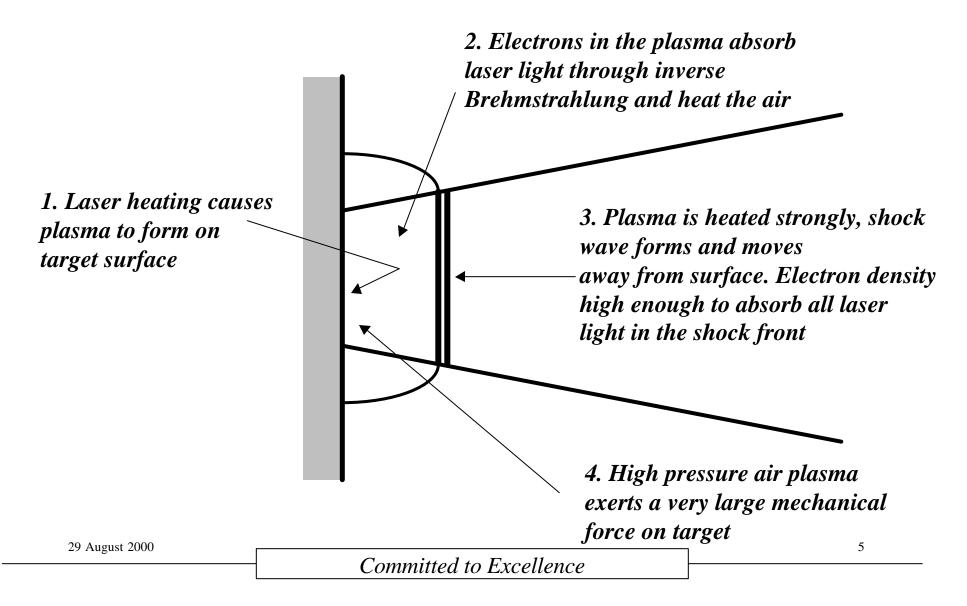
Presented to NDIA 2000 Joint Services Small Arms Symposium 29 August 2000

Harry Moore DSN 880-7932 AMSTA-AR-CCL-D, B65N Picatinny Arsenal, NJ 07806 hmoore@pica.army.mil

Tank-automotive & Armaments COMmand

Presentation Topics

- Introduction
- PIKL program
 - Overview
 - LANL prototype development
 - Armstrong labs bio-effects analysis
- Solid state lasers
 - Overview
 - Technology advancements
- PIKL Technology
 - Operational benefits
- Summary

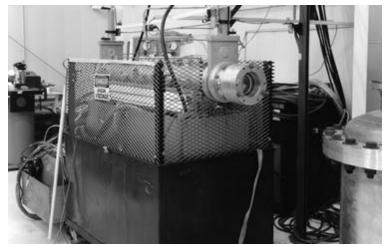

Introduction

- Strong interest in ability to vary target effects
 - Lethal to less than lethal
 - Military, DOJ, other law enforcement agencies
 - Area denial, MOUT, MOOT, MOBA, facility protection
- Laser technology pursued over last 15 years
 - PIKL technology sponsored
 - Subject target to mechanical loading and ablation
 - Chemical lasers present problems
- Solid state laser technology promising
 - Size, weight, performance advantages
 - Peak and average powers
 - Performance parameters can be achieved

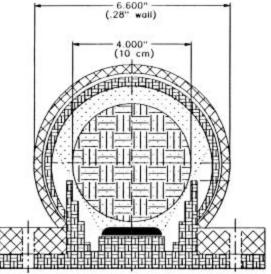
PIKL Program Overview

- Program began in 1992 under auspices of JSSAP
 - ARDEC program lead
 - Effort split into 2 concurrent research projects:
 - Los Alamos National Lab (LANL): development of operational prototype of a surface discharge initiated DF laser
 - Armstrong Laboratory/Optical Radiation Division: analysis of biological effects of exposure to moderate energy (<1 kJ) infrared laser pulses

PIKL Program Overview

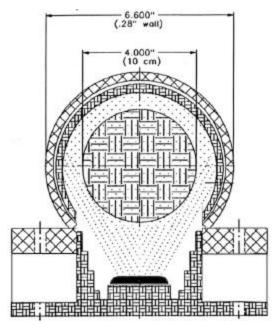


PIKL Program Overview


- Pulsed impulsive kill laser (PIKL)
 - Target interaction: ablation and mechanical impulse
 - Pulse 'trains' can literally chew through target material
 - No burning
 - Effect is independent of:
 - Laser type
 - Target type

- Chemical laser chosen to meet energy per pulse and system portability goals
- DF laser chosen for excellent transmissivity especially over longer distances desired (1-2km)
- UV initiation chosen to improve efficiency and reliability

- 1992: pre-prototype proof-of-principle laser built using parts from LANL's meteor chemical laser program
 - Surface discharged DF laser
 - Produced over 100 joules in a 10 microsecond wide pulse
 - Suffered from flaws such as gas leakage



- May 1993: compact prototype DF laser put into service
 - Redesign of pre-prototype laser
 - Improvement in UV illumination
 reduced pulse width to 3-5 ms
 - Produced energies up to 126 joules
 - Arcing problems necessitated redesign

- December 1993: high-energy DF prototype laser built
 - Incorporated best aspects of preprototype and compact prototype
 - Arcing problem eliminated
 - Energies over 300 joules per shot
 - Pulse widths of 3-5 microseconds
 - Design provided proof of pulsed DF
 laser concept with high pulse energies
 and good reliability

Committed to Excellence

- High energy prototype used to study laser pulse effects
 - Photographic paper, wet chamois (skin simulant), BDU material, Kevlar vest material
 - Quantifying target effect required measuring impulse delivered to target
 - Impulse transducer system designed to measure effects

- Impulse tests performed using both highenergy prototype DF laser and WSMR CO₂ laser
 - DF laser tested at pulse energies up to 200 joules
 - CO₂ laser tested at pulse energies up to 900 joules
 - Measured impulses were 7-10 dyne-seconds per joule for chamois, Kevlar and BDU targets


- Goal: assess technical viability of the PIKL concept
 - Estimate the injury/lethality potential of PIKL
 - Use a combination of theoretical modeling, experiments on biosimulant targets, and previously published data on impulse injuries
- Experiments: high energy microsecond length infrared pulses on targets
 - Ballistic pendulum-mounted planar targets: total impulse coupling and coupling efficiency
 - Gel-block targets: embedded with pressure sensors to measure surface and internal pressures generated
 - Target materials included chamois, BDU cloth, and Kevlar
 - Data obtained both with LANL prototype laser and PLVTS device at HELSTF/WSMR

29 August 2000

- PLVTS details
 - Pulsed CO₂ laser
 - Wavelength: 10.6 microns
 - Pulse duration: 32 34 microseconds
 - Single pulse or multi-pulse mode (10 Hz)
 - Pulse energies: 100 1200 j/pulse
 - Spot size used for testing: 2 x 3 cm

- Test results
 - Detonative coupling occurred at pulse energies of ~ 400 J
 - Breakdown threshold: ~ $2 \times 10^6 \text{ w/cm}^2$
 - Average coupling coefficients
 - Chamois: 8 dyne-sec/j
 - BDU over chamois: 9 dyne-sec/j
 - Maximum impulse and pressure: 10,000 dynesec and 25 atmospheres

- Conclusions
 - Impulses and pressures developed were two orders of magnitude below those needed to produce serious injuries with single pulses
 - Detonative coupling does not appear to produce greater probability of damage than ablative coupling
 - Surface damage can be significant with ablative coupling
 - Multiple pulse trains produced moderate to severe damage

29 August 2000

Committed to Excellence

Solid State Lasers Overview

- Solid state (SS) laser technology is advancing rapidly
- SS lasers offer many advantages to future weaponization concepts:
 - Smaller size
 - Lower weight
 - Ease of use/handling (no hazardous chemicals)
 - Frequency agility through dye doping

Solid State Lasers Technology Advancements

- Diode-pumping
 - Higher electrical efficiency than flash pumping
 - Higher reliability and lifetimes
 - Smaller weight/volume
 - More rugged
 - Less waste heat

Solid State Lasers Technology Advancements

- Slab lasers
 - High optical performance
 - Minimal performance degradation due to thermal effects
 - Reduced optical distortions
 - Easier removal of waste heat

Solid State Lasers Technology Advancements

- Dye-doped solid state laser rods
 - Frequency agility without dangerous liquid solvents
 - Ease of use with solid state host
 - Operation in three pump modes: CW, modelocked, and pulsed
 - Outputs can be varied

PIKL Technology Operational Benefits

- PIKL is a "feeder" technology into the Agile Target Effects (ATE) STO and Future Combat System (FCS)
 - ATE STO addresses AAN short list for Future Fighting Ground Vehicle
 - Developing brassboard weapons capable of lethal tunable target effects
 - Demonstrate utility of Directed Energy Weapons (DEW) against personnel and materiel targets
- Leveraging with SMDC and LLNL and their SS laser technology

PIKL Technology Operational Benefits

- Applying PIKL technology for FCS:
 - Anti-materiel effects:
 - Disrobing explosive armor
 - "Blunt Trauma"
 - Anti-UAV
 - Anti-personnel effects:
 - "Blunt Trauma"
 - Suppression
- Rapidly project Tunable Target Effects to ranges of 2 km

PIKL Technology Operational Benefits

- Application of PIKL technology
 - Area Denial
 - Crowd Control
 - Facility Protection
 - Suppression
 - Military Operation Other than War
 - Military Operation on Urban Terrain
 - Law Enforcement

Summary

- Technologies such as PIKL that can provide varying target effects (lethal and less than lethal) have a broad area of interest
- PIKL technology has made significant progress over the past 15 years
- Solid state lasers have also made significant strides
- Combining SS laser technology and the PIKL concept can produce systems with the necessary parameters required for military utility