
Brachistochrone Inside the Earth
A brilliant physics student thinks that our transportation problems can be solved by

digging a network of tunnels through the Earth connecting different cities (New York and
LA, say). The idea is to use the gravitational attraction supplied by the Earth to accelerate
a person from one point to another. Let’s idealize this and neglect air resistance and any
friction which the person may encounter when in contact with the tunnel, and we’ll assume
that the Earth has a uniform density (and more importantly, we’ll neglect the cost of digging
the tunnel). The problem is to find the shape of the tunnel which will minimize the transit
time between the cities. You should find that the shape is that of a hypocycloid, which is the
curve described by a point on a circle rolling inside a circle of a larger radius. After finding
the shape, find the time required to go from NY to LA (I find about 28 minutes). If you want
to solve this problem, you may want to first review Sec. 5.2 of Marion and Thornton—you’ll
need to know the form of the gravitational potential energy inside the Earth.

Solution. First, find the gravitational field g using∮
S
g · n da = −4πG

∫
V

ρ(x) d3x. (1)

Since the mass density is assumed to be uniform, we have

g =




−GM
R3 rer r < R

−GM
r2 er r > R

(2)

where M is the mass and R is the radius of the Earth. The gravitational force is F = mg,
with m the mass of the particle moving in the tunnel; we need to integrate this once to
obtain the potential energy U(r), with the result

U(r) =




GMm
2R3 r2 − 3

2
GMm

R
r < R

−GMm
r

r > R
(3)

where we’ve chosen the potential energy to be zero at r = ∞.
The total energy of the particle is

E =
1

2
mv2 + U(r). (4)

Assuming that v = 0 at r = R and solving for v, we find

v =
ds

dt
=

√
g(R2 − r2)

R
, (5)

where g = GM/R2 = 9.8 m/s2, and ds is an element of arclength. Solving for dt and
integrating, we have for the time of descent

t =
√

R/g
∫ 2

1

ds√
R2 − r2

. (6)
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To make the equations somewhat simpler, I’ll work with units such that time is measured in

units of
√

R/g and lengths are measured in units of R, in which case our functional becomes

t =
∫ 2

1

ds√
1 − r2

. (7)

Now we need to choose a coordinate system. I found it easier to work in rectangular
coordinates than in polar coordinates. The shortest path will lie in a plane which contains
NY, LA, and the center of the Earth, so we have effectively a two-dimensional problem, and
we’ll use the rectangular coordinates (x, y). Let τ be a parameter which specifies a point on
the curve; the arclength is then

ds =

√√√√(dx

dτ

)2

+

(
dy

dτ

)2

dτ. (8)

The time is

t =
∫ 2

1

√
(x′)2 + (y′)2

√
1 − x2 − y2

, (9)

where x′ ≡ dx/dτ , y′ ≡ dy/dτ . This is a functional of the two functions x and y, so we need
to minimize a functional of two functions. The integrand is

f(x, x′, y, y′) =

√
(x′)2 + (y′)2

√
1 − x2 − y2

(10)

which doesn’t depend explicitly upon τ . Therefore, we can use the “second” form of Euler’s
equation,

f − x′ ∂f

∂x′ = constant, f − x′ ∂f

∂x′ = constant. (11)

Taking the derivatives, we obtain the two coupled equations,

(y′)2

√
1 − x2 − y2

√
(x′)2 + (y′)2

= C1, (12)

(x′)2

√
1 − x2 − y2

√
(x′)2 + (y′)2

= C2, (13)

with C1 and C2 constants. If we add these two equations together, we obtain√
(x′)2 + (y′)2

√
1 − x2 − y2

= C1 + C2 = C, (14)

with C yet another constant. Squaring both sides and simplifying,

(x′)2 + (y′)2 = C2(1 − x2 − y2). (15)
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The solution of this equation is a hypocycloid (see the discussion at the end of the problem),
described by

x(τ) = (1 − b) cos τ + b cos

(
1 − b

b
τ

)
, (16)

y(τ) = (1 − b) sin τ − b sin

(
1 − b

b
τ

)
, (17)

so that
12 − x2 − y2 = 2b(1 − b)[1 − cos(τ/b)], (18)

(x′)2 + (y′)2 = 2(1 − b)2[1 − cos(τ/b)]. (19)

Substituting into Eq. (15), we find

2(1 − b)2 = C22b(1 − b), (20)

so that the constant C is

C =

√
1 − b

b
. (21)

With our solution, we can find the transit time:

t =
∫ 2

1
C dτ =

√
1 − b

b
(τ2 − τ1). (22)

What is τ2 − τ1? To find this calculate r:

r2 = x2 + y2 = 1 + 2b(1 − b)[cos(τ/b) − 1]. (23)

The starting and ending points are on the Earth’s surface, where r = 1, which requires that
τ/b = 2πn, with n an integer. The change in τ between successive excursions to the Earth’s
surface is then ∆τ = 2πb, and therefore the transit time is

t = 2π
√

b(1 − b). (24)

We could also write this in terms of the angle θ0 subtended by the radius vector connecting
the center of the Earth to the two cities: θ0 = 2πb. If s is the distance between cities
measured along the Earth, then θ0 = s/R, so that b = s/2πR. Our final result is then
(returning to conventional units)

t = 2π

√
R

g

√
s

2πR

(
1 − s

2πR

)
. (25)

Note that when s = πR, so that the two cities are on opposite sides of the Earth, the path
is a straight line with a transit time

t = π

√
R

g
, (26)
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exactly as we would expect. Note that the maximum depth under the Earth’s surface is
2b = s/π.

For the trip from NY to LA, s/2πR ≈ 1/8, so that t ≈ 28 minutes. The maximum
depth of the tunnel is about 1600 km. A straight tunnel connecting the two cities would
have a maximum depth of 137 km, so we would need to dig a very deep tunnel to get the
minimal transit time.

The hypocycloid. A hypocycloid is the curve generated by a point on a circle which is
moving inside a second circle without slipping. Let the outer circle have a radius a and the

a

b

θ
P

a-
b
τ

inner circle have a radius b. After the inner circle has rotated through an angle θ, the center
of the inner circle has rotated through an angle τ . If the inner circle rolls without slipping,
then bθ = (a − b)τ . The coordinates of a point P on the inner circle are then

x = (a − b) cos τ + b cos θ = (a − b) cos τ + b cos

[(
a − b

b

)
τ

]
, (27)

y = (a − b) sin τ − b sin θ = (a − b) sin τ − b sin

[(
a − b

b

)
τ

]
. (28)

The plot below is a hypocycloid with a = 3 and b = 1 (the “deltoid”).
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