
Results

Discussion

To solve the problem of extending tetration to non-integer hyper-exponents once

and for all, neither property (1) nor property (3) is sufficient alone. Both must be

combined in order to get a unique extension of tetration. There is already one way to

ensure that property (1) be satisfied, and that is to use a piecewise extension. Now we

need a way of ensuring that property (3) is satisfied. To do this we need a way of ensuring

infinite differentiability. The problem is that the derivatives of some previous piecewise

extensions were not continuous, so there would be a difference between the limit to a

point from the left and the limit to the same point from the right. We need a way of

ensuring that there is no difference between these two limits. Expressed formally:

Definition 6. Piecewise error transform

PWET
xc

k { f ( x )}= lim
xc

+ D
k f ( x )− lim

xc
– D

k f ( x )

which should be zero for all k if f (x) is C∞ . To become familiar with the piecewise

error transform, lets apply it to the piecewise extensions we have covered so far. First lets

apply it to the piecewise extension of tetration as y approaches zero:

PWET
y0

0{ x
y }= x t ( x ,−1 )− t ( x ,0 )= 1− 1=0

PWET
y0

1{ x
y }= x t ( x ,−1 ) log ( x )D y t ( x ,−1 )− D y t ( x ,0 )= log ( x )− 1

PWET
y0

2{ x
y }= log ( x )2

...
PWET
y0

k { x
y }= D y

k [ x t ( x , y−1 )]y=0− D y
k [t ( x , y )]y=0

where the piecewise extension with linear critical function is used to evaluate tetration.

The first line indicates that there is no difference between the left and right limits to zero

of the function itself, whereas the second line indicates that there is a difference between
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the left and right limits to zero of the derivative of the function with respect to y. This

could be seen in a graph as a discontinuity in the derivative, but the graph in appendix B

is for x = e, which makes the second line zero. This can be seen as the derivative being

continuous. Although the second line can equal zero when x = e, the third line will be

one, and this would show itself in the graph as a discontinuity in the second derivative.

From this we can determine that this extension is not C∞ , which makes it a non-

analytic extension.

The other piecewise extension that was presented was that of the super-logarithm.

Now if we apply the piecewise error transform to the piecewise extension of the super-

logarithm as z approaches zero, we get: the following:

PWET
z0

0{slogx ( z )}= 1 s ( x ,0 )− s ( x ,1 )= 0

PWET
z0

1{slogx ( z )}= Dz s ( x ,0 )− log ( x )D z s ( x ,1 )= 1− log ( x )

PWET
z0

2{slog x ( z )}=−log ( x )2

...
PWET
z0

k {slog x ( z )}= Dz
k [ s ( x , z )]z=0− Dz

k [ s ( x , x z )− 1]z=0

where the piecewise extension with linear critical function is used to evaluate the super-

logarithm. Again, these expressions can be seen in the graph in appendix B as a

continuous red line for any x. The green line, which represents the first derivative, will be

discontinuous for all x except x = e. For x = e, the green line is continuous, because the

second expression above is zero. There is no number that makes the third expression zero,

so this will be seen as a discontinuous blue line for any x.

To make an extension of tetration that satisfies property (1) and property (3), we

can combine the general extensions found in definition (1) and definition (4), by using the

series as the critical function t ( x , y ) , keeping the coefficient functions k ( x )

unknown. We can restrict those coefficients to satisfy:

PWET
y0

k { x
y }= 0
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for all nonnegative integer k. If we only require that this is true up to some integer n,

where 0≤ k  n then we get a rather small system of equations, say for n = 2:

{ −1 x⋅x
1 ( x )⋅x

2 ( x ) /2= 0

−1 ( x ) x⋅x
1 ( x )⋅x

2 ( x )/2⋅log ( x )⋅(1 ( x )− 2 ( x )) = 0}
which are nonlinear equations, and in general, are hard to solve, even with a computer.

The reason why only two unknown terms were used in the equations above, is that the

zeroth term, or 0 ( x )= x0 = 1 is already known, and we only have two equations.

Solving systems of equations works best when the number of unknowns is the same as

the number of equations, so given two equations we should be able to solve for two

unknowns. The solutions to equations obtained in this way for an extension of tetration,

generally have very extreme values, and increasing the degree to n = 3, for example, will

produce solutions for k ( x ) that differ greatly. Producing this kind of system of

equations for the super-logarithm, on the other hand, is more well-behaved.

Starting with definition (2) and definition (5) instead, we will use the series

extension as the critical function of the piecewise extension of the super-logarithm,

letting the coefficients vk ( y ) of the series remain unknown. We already know the

zeroth coefficient: v0 ( x )= slogx ( 0 )=−1 from integer tetration, so we will be

solving for the coefficients vk1 ( x ) where 0≤ k  n in the equations generated by

letting the piecewise error transform of the super-logarithm equal zero. For n = 2:

{ 1− v1−
1
2
v2= 0

v1− log ( x ) v1− log ( x ) v2= 0}
For n = 3:

{ 1− v1−
1
2
v2−

1
6
v3= 0

v1− log ( x ) v1− log ( x ) v2−
1
2
log ( x ) v3= 0

−log ( x )2v1 v2− 2 log ( x )
2 v2−

3
2
log ( x )2 v3= 0

}
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where vk=vk ( x ). This time, however, the equations are linear, so there are many

more methods at our disposal for determining if the equations are solvable, and finding

the solution. One such way is finding the determinant of the matrix associated with the

equations. Before we can turn the system of equations into a matrix we must put only the

unknowns on the left, and constants on the right. As you can see in the systems above the

only constant is the 1 in the first equation in each system. For the equations found above

for n = 2, we can group them like this:

{ −v1 − 1
2
v2= −1

(1− log ( x )) v1 −log ( x ) v2= 0}
Also, in the interest of readability all equations will be divided by a power of log ( x ) ,

because as you can see above, each equation has an increasing power of log ( x ) in it.

Also, because the majority of the coefficients are negative we can also reverse the sign of

the equations. Reversing the sign, and dividing by a power of log ( x ) will make:

{ v1  1
2
v2= 1

1− 1
log ( x ) v1  v2= 0}

but, before we can represent the above set of equations as a matrix we must define a

basis. As we stated earlier, the unknowns we are solving for are related to the coefficients

of the series in definition (5). These unknowns are also the derivatives of the super-

logarithm at z = 0, but as a basis, they are not merely numbers or vectors, they are

functions of x. Using the sequence notation 〈⋅〉k=i
n , the basis we will be using is:

v = 〈vk 〉k=1
n where vk = vk ( x )= Dz

k [ s ( x , z )n ]z=0

Using this basis, the above system of equations has the matrix equation for n = 2:

〈−PWETz0
k {slogx ( z )2}

log ( x )k 〉
k=0

1

= [ 1
1
2

1− 1
log ( x )

1 ]v = [10]
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For n = 3:

〈−PWETz0
k {slogx ( z )3}

log ( x )k 〉
k=0

2

= [ 1
1
2

1
6

1− 1
log ( x )

1
1
2

1 2− 1

log ( x )2
3
2
]v = [100]

For n = 4:

〈−PWETz0
k {slog x ( z )4}

log ( x )k 〉
k=0

3

= [ 1 1
2

1
6

1
24

1− 1
log ( x )

1
1
2

1
6

1 2− 1

log ( x )2
3
2

2
3

1 4
9
2
− 1

log ( x )3
8
3
]v = [100

0
]

For n = 5:

〈−PWETz0
k {slogx ( z )5}

log ( x )k 〉
k=0

4

= [
1

1
2

1
6

1
24

1
120

1− 1
log( x )

1
1
2

1
6

1
24

1 2− 1

log ( x )2
3
2

2
3

5
24

1 4
9
2
− 1

log ( x )3
8
3

25
24

1 8
27
2

32
3

− 1

log( x )4
125
24

]v= [1000
0
]

where slogx ( z )n is the piecewise extension of the super-logarithm with an analytic

extension as its critical function whose coefficients are obtained from the system of n

equations in n unknowns, generated by letting the piecewise error transform equal zero.

The equation matrices above can be computed without finding the derivatives of the

super-logarithm. An alternate way of generating the above matrix is:

〈〈 mkm ! − mk log ( x )
−k 〉

m=1

n 〉
k=0

n−1

where  jk is the Kronecker delta (1 if j = k, 0 otherwise), usually used with tensors.
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To indicate that the critical function used by the general piecewise extension is

found at a certain value of n, the notation: s ( x , z )n will be used. Now that we can

solve for an extension of the super-logarithm, what do the solutions look like? First, the

solution when n = 1 is actually the same as extension (2):

v1 ( x )1= 1

s ( x , z )1=−1⋅z0 v1 ( x )1⋅z
1

s ( x , z )1=−1 z

For n = 2:

s ( x , z )2=−1 2 log ( x )
1log ( x )

z − 1−log ( x )
1log ( x )

z2

For n = 3:

s ( x , z )3=−1 6 [ log( x )log ( x )3] z  3[3log ( x )2−2log ( x )3] z2 2[1−log ( x )−2 log( x )2log ( x )3] z3

24 log( x )5 log( x )22 log( x )3

Assuming that the system of equations are always linear, we can find any degree

solution we want, given enough time. What exactly have we found, though? Solving for

the super-logarithm using the piecewise error transform ensures that the function found

will be differentiable up to a point.

Lemma 1. If PWET
xc

k { f ( x )}= 0 for 0≤ k  n , then f (x) is C n−1 .

Even if we do find that the functions we get from the solutions to the system of

equations are C n , we still do not know if the solution is unique. To find out whether

the solution is unique we can use the determinant of the matrix that expresses the system

of equations. When the determinant is zero, then the solution is not unique, when the

determinant is not zero, then there must be one and only one solution. Here are the

determinants of the simplified matrices obtained from the systems of equations generated

by letting the piecewise error transform of the super-logarithm equal zero, for n = 2:
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det 〈−PWETz0
k {slogx ( z )2}

log ( x )k 〉
k=0

1

= 1
2
 1
2 log ( x )

For n = 3:

det 〈−PWETz0
k {slogx ( z )3}

log ( x )k 〉
k=0

2

= 1
6
 5
12 log ( x )

 1

3log ( x )2
 1

6 log ( x )3

In order to use these expressions to find when the systems of solutions are

solvable and have unique solutions, we need to find when these expressions are equal to

zero. When x > 1, log(x) is positive, and since all the coefficients in the determinants are

positive, the only way the whole determinant will be zero is if log(x) is negative. Since

this only happens when 0 < x < 1, the determinant is nonzero for x > 1. Some of the roots

of these determinants for different n are given here to illustrate:

n x

2 0.367879

3 0.190653

4 0.126582, 0.494301

5 0.099918, 0.323049

and as you can see from the table, all roots seem to be between zero and one.

Lemma 2. det 〈PWETz0
k {slogx ( z )n}〉k=0

n−1= 0 implies 0 < x < 1.

Going back to the piecewise error transform, implicitly declared in letting its

application on the super-logarithm equal zero is the relationship:

vk ( x )= Dz
k [ s ( x , z )]z=0= Dz

k [ s ( x , x z )− 1]z=0

which can be used to simplify the series expansion of the critical function used by the

piecewise definition. We can now define an extension of the super-logarithm as:
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