
  
 
 
 

Digital Anti-Forensics: 
Emerging trends in data transformation techniques 

 
Christian S.J. Peron & 

Michael Legary 
Seccuris Labs 

 
Abstract 

 
This paper explores two questions: What 
methods can be used to deceive someone who is 
in an investigative role into trusting an object 
which has been exploited? What kind of impact 
does operating system and application run-time 
linking have on live investigations? After 
experimenting with dynamic object 
dependencies and kernel modules in the UNIX 
environment, it is the opinion of the authors that 
run-time linking can be exploited to alter the 
execution of otherwise trusted objects. This can 
be accomplished without having to modify the 
objects themselves. If an investigator trusts an 
inherently un-trusted object, it can result in the 
possible misdirection of a digital investigation. 
 
Keywords: anti-forensics run-time linker hijack 
 
1 Introduction 
 
Judgments we make ultimately affect our 
decisions, which in turn affect our actions. In a 
similar sense, investigations are based on a set of 
judgments which are influenced by technical and 
non-technical factors.  If those factors are in any 
way different from normalcy, a judgment will 
occur and ultimately affect the decisions of an 
investigator. 
 
Criminals who intend to remain hidden try to 
take advantage of the factors which influence 
judgments made during preliminary 
investigations1. In regard to digital forensics, 
those factors which affect judgment tend to be 

                                                 
 
1 Preliminary investigations in this context refer 
to the initial suspicions that a system has been 
exploited which lead to online investigations or 
analysis. 

the integrity of certain datasets which are 
commonly used to form evidence. 
 
If an attacker manipulates the information in 
those datasets such that anomalies, failures, or 
specific outcomes do not arise, an investigator 
will have no grounds to suspect the integrity of 
the data. This could lead the investigation away 
from the source criminal activity.  
 
This paper will review traditional methods used 
by adversaries mainly within UNIX 
environments to mislead investigators 
performing online or live analysis of systems. 
Additionally, less mainstream methods used to 
deceive investigators will be examined along 
with the manner in which they can be detected. 
 
2 Anti-forensics  
 
Over the past decade academic researchers, law 
enforcement agencies, and investigative 
practitioners have worked together to create 
processes around the evolving discipline of 
Digital Forensics. This discipline has been 
founded through traditional forensic study which 
combines science and technology to investigate 
and establish facts in courts of law. As 
standardized processes and techniques are 
established and adopted into the daily practices 
of forensic analysis the techniques utilized by 
adversaries will change in an attempt to 
overcome detection.  
 
2.1 Anti-forensic methods 
 
The primary building blocks for any type of 
digital evidence consist of electronic data. If an 
adversary can limit the identification, collection, 
collation and validation of electronic data the 
ability for an investigator to develop clear 
evidence will be hindered. To achieve this goal 



  
 
 
 

an adversary can destroy, hide, manipulate or 
prevent the creation of evidence. 
 
2.2 Destruction of data 
 
The most basic set of techniques in anti-
forensics consist of the physical and logical 
destruction of data or evidence. Physical 
destruction can be accomplished with the use of 
magnetic techniques such as the degaussing of 
media or through the application of brute force.  
 
Logical destruction includes techniques that 
reinitialize media or significantly change the 
composition of data residing on the media2. The 
goal of physical and logical destruction 
techniques is to significantly damage integrity, 
or remove traces of relevant data from a targeted 
media. Although destruction of data can be the 
most thorough and efficient means to limit the 
amount of evidence an investigator can identify 
and collect, it also limits the ability of the 
adversary to achieve their motives.        
 
2.3 Hiding of data 
 
Obfuscation and encryption of data give an 
adversary the ability to limit identification and 
collection of evidence by investigators while 
allowing access and use to themselves. 
Obfuscation techniques include the use of 
Steganography3 which allows the hiding of data 
in such a manner that the presence or contents of 
the data can not be identified. Encryption 
techniques may not prevent the detection of 
data, but will limit access to data contents by 
modifying data in such a manner that it will be 
unintelligible to investigators. 
 
2.4 Data creation prevention 

                                                 
 
2 A lot of secure deletion utilities operate by 
performing a series of operations like setting 
every bit of a file to 1 or true, then setting every 
bit to 0 or false. 
3 Steganography is the practise of hiding one 
piece of information inside another. An example 
might be putting a message inside a .JPG image 
file to bypass text based pattern matching. 

 
During the regular transactions between an 
adversary and an information system, a large 
amount of potential evidence is created. If an 
adversary can prevent the creation of relevant 
data before an investigator has the ability to 
identify or collect it, they can improve their 
chances of success in bypassing detection. 
Direct prevention techniques include the use of 
Root Kits4 or the modification of system binaries 
such that the ability to generate relevant and 
credible data has been removed from the system. 
This method will limit the creation of data, but 
may also limit functionality of the system itself 
in turn limiting the ability of an adversary to 
achieve their goals.   
 
2.5 Emerging techniques 
 
In an attempt to maintain functionality of a 
system while limiting the creation of relevant 
data adversaries utilize data transformation 
techniques which maintain or re-establish an 
investigator’s trust in a system. Transformation 
techniques are utilized by Root Kits or rogue 
shared libraries which can hijack system calls or 
run time linkages to modify data during the 
creation process. Data identified and collected 
by and investigator that was created during the 
transformation process will not be relevant to the 
investigation. 
 
This paper will focus on and discuss data 
transformation techniques adversaries utilize to 
prevent the creation of data in an effort to limit 
an investigators ability to identify direct or 
circumstantial evidence throughout an 
investigation. Conventional and advanced 
methods that adversaries utilize will be outlined 
along with traditional detection techniques 
investigators use. Finally, emerging techniques 
that are uncommon in standard adversary modus 
operandi will be introduced along with possible 

                                                 
 
4 A root kit is generally a tool or collection of 
tools used on a compromised note to create 
back doors, capture or hide various types of 
information like passwords, network traffic or 
other resources. 



  
 
 
 

detection strategies to identify the use of such 
techniques. 
 
3 Conventional transformation methods  
 
3.1 Initial system compromise  
 
Processes or practices performed during 
investigations are generally in response to a 
security vulnerability which has been 
discovered, targeted, and exploited by an 
adversary. Most security-related incidents occur 
due to a lack of effective information technology 
governance and management within an 
organization. However, it should be noted that 
even with management direction and policy 
enforcement, break down in technical 
implementation can result in servers, 
workstations, and other network devices to 
remain un-patched. This problem is 
exponentially worse if management policies do 
not exist or are not enforced. 
 
3.2 Deception of security personal 
 
Once an adversary has compromised a 
component of a remote system, their primary 
goal is to retain control over the newly acquired 
resources for as long as possible. This is 
achieved through deceiving administrative and 
investigative individuals, ensuring that the 
adversary is not discovered.  
 
An adversary is commonly discovered when the 
existence of certain unauthorized objects are 
verified. These objects can include: files, 
directories, processes, jobs, network 
connections, or listening services. 
Conventionally, these objects are hidden from 
regular operations through the modification or 
replacement of various system utilities made 
available in most UNIX environments. 
 
Disk-related UNIX utilities such as df, ls, and 
du, are normally used for displaying mounted 
file systems, disk consumption, and searching or 
displaying information about file and file meta-
data. Modification of these types of utilities may 
help hide files, file hierarchies, and disk 
consumption. 

 
Process-related UNIX utilities, such as ps, top, 
crontab, and w, are used for listing information 
about processes, threads or Light Weight 
Processes, or jobs that have been scheduled to 
run. Modification of these types of utilities could 
result in processes or jobs being hidden. 
 
Network-related UNIX utilities, such as netstat, 
sockstat, fstat, and tcpdump, were designed to 
list information about network connections and 
sockets5. When modified, these utilities could 
help to hide sockets, listening services, network 
connections, and general network activity 
existing on the system.   
 
In addition, an adversary may introduce a 
backdoor or Trojan into a commonly used 
application or process. This provides a covert 
channel which enables an adversary to gain 
access to the system, bypassing any auditing or 
logging mechanisms put in place by the 
operating system. 
 
4 Advanced transformation methods 
 
4.1 OS kernel services 
 
Most modern operating systems support multi-
tasking or multi-programming environments. 
Each task or thread of execution is known as a 
process, which is uniquely identified by an 
integer-based Process ID (PID). Typically, a 
process executes in two different contexts: user-
state and system or kernel-state. Manipulating 
data flow between these contexts can be 
instrumental to successfully hiding information 
from live investigation processes.  
 
In kernel-space, operations like interrupt 
handling, credential management, operating 
system access control, and scheduler activations 
are performed. While the current execution 
context remains in kernel-space, manipulation of 

                                                 
 
5 In general network sockets are treated the 
same as file handles. Except rather than the end 
point being a file, it can be another host or node 
on a network. 



  
 
 
 

system control registers and the execution of 
privileged instructions is permitted. 
 
The kernel is responsible for servicing hardware 
and software interrupts. Software interrupts, or 
“system calls”, which are services or functions 
provided by the operating system. These 
software interrupts are a critical component in 
the day-to-day operations of any system. Among 
many other things software interrupts are 
responsible for: opening files, handling disk and 
network I/O, credential management, and 
modification of file attributes. 
 
System calls are generally represented by 
integers. The value of the system call is its index 
inside a global array within the kernel. These 
arrays are also known as a software interrupt 
vectors. Most operating systems provide a 
facility which allows system administrators to 
load kernel modules. This enables for 
programmers to execute code in the context of 
the kernel and allows system administrator to 
dynamically add and remove functionality from 
a running system. This ability also helps 
operating system developers to write new parts 
of the kernel without constantly rebooting the 
system. 
 
Generally, these system calls are responsible for 
performing access control functionality. This 
ensures that a subject has the appropriate access 
level to interact with an object through 
credential management, control of file attributes, 
permissions, and ownerships. The integrity of 
these system calls is paramount to the security of 
the entire system. 
 
4.2 Kernel modules and hijacking system 
calls 
 
By enabling the dynamic linker facility within 
the kernel, the administrator provides an 
adversary the facilities to load modules which 
can re-initialize the elements or entries stored 
within the software interrupt vectors. This 
allows an adversary to effectively “hijack” 
software interrupts. Essentially, an adversary can 
load a kernel module, re-initialize a system call 
stored within the interrupt vector to reference a 

malicious block of code contained within the 
adversary’s module. 
 
By hijacking software interrupts, an adversary 
can manipulate information which is returned to 
user-space utilities, such as ps, netstat, or ls. 
This allows an adversary to hide files, processes, 
network connections, and other objects which 
could be exposed through a software interrupt, 
without actually modifying the user-space 
utilities which could otherwise expose them. 
 
4.3 Detection of system call hijacking 
 
Some operating system kernels provide the 
facilities for dynamic module loading, and in 
some cases, provide a facility to prevent it. For 
instance, some operating systems create 
different security levels which make extremely 
difficult for an adversary to load dynamic 
functionality into the kernel. This can be 
accomplished by restricting access to certain 
system calls and writing to kernel memory 
devices like /dev/mem6. 
 
Detection of a malicious or rogue kernel module 
can be very difficult. Depending on how 
complex the kernel module itself is, it is possible 
that the adversary can hijack system calls 
responsible for the loading and unloading of 
kernel modules themselves. Otherwise, it may 
be possible to detect the presence of a kernel 
level “root-kit” which is hijacking software 
interrupts by comparing the address currently 
loaded into the slot against the address of the 
original system call.   
 
Essentially, when the adversary loads their 
module and re-defines the system call, they 
change the address of the system to their own. 
Therefore, if the address for the system call, 
which is stored in the interrupt vector, is 
different than the address of the proper system 

                                                 
 
6 /dev/mem is a pseudo device which provides 
an interface to the physical memory of the 
system. Reading or writing to /dev/mem is the 
same as reading or writing the physical memory 
of the system. 



  
 
 
 

call, it can be determined within a good degree 
of certainty that the system call has been 

hijacked (Figure 1). 

 
 
/*-- 
 * In FreeBSD the operating system, “interrupt vectors” for system calls 
 * are stored as arrays called “sysent arrays”.  The sysent data structure 
 * contains a member called “sy_call” which stores the address of the 
 * routine to execute when a software interrupt comes in. 
 * 
 * It is important to note that an operating system can have many different 
 * interrupt vectors. For example if the operating system supports many 
 * emulations, typically each emulation will have it’s own interrupt 
 * vector table. 
 */ 
if (sysent[SYS_open].sy_call != open) 
 panic(“open system call has been hi-jacked”); 
 
if (sysent[SYS_write].sy_call != write) 
 panic(“write system call has been hi-jacked”); 
 

Figure 1: 
Code snippet for the FreeBSD [1] operating system which when executed in the context of the kernel, could be used 

to detect the presence of a hi-jacked system call. 
 
5 Traditional transformation detection 
methods 
 
In order to detect possible intrusion events, 
system administrators and investigators look for 
network and system anomalies, modification of 
system objects, and unusual system resource 
consumption.  
 
5.1 Cryptographic hashing for data integrity 
 
Cryptographic hashing implements concepts 
provided by mathematical one-way functions to 
verify the integrity of data. Using these methods, 
files can be uniquely identified through 
fingerprints. File fingerprints are generally 
calculated using cryptographic hashing functions 
like MD5 [2], SHA [3], and RIPE-MD [4].  
 
The goal of these functions is to input some 
message or file of arbitrary length, and compute 
a fingerprint of constant length. Hash functions 
are also known as “one way functions”, meaning 
they should be trivial to calculate in one 
direction, but computationally infeasible to 
calculate in the other7. Changing a single bit 
                                                 
 
7 It is possible for two different files to result in 
the same checksum or hash. This is known as a 

within the file should result in a drastically 
different fingerprint. 
 
Most host-based intrusion detection systems 
(HIDS) or root-kit detection agents operate on 
the same premise. To verify the authenticity of a 
file, these systems calculate the fingerprint or 
digest of the original file in its trusted state, and 
store the fingerprint in a trusted location. A 
fingerprint is calculated on the current file, and 
compared against the trusted fingerprint. If the 
two fingerprints conflict, it is safe to assume the 
current file has been modified (Figure 2). 
 
 
% md5 ps.trusted 
MD5 (ps.trusted) =  
9501ef286ef3ab8687b7920ca4fee29f 
% md5 /bin/ps 
MD5 (/bin/ps) =  
02b2f8087896314bafd4e9f3e00b35fb 
% 

Figure 2: 
Output of the “md5” utility. Hashes for the 

“ps.trusted” file and “bin/ps” file are calculated 
based on the MD5 cryptographic hashing algorithm 

and compared 

 
                                                                        
 
hash collision.  The chances that two file hashes 
can collide can be calculated using the 
something called the “Birthday Paradox” [5] 



  
 
 
 

5.2 Process analysis 
 
Processes can be thought of as threads of 
execution which are represented by data 
structures in memory. The entities contain 
objects like: open files (file descriptor table), 
memory maps or VM objects, ownership labels, 
and resource consumption statistics. In most 
UNIX environments, details about sockets, 
network connections and open file handles are 
normally located in a descriptor table stored 
within a process object. 
 
There are several utilities that analyze 
information about these process data structures. 
These utilities can be used to locate various 
objects that an adversary would like to keep 
hidden. 
 
The process objects can be retrieved through 
different portals including /dev/mem, an 
interface to the systems physical memory, and 
procfs, which implements a view of the system 
process table and makes it accessible inside a 
special file system. 

In some cases, the utilities themselves could be 
modified to not report information on certain 
processes. In this case, the use of cryptographic 
checksums can be used along with cross 
referencing output with information stored in the 
process file system can help to identify the 
source of any discrepancies. 
 
5.3 Signature/pattern matching 
 
Many adversaries use pre-written “root kits” to 
aide them in hiding or covering up objects they 
do not want investigators to find. If these root 
kits are made available to the public, samples or 
specific patterns can be extracted and used to 
discover the potential presence of the same kit 
on other nodes. (Figure 3) 
 
Detection agents typically contain a database of 
commonly known patterns and signatures. Using 
this database, detection agents perform routine 
scans of system memory and files, iterating 
through signatures looking for matches. 

 
 
% file libtransform.so.1 
libtransform.so.1: ELF 32-bit LSB shared object, Intel 80386, version 1 (FreeBSD), stripped 
% 

Figure 3: 
Output of the “file” utility on a shared object. The “file” utility attempts to figure the file type for a specified file.  

This is accomplished by performing a number of tests, including one which checks for particular fixed data formats. 
I.E. ELF [6] executable file formats 

 
 
5.4 Network monitoring 
 
In some cases, intrusion events are detected by 
various network monitoring mechanisms. These 
mechanisms can include: network intrusion 
detection systems (NIDS), firewall monitoring, 
and bandwidth utilization trending. Many NIDS 
base their detection through the use of pattern 
matching and signatures. Sensors monitor 
network traffic looking for traces of known 
attack signatures and generate alerts based on 
positive matches. 

 
Signatures can take on a number of forms. In 
many cases, signatures which are found in most 
common attacks are matched against binary 
sequences stored in network transmissions. 
(Figure 4) However, when monitoring 
transmissions that are unencrypted, a network 
intrusion detection sensor can monitor for the 
output of utilities which require super user 
access. For example, the output of the id(1) 
command returning UID 0. 

 



  
 
 
 

 
Nov 10 21:59:06 <4.1> 172.16.1.20 snort: [1:466:1] SHELLCODE x86 stealth NOOP [Priority: 2]: 
{PROTO001} 10.0.1.125 -> 10.5.1.3 

Figure 4: 
This is an example Snort [7] intrusion detection log which has detected the op-codes or machine instructions for a 

“stealth NOOP” (machine instruction). This log contains information about the transmission source and destination 
IP addresses and services in which the pattern was recognized. 

 
 
On compromised hosts, processes can be created 
which listen on network sockets for instructions 
from the adversary, similar to a Trojan. These 
instructions can tell a process to launch a packet 
flood against a specific target. When the host 
initiates an attack against the target, it 

commonly generates a bandwidth utilization 
anomaly which can be detected through traffic 
trending. In some cases adversaries can expose 
themselves by connecting to services which are 
not permitted by firewall devices. (Figure 5) 

 
 
% tcpdump -nett -i pflog0 
listening on pflog0, link-type PFLOG (OpenBSD pflog file), capture size 96 bytes 
1100221136.677441 rule 1/0(match): block in on sis0: IP 10.0.0.35.4646 > 205.11.11.11.445: S 
552159036:552159036(0) win 64240 <mss 1460,nop,nop,sackOK> 
1100221138.370423 rule 1/0(match): block in on sis0: IP 10.0.0.35.4646 > 205.11.11.11.445: S 
552159036:552159036(0) win 64240 <mss 1460,nop,nop,sackOK> 

Figure 5: 
This is an example of some packets which have been analyzed using the tcpdump [8] program on the OpenBSD [9] 

PF Firewall after the packets have been logged via the pflog virtual interface. 
 

 
6 Emerging transformation methods 
  
6.1 Program execution 
 
A new process is initially created when its 
parent process forks its execution using the fork 
system call. Once the resources and scheduler 
activations have been allocated and registered 
for the process object itself, another system call, 
“exec”, gets called. The exec system call will 
replace the current execution image with the 
executable image associated with the new 
program.  
 
These executable images or machine instructions 
are loaded into memory, where the kernel pre-
emptively runs the task or machine code on a 
time-shared basis. In short, programs can be 
thought of as a set of functions which is 
executed in some logical order which is 
determined at run-time. 
 
Routines or functions in a computer program can 
be thought of as entry points to a series of 
instructions located in computer memory. 

Calling function “X” is equivalent to jumping to 
a particular position in memory and executing 
the code located there. These entry points have 
an attribute called a “symbol”, which uniquely 
identifies the routine. Processes maintain symbol 
tables which allow the kernel to locate 
instructions based on symbol name. 
  
6.2 Run-time linker 
 
Programs on a system often share the same 
functions. As the number of utilities or programs 
increase, the concept of building a shared library 
where all programs can share functions, rather 
then replicating the same code, started to 
surface. Most UNIX variants have a “Run-Time 
Linker”, which provides this functionality. 
Commonly used functions, such as printf8 and 
fgets9, are stored in a share object. Trends 
                                                 
 
8 printf is standard function defined in ISO/IEC 
(``ISO C90'') to print formatted data to the 
screen. 
9 fgets is a standard function defined in ISO/IEC 
(``ISO C90'') to read a line from a stream. 



  
 
 
 

indicate that more and more operating systems 
are moving towards implementing dynamically 
linked programs by default (Table 1). 
 
As the program executes with the requirement to 
execute a particular shared function, the pages 
associated with that function will be mapped 
into the process’ address space from the shared 
object using the mmap10 system call. This 
process is also known as “on demand paging”. 
 

Operating System 

Dynamically 
Linked 

Fundamental Utils. 
 

Solaris 10 [10] YES 
Redhat Linux 9 [11]  YES 

FreeBSD 5.x YES 
FreeBSD 4.x NO 
OpenBSD 3.5 NO 

NetBSD 1.6.X [12] NO 
NetBSD 2.0 YES 

Apple’s Darwin 7.3.1 
[13] 

YES 

 
Table 1: 

This table displays which operating systems ship with 
dynamic or run-time linking on fundamental system 

binaries by default.  These binaries are typically 
found in the /bin and /sbin directories. 

 
6.3 Preloading shared objects 
 
The run-time linkers can be configured for a 
variety of different types of real-time linking 
operations. In some cases, the user may choose 
to avoid “on demand paging” and have the 
functions mapped into the address space 
immediately, improving run-time performance.  
 
In other cases, the user may choose to preload 
another shared library before any other library 
gets loaded. This allows programmers to 
                                                 
 
10 mmap is a function which maps files or 
devices into memory. This interface is not 
standard, but most operating systems implement 
it. 

override certain functions that the application 
will execute, without actually modifying the 
application itself. 
 
6.4 Hijacking of user space library calls 
 
Depending on the level of privilege acquired by 
an adversary on a compromised machine, they 
could be in a position where they can manipulate 
run-time linking operations of otherwise trusted 
processes. This allows an adversary to change 
the execution behaviour of a process, without 
actually modifying the binary or kernel interrupt 
vectors. This implies that investigators relying 
on cryptographic checksums to verify the 
integrity of programs execution, could be 
mislead or have a false sense of trust in the 
binary in question.  
 
The following example will illustrate how an 
adversary might mislead investigators by 
utilizing the run-time linker, manipulating 
certain system logs which contain incriminating 
information without modifying system binaries, 
operating system interrupt vectors, or the log 
files themselves. 
 
The adversary writes a shared library which 
defines two entry points or symbols: recvfrom11 
and write12. These functions are utilized by 
processes like syslogd, (a daemon which 
centrally manages logs used by most processes 
on the system) to read and write messages 
to/from a logging or network sockets. 
 
These newly defined entry points have an 
interesting characteristic: they are capable of 
performing transformations on the data before 
submitting it to the syslog process. The module 
opens a “recipe” file and loads in a series of 
“transformation instructions”. These 

                                                 
 
11 recvfrom is an optional system call provided 
by most UNIX variants to receive messages 
from a socket. 
12 write is a standard system call defined by 
POSIX.1 for writing information to a descriptor. 
Descriptors may include handles to files or 
sockets. 



  
 
 
 

transformation instructions determine what 
words or patterns are to be substituted with 
adversary-defined data. 
 
This allows the adversary to change, delete, or 
transform system logs centrally, without actually 
editing the log files themselves. Even if the 
system has write operations to the file system 
being audited, the modifications to the log files 
will be dispatched as the syslogd process. 
 
In a common case scenario, the system might 
have a host-based intrusion detection agent 
running, which monitors commonly used system 
binaries for any kind of modification, ranging 
from content, permission, or attribute 
modifications. However, the adversary does not 
have to modify the binaries of the syslogd or any 
of its usual shared objects in order to change the 
execution behaviour of the process. 
  
One technique the adversary may use is to 
replace any occurrence of their IP address or 
subnet with an arbitrary address, or delete any 
log which contains their IP address or subnet 
pattern all together. Commonly, logging 
operations could be tested and, in most cases, 
logs generated by investigators would be 
processed and un-touched by the adversary’s 
transformation rules. 
 
Since the adversary may have applied these 
transformation filters to any outgoing and 
incoming logs, network-based intrusion 
detection sensors or firewall devices that are 
logging to the compromised device could also be 
modified. If the syslog server has been 
configured to log to a remote host, 
transformations will be applied to those 
messages as well. This could result in an 
external trusted logging server housing incorrect 
or modified logs. 
 
It should be noted that this sort of attack can 
occur in several different ways: An adversary 
could implement these type of hooks in other 
commonly used functions, such as writes to 

STDOUT13 via the printf function (which would 
manipulate the information returned from 
system utilities like ps, netstat or fstat), or writes 
to independent log files from other processes. 
Any executable files which depend on run-time 
linking can be affected by these types of attacks. 
 
7 Emerging transformation detection 
methods  
 
7.1 Shared library analysis 
 
When extensive analysis on processes is being 
performed, it is recommended that a vmcore14 be 
captured and transferred to a trusted system. 
Utilities, such as lsof [14], can be used to 
analyze the process data structures within the 
vmcore. Any irregular shared library which has 
been opened by the process and mapped into the 
process’s address space should be an indicator to 
the investigator that something suspicious is 
occurring

                                                 
 
13 STDOUT is a standard output stream defined 
by ISO/IEC (``ISO C90'') which is typically used 
for writing conventional output 
14 A virtual memory core (vmcore) is a snapshot 
of the current memory. On some operating 
systems VM cores can be created by using the 
“halt” command. These cores can be used by 
utilities like ps to retrieve the current process 
state of the OS at the time the core was created. 



  
 
 
 

. 
 
Dev0# lsof -p 40374 
COMMAND   PID USER   FD   TYPE     DEVICE SIZE/OFF    NODE NAME 
test    40374 root  cwd   VDIR      233,9      512 5888013 /usr/home/modulus/transform 
test    40374 root  rtd   VDIR      233,4     1536       2 / 
test    40374 root  txt   VREG      233,9     4795 5888022 /usr/home/modulus/transform/test 
test    40374 root  txt   VREG      233,4   136276     553 /libexec/ld-elf.so.1 
test 40374 root  txt   VREG      233,9     7130 5888027 
/usr/home/modulus/transform/libtransform.so.1 
test    40374 root  txt   VREG      233,4   869100     550 /lib/libc.so.6 
test    40374 root    0u  VCHR        5,1  0t46554      93 /dev/ttyp1 
test    40374 root    1u  VCHR        5,1  0t46554      93 /dev/ttyp1 
test    40374 root    2u  VCHR        5,1  0t46554      93 /dev/ttyp1 
test    40374 root    5u  PIPE 0xc190e000    16384         ->0xc190e0ac 
dev0# 

Figure 6: 
The “lsof” utility will retrieve process objects from a system core and process the file descriptor tables so an 

analyst can investigate any activities which require the use of open files. 
 

 
This process contains an open file handle to an 
object called “libtransform.so.1”. Further 
analysis indicates that alternate dynamic 

symbols or functions are being registered for the 
recvfrom and write entry points.

 
 
dev0# objdump -T libtransform.so.1 | grep text 
0000083c l    d  .text  00000000 
00000b94 g    DF .text  0000009a recvfrom 
00000c30 g    DF .text  00000099 _write 
dev0# 

Figure 7: 
Information from the objdump [15] utility is being passed into a grep command to filter out any irrelevant 

information. Objdump is responsible for displaying information about object files, and can be used to analyze the 
details about specific aspects of the object files, such as what dynamic symbols it contains. Shared libraries are 

essentially special object files. 
 

 
The results of objdump illustrate that alternate 
entry points have been registered for the 
recvfrom and write library functions. This may 
indicate that the adversary has hijacked these 
functions to manipulate the operating 
environment to avoid detection. Any 
information which was obtained or produced as 
a result of these calls can not be trusted. 
 
In many operating systems, the pre-loading of 
shared objects is accomplished through the use 
of process environment variables. Less complex 
implementations of this attack may be detectable 
by analyzing the process’s environment 
variables.  It should be noted that this should be 
a less trusted technique because an adversary is 
able to re-define environment variables within 
their shared object. 

 
8 Conclusions 
 
An adversary can utilize run-time linking 
mechanisms to alter the execution logic of either 
an operating system or application without 
having to modify the binary.  Commonly, 
integrity checks are based on the ability to detect 
modifications to the binary itself. Objects which 
appear to be trust-worthy, possibly are not. This 
can result in compromised logging, audit or 
information sources being trusted by 
investigative bodies, resulting in the possible the 
avoidance of more thorough offline forensic 
analysis or the misdirection of the investigative 
bodies themselves. 

 



  
 
 
 

9 References 
 

[1] Project FreeBSD. FreeBSD Home 
Page. http://www.FreeBSD.org. 
November, 1993. 
 

[2] Rivest R. The MD5 Message-Digest 
Algorithm, IETF RFC 1321. 
ftp://ftp.rfc-editor.org/in-
notes/rfc1321.txt. April, 1992. 
 

[3] Burrows J. The Secure Hash Standard, 
FIPS PUB 180-1, IETF RFC 3174. 
http://csrc.nist.gov/cryptval/shs.html. 
1993. 
 

[4] Dobbertin Hans, Bosselaers Antoon, 
Preneel Bart. The RIPEMD-160 
Cryptographic Hash Function. 
http://www.esat.kuleuven.ac.be/~bossel
ae/ripemd160.html. 1988-1992. 
 

[5] Eric W. Weisstein. "Birthday Attack." 
From MathWorld--A Wolfram Web 
Resource. 
http://mathworld.wolfram.com/Birthday
Attack.html  
 

[6] Unix System Laboratories. The 
Executable and Linking Format, 
http://x86.ddj.com/ftp/manuals/tools/elf
.pdf. 
 

[7] Project Snort, The Snort Home Page. 
http://www.snort.org. 2002. 
 

[8] Project Tcpdump, The Tcpdump Home 
Page.  
http://www.tcpdump.org. 2002 
 

[9] Project OpenBSD. The OpenBSD 
Home Page. http://www.OpenBSD.org. 
1996. 
 

[10] Sun Microsystems. The Solaris 
Operating System, SunOS. 
http://www.sun.com. 1989.  
 
 
 

 
 

[11] 

 
 
Red Hat Inc. The Redhat Linux 
Operating System. 
http://www.redhat.com. 1993. 
 

[12] Project NetBSD. The NetBSD Home 
Page. http://www.netbsd.org. 1993 
 

[13] Apple Inc. The Darwin Operating 
System. http://www.apple.com, 
http://www.apple.com/opensource/. 
2001. 
 

[14] Abell V. The lsof (LiSt Open Files) 
Project. http://people.freebsd.org/~abe/. 
 

[15] GNU Binutils. The Binutils Home 
Page. 
http://www.gnu.org/software/binutils/. 
 

 


