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v1/v2 P 3/2 and v1/v2 P 2 resonances can pump Ganymede’s
free eccentricity up to p1023 independent of Q9Gany/Q9J . We alsoWe use the numerical model of R. Malhotra (1991, Icarus
show that Ganymede’s free eccentricity cannot have been94, 399–412) to explore the orbital history of Io, Europa, and
produced by impact with a large asteroid or comet.  1997 Aca-Ganymede for a large range of parameters and initial conditions
demic Pressnear the Laplace resonance. We identify two new Laplace-like

resonances which pump Ganymede’s eccentricity and may help
explain the resurfacing of Ganymede. Near the Laplace reso- 1. INTRODUCTION
nance, the Io–Europa conjunction drifts at a mean angular
velocity v1 ; 2n2 2 n1, while the Europa-Ganymede conjunc- The orbital resonances among the jovian moons Io, Eu-
tion drifts at a rate v2 ; 2n3 2 n2, where n1, n2, and n3 are ropa, and Ganymede present a fascinating dynamical sys-
the mean motions of Io, Europa, and Ganymede. We find that tem. The strongest resonant interactions are those between
Laplace-like resonances characterized by v1/v2 P 3/2 and v1/ Io and Europa and between Europa and Ganymede. The
v2 P 2 can pump Ganymede’s eccentricity to p0.07, producing ratios of mean motions (i.e., mean orbital angular veloci-
tidal heating several hundred times higher than at the present

ties) of these satellite pairs are both near 2:1, causing theirepoch and 2 to 30 times greater than that occurring in the v1/ successive conjunctions to occur near the same jovicentricv2 P 1/2 resonance identified previously by Malhotra. The
longitude. This allows their mutual gravitational perturba-evolution of v1 and v2 prior to capture is strongly affected by
tions to add constructively and, as we shall see later, allowsQ9Io/Q9J . (Here, Q9 5 Q/k is the ratio of the tidal dissipation
a secular transfer of energy and angular momentum fromfunction to second-degree Love number; the subscript J is for
Io to Europa to Ganymede.Jupiter.) We find that capture into v1/v2 P 3/2 or 2 occurs

over a large range of possible initial satellite orbits if Q9Io/Q9J # As the ratio of mean motions is not exactly 2:1, the
4 3 1024, but cannot occur for values $ 8 3 1024. (The latter conjunctions between Io and Europa drift at a mean angu-
is approximately two-thirds the value required to maintain Io’s lar velocity g1 ; 2n2 2 n1, while the conjunctions between
current eccentricity in steady state.) For constant Q/k, the Europa and Ganymede drift at a rate g2 ; 2n3 2 n2, where
system, once captured, remains trapped in these resonances. n1, n2, and n3 are the mean motions of Io, Europa, and
We show, however, that they can be disrupted by rapid changes Ganymede. The Io–Europa conjunction is locked to Io’s
in the tidal dissipation rate in Io or Europa during the course of perijove and also to Europa’s apojove; the Europa–
the evolution; the satellites subsequently evolve into the Laplace

Ganymede conjunction occurs when Europa is near peri-resonance (v1 5 v2) with high probability. Because the higher
jove. These pairwise resonances are described by the libra-dissipation in these resonances increases the likelihood of inter-
tion of the following resonance angles:nal activity within Ganymede, we favor the v1/v2 P 3/2 and

2 resonances over v1/v2 P 1/2 for the evolutionary path taken
u11 5 2l2 2 l1 2 Ã1 librates about 08,by the Galilean satellites before their capture into the La-

place resonance. u12 5 2l2 2 l1 2 Ã2 librates about 1808,
In addition to its surface appearance, Ganymede’s large free

u23 5 2l3 2 l2 2 Ã2 librates about 08.eccentricity (0.0015) has long been a puzzle. We find that the
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Here li and Ãi are the satellites’ mean anomalies and 0.0026, respectively. This is a metastable state, however,
as Europa approaches the 2:1 resonance with Ganymedelongitudes of perijove. In this paper, all subscripts i 5 1,

2, and 3 refer to Io, Europa, and Ganymede. (The Europa– and the Europa–Ganymede resonant perturbations be-
come significant. During this evolution, g2 approaches g1Ganymede conjunction is not locked to either apse of Ga-

nymede, so the other possible resonant variable, 2l3 2 l2 and the satellites are captured into the Laplace resonance.
Yoder and Peale calculate that the capture probability is2 Ã3, circulates through all possible values.) The fourth

major resonance, the Laplace resonance, is characterized high provided ug1u, ug2u & 28 day21. As Jupiter’s tides con-
tinue to transfer angular momentum to the satellites (pri-by the libration of the following critical angle:
marily Io), the Laplace resonance forces a secular transfer
of orbital angular momentum from Io to Europa to Ga-

f 5 2l3 2 3l2 1 l1 librates about 1808.
nymede. A new equilibrium is reached in which g1 stabi-
lizes at a new value, and the resonantly forced eccentricities
of all three satellites also reach constant values. If theThe Laplace resonance is a 1:1 commensurability between

the rates of motion of the Io–Europa and Europa– present state of the system is at this equilibrium, this theory
predicts Q91/Q9J P 1.1 3 1023. (Here Q9 ; Q/k is the ratioGanymede conjunctions (as opposed to the 2:1 commensu-

rabilities between the satellites’ mean motions): the Io– of the tidal dissipation function to the second-degree Love
number, and subscript J refers to Jupiter.) Ganymede’sEuropa conjunction drifts at the same rate as the

Europa–Ganymede conjunction, so that g1/g2 5 1. Cur- eccentricity remains low in this scenario.
A second scenario was outlined by Greenberg (1982,rently we have g1 5 g2 5 20.748 day21. This is an extremely

small value compared with the satellites’ mean motions, 1987). He noted that the Yoder–Peale scenario was predi-
cated on significant tidal dissipation within Jupiter, at awhich range from approximately 508 day21 for Ganymede

to approximately 2008 day21 for Io. rate greater than any known physical mechanisms for tidal
dissipation in gaseous planets. To circumvent this apparentThese orbital resonances have a strong effect on the

satellites’ thermal evolution. Io’s active volcanism and high difficulty, he suggested that Io, Europa, and Ganymede
formed in orbits deep in resonance, with g1 and g2 closerthermal heat flux of p2 W m22 (Smith et al. 1979, Veeder et

al. 1994) are probably caused by tidal dissipation associated to zero. Since satellite formation, dissipation in Io has
decreased the satellite’s semimajor axis and increased ug1u;with its resonantly forced orbital eccentricity of 0.0044

(Peale et al. 1979). Europa’s tectonism possibly also results thus, Io has evolved away from the 2:1 resonance with
Europa. Similarly, Europa and Ganymede were deeper infrom tidal flexing (Malin and Pieri 1986). Although Ga-

nymede’s eccentricity is currently too low for significant the 2:1 resonance in the past, so that Ganymede would
have had a higher forced eccentricity. This scenario allowstidal heating, the ancient resurfacing on this satellite

(McKinnon and Parmentier 1986) may be linked to higher slightly more tidal heating in Ganymede than at present
(eccentricity p0.003, as compared with the current freetidal dissipation in the past. Especially for Ganymede,

knowledge of past orbital history is critical for elucidating and forced eccentricities of 0.0015 and 6 3 1024). However,
recent theoretical work on the tidal Q of gaseous planetsthe thermal evolution.

Yoder (1979) and Yoder and Peale (1981) constructed (Ioannou and Lindzen 1993) and estimates of low upper
bounds for the tidal Q of other outer planets [Q , 39,000an analytical theory to explain the high rate of internal

activity on Io as well as the origin of the Laplace resonance for Uranus (Tittemore and Wisdom 1989) and Q , 3 3
105 for Neptune (Banfield and Murray 1992)] suggest thatfrom initially nonresonant orbits. According to this sce-

nario, tides raised on Jupiter by the satellites cause the QJ was low enough for significant orbital evolution, in-
creasing the plausibility of the tidal assembly of the Gali-satellite orbits to expand outward over time. As Io ap-

proaches the 2:1 resonance with Europa, g1 approaches lean resonances.
Greenberg (1982) has also suggested the possibility ofzero, forcing Io’s eccentricity, e1, to increase; however,

tidal dissipation in Io (which increases with e1) lowers episodic tidal heating of Io, in which the Galilean satellites
oscillate about the equilibrium point of the Laplace reso-Io’s semimajor axis and eccentricity. This counteracts the

effects of Jupiter’s tides, which push Io outward into 2:1 nance, causing Io’s Q9 and resonantly forced eccentricity
to vary periodically. This possibility was explored in someresonance with Europa, as well as the resonant gravita-

tional perturbations from Europa, which pump Io’s eccen- detail in Ojakangas and Stevenson (1986), and it remains
a viable model for the present state of the system; however,tricity. Thus, an equilibrium characterized by constant val-

ues of g1 and e1 is achieved, and the orbits of Io and it has not been shown to have significant import for Ga-
nymede’s evolution.Europa expand together while being locked in resonance.

(This involves a secular transfer of orbital angular momen- More recently, Malhotra (1991) showed that the evolu-
tionary path described by the Yoder–Peale theory for thetum from Io to Europa.) The equilibrium values of g1 and

e1 estimated by Yoder and Peale are 21.28 day21 and tidal assembly of the resonances is not unique. She found
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that for a wide range of initial conditions, the satellites
would have encountered and been temporarily captured
in one or more ‘‘Laplace-like’’ resonances g1/g2 P j/( j 1
1), j 5 1, 2, or 3, before evolving into the present state.
(We define a ‘‘Laplace-like’’ resonance to be one in which
the ratio of the mean conjunction drift rates, g1/g2, is that
of two small positive integers.) Capture into any of these
three resonances can occur at relatively high values of ug1u
and ug2u (p7–88 day21, before either pairwise resonance
has achieved equilibrium), and is fairly likely. The 2:1 mean
motion resonances then evolve in concert during passage
through one of these Laplace-like resonances, as g1 and
g2 continue to approach zero. At sufficiently small values
of ug1u and ug2u, the g1/g2 P j/( j 1 1) resonance is disrupted
and the satellites are captured into the Laplace resonance.
Of potentially great significance for Ganymede was the
discovery that the g1/g2 P 1/2 resonance pumps Ga-
nymede’s eccentricity up to p0.01–0.03, possibly enough
for internal activity and consequent resurfacing.

For completeness, we mention here Tittemore’s (1990)
proposal for the tidal heating of Ganymede. In this sce-

FIG. 1. Several possible paths to the current state as proposed bynario, Europa and Ganymede pass through the pairwise
previous authors, shown in g1–g2 space. The current position is marked3:1 mean motion resonance which chaotically pumps up
by a circle; the Laplace resonance, g1/g2 5 1, and the Laplace-like

their orbital eccentricities to large values (e2,max P 0.13, resonance, g1/g2 P 1/2, are shown by dotted lines. Dot–dashed line:
e3,max p 0.06) before the satellites eventually disengage Yoder and Peale (1981) scenario in which the Io–Europa 2 : 1 resonance

equilibrates before capture into the Laplace resonance. Dashed line:from that resonance. (They are presumed to subsequently
Malhotra (1991) scenario for passage through g1/g2 P 1/2 prior to captureevolve to their present 2:1 resonant orbits.) Tittemore ar-
into the Laplace resonance; in this scenario, neither 2 : 1 pairwise reso-gued that the extent of orbital evolution of Europa and
nance equilibrates before capture into the Laplace resonance. Short solid

Ganymede required in this scenario can be accommodated line moving downward from near the origin: Greenberg (1987) scenario
provided Io and Europa were locked in the pairwise 2:1 in which tidal dissipation in Jupiter is negligible.
resonance early on. Tittemore’s numerical modeling of the
Europa–Ganymede 3:1 resonance passage did not include
the 2:1 resonant perturbations of the Io–Europa interac- moves nearly horizontally to the right in g1–g2 space. In

the Yoder–Peale scenario, the system evolves unhinderedtion, and also neglected tidal dissipation within the satel-
lites, both factors that significantly affect the dynamical by any Laplace-like resonance to equilibration of the Io–

Europa resonance, and g1 becomes constant (dash–dotevolution of the system. It is possible to overcome these
deficiencies and it would be worth reevaluating the 3:1 line). As g2 continues to increase, the system then moves

vertically upward in g1–g2 space. Capture into the LaplaceEuropa–Ganymede resonance with a more complete nu-
merical model; however, such a study is beyond the scope resonance, g1/g2 5 1, eventually occurs from below, i.e.,

from a smaller value of g1/g2. In contrast, Malhotra (1991)of the present work. We do not discuss this scenario further
because it does not speak to the evolution of the satellites showed that the first metastable state in Yoder and Peale’s

scenario was unlikely to be achieved as there was a highnear the Laplace resonance.
The three scenarios of Yoder and Peale, Greenberg, and probability that the approach to this state would be inter-

rupted by capture into a g1/g2 5 j/( j 1 1) Laplace-likeMalhotra are best visualized by plotting the system’s path
in g1–g2 space. This will also prove useful for discussing resonance. This is shown by the dashed line. Greenberg’s

scenario is shown with a solid line.our results. In Fig. 1 we depict the paths just discussed.
The initial position in g1–g2 space after satellite formation In this paper we use Malhotra’s (1991) numerical model

to explore evolution into the Laplace resonance over ais completely unknown. Specifying a point on the plot is
equivalent to specifying the ratios a1 : a2 : a3 of the satellites’ much wider range of conditions than she examined. Our

main finding is that two other Laplace-like resonancessemimajor axes. Consider the tidal assembly scenarios. Far
from equilibrium of the pairwise 2:1 resonances and in the above the Laplace resonance, g1/g2 P 2 and g1/g2 P 3/2,

have high capture probability and can pump Ganymede’sabsence of any Laplace-like resonances, Io’s orbit expands
much more rapidly than Europa’s, so g1 increases faster eccentricity to p0.07. Capture into these resonances is

possible only if Q91/Q9J , 8 3 1024. [This upper bound isthan g2. Starting from its initial position, the system thus
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slightly smaller than the value needed to maintain the eral possible Laplace-like resonances defined by g1/g2 P
j/( j 1 1), where j is an integer. These higher-order reso-current orbital configuration in steady state, as discussed

in Yoder and Peale (1981).] If this condition is satisfied, nances arise from subtle three-body interactions that are
difficult to extract analytically from the equations of mo-capture into one of these resonances is quite likely. We

also find that if the Q/k are constant in time, the satellites tion, and the fidelity of standard perturbation theory to
describe these resonances is difficult to establish. In fact,do not evolve into the Laplace resonance from these reso-

nances. We show that rapid changes in Q91/Q9J or Q92/Q9J Yoder and Peale considered the possibility of one such
higher-order Laplace-like resonance, g1/g2 P 1/2. Fromcan cause disruption followed by capture into the Laplace

resonance. Several plausible mechanisms can easily pro- their perturbation analysis, they concluded that this reso-
nance was unstable, and passage through it would exciteduce the requisite time variability in Q9i /Q9J.

The paper is organized as follows. In Section 2 we pres- small free eccentricities on Io and Europa; at the lowest
order, Ganymede’s eccentricity would not be perturbedent our results. We begin with a brief description of the

dynamical model and a discussion of the low-order pertur- by this resonance. They estimated higher order effects of
this resonance on e3 to be on the order of 1024. Yoderbation theory for the Galilean resonances. (The details of

the latter are given in the Appendix.) This is followed by and Peale were careful to note that these Laplace-like
resonances are sufficiently subtle that their particular anal-a detailed description of some example runs. Next, we

identify the conditions under which capture into g1/g2 ysis may not have provided an adequate description. By
taking the same perturbation approach as Yoder and Peale,P 3/2 or g1/g2 P 2 can occur, and we characterize the

resonances by determining the eccentricities and dissipated we find that their analysis was incomplete in at least one
respect: the g1/g2 P 2 Laplace-like resonance appears inpower they produce under different conditions. We then

explore the manner in which Q91/Q9J or Q92/Q9J must change the same order in perturbation theory as the g1/g2 P
1/2 resonance. Furthermore, this resonance does affectto allow disruption of these new Laplace-like resonances

and evolution into the Laplace resonance. We end the Ganymede’s orbital eccentricity in the lowest order, and
is therefore of particular interest for the geophysical evolu-section with some additional results on the evolution of

g1 and g2 toward equilibrium. In Section 3 we calculate tion of this satellite. We have obtained several analytical
results for the g1/g2 P 2 Laplace-like resonance that helpthe size of the cometary impactor necessary to excite Ga-

nymede’s free eccentricity to its current value (0.0015); we to understand—and provide corroboration for—the nu-
merical results. These calculations are given in the Appen-show that the free eccentricity cannot have been produced

by cometary impact. In Section 4 we summarize our results dix. Other Laplace-like resonances also are potentially sig-
nificant for the problem of Ganymede, e.g., g1/g2 P 3/2,and conclusions. Implications for Ganymede’s thermal his-

tory are discussed in two companion papers (Showman but with the Yoder–Peale approach, these require going
to the next order in perturbation theory. Higher-orderet al. 1996, Showman and Stevenson 1996).
perturbation theory in this particular context does not nec-
essarily imply that the resonance is weak, because each

2. RESULTS new factor of the small parameter (e.g., perturbing satellite
mass relative to that of Jupiter) is accompanied by at least

2.1. The Model
one power of a small divisor. Many of the results of numeri-
cal simulations can be understood in light of this analysis,The dynamical model we use is described in detail in

Malhotra (1991). The model includes perturbations from but not all. It appears likely to us that this particular analyti-
cal approach does not describe the complete picture forJupiter’s gravity field to order J4 and the mutual satellite

perturbations to second order in the orbital eccentricities. the three-body resonances, possibly because we are in a
regime where the perturbation expansions are poorly con-The secular perturbations due to Callisto are also included.

The effects of tidal dissipation in the planet as well as vergent. (It should be emphasized that the problems lie
not with the truncation of the disturbing function, butthe satellites are parameterized by the tidal dissipation

functions, Q9i , Q9J, and are included in the perturbation rather with the perturbative resonance analysis built on
it.) A different approach is called for. We defer this toequations. The ratios Q9i /Q9J are free parameters which we

specify as inputs to the model. future work, and concentrate on the numerical solution of
the perturbation equations.As described in the Introduction, a particular solution

for the evolution into the Laplace resonance admitted by The differential equations are approximated by an alge-
braic mapping (details given in Malhotra 1991). This speedsthis dynamical model was first found by Yoder and Peale

(1981). This is not a unique solution, however, as was up the numerical simulation by a factor of several hundred.
Even so, it is necessary to artificially enhance the rateshown by Malhotra (1991), and there is a high probability

that the evolutionary path described by the Yoder–Peale of orbital evolution to obtain results within reasonable
computational time. We used QJ 5 100 in all our runs.solution would be interrupted by capture into one of sev-
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(The Q9i /Q9J are independently specified free parameters.) The initial values of the frequencies (g1,g2) in Figs. 2,
3, and 4 were (25.6,23.2), (26.2,22.6), and (24.7,28.0)A typical run uses p8 hr of CPU time on an HP-735/99-

MHz workstation. To illustrate, suppose the ‘‘real’’ value degrees per day, respectively. All three runs begin with
Q91/Q9J 5 4 3 1024. (Other parameter values are listed inof QJ is 105; then, using QJ 5 100 in the numerical simula-

tion means that the entire evolution over the 4.5-byr age the captions.) We also show the evolution for these runs
on a g1–g2 plot in Fig. 5. In Figs. 2 and 3, the initial valueof the system is forced to occur over only 4.5 myr. Never-

theless, we expect that the qualitative features of the dy- of g1/g2 is greater than 1, whereas in Fig. 4 it is less than
1. In all three cases, g1 and g2 both increase toward zeronamics are not affected because tidal evolution with QJ 5

100 is slow enough to be adiabatic on the time scale of the over time, but g1 increases more rapidly, so g1/g2 ini-
tially decreases.gravitational perturbations. Quantitative confirmation of

this assumption is discussed in Section 2.5. In Fig. 2, g1/g2 initially passes through 3/2 from above
without entering this resonance. The rate of change of g1We note here that the model accounts for only the low-

frequency resonant perturbations, and so is valid only for decreases, and at some point g1 becomes almost constant
at a value near 22.5 to 23.08 day21 (see Fig. 5). (As insufficiently small ug1u and ug2u. We restrict our calculations

to ug1u, ug2u , 108 day21. Although this range corresponds the Yoder–Peale scenario, competition between the effects
of Jupiter’s and Io’s tides causes this effect, but here itto only a few percent change in a1/a2 and a2/a3, it is compa-

rable to the extent of evolution expected over Solar System occurs at a larger value of ug1u because Q91/Q9J is one-third
that in the Yoder–Peale scenario.) g2 continues to in-history for reasonable QJ values (p105). The satellites may

thus have formed in the region of validity of the model crease, however, so g1/g2 reverses direction and begins
climbing. When g1/g2 5 3/2 is reached from below, reso-for g1 and g2.

For most of the simulations discussed in this paper, Ga- nance capture occurs. The resonance excites Ganymede’s
orbital eccentricity, and also causes large variations in Eu-nymede’s initial eccentricity was 0.001. Resonance encoun-

ter usually occurred (when at all) with an eccentricity some- ropa’s eccentricity. g1 and g2 continue to increase, and a
new equilibrium is reached. At time t 5 104QJ years, wewhat smaller than the initial value.
abruptly increase Q91/Q9J to 1.27 3 1023. This change desta-
bilizes the g1/g2 P 3/2 resonance: a short time (p103QJ2.2. Example Runs
years) later, the orbital parameters exhibit large fluctua-
tions and the satellites enter the Laplace resonanceIn this section, we describe in detail the evolution of the

system in three different runs. These illustrate the range (g1 5 g2).
The evolution in Fig. 3 is qualitatively similar to thatof possible orbital and dynamical histories of the Galilean

satellites that we have found in more than 300 numerical in Fig. 2: g1/g2 initially decreases, minimizes, and then
increases. The value of g1 at the minimum is roughly thesimulations. The time evolution of several parameters in

these runs is plotted in Figs. 2, 3, and 4. Panels (a), (b), same as in Fig. 2 (see Fig. 5). Because we started with a
greater initial value of g2, however, the minimum occursand (c) in these figures depict the evolution of the orbital

eccentricities of Io, Europa, and Ganymede; panel (d) at g1/g2 . 3/2 in Fig. 3, rather than at g1/g2 , 3/2 as in
Fig. 2. Thus, in this case, the system never encounters theshows the ratio g1/g2; and (e) shows our assumed Q91/

Q9J. The time axis runs from 0 to 1.3 3 104 QJ years (assum- g1/g2 5 3/2 resonance. When g1/g2 approaches the value
2, the satellites are captured in this Laplace-like resonance.ing kJ 5 0.38, following Gavrilov and Zharkov 1977). (In

displaying the results of our simulations, we have factored (Note again that this resonance capture occurs from below;
the early encounter of g1/g2 with the value 2 from aboveout QJ on the time axis. This stresses the fact that QJ is

unknown and that, for a given simulation with specified did not result in resonance capture.) This resonance also
pumps up Ganymede’s eccentricity. At t 5 104 QJ years,Q9i /Q9J over time, the timescale for the evolution scales

linearly with QJ.) Thus, the evolution shown in these figures we change Q91/Q9J to 2.5 3 1023, and the system jumps into
the Laplace resonance.would occur in 4 byr if QJ 5 3 3 105, but only 400 myr if

QJ 5 3 3 104. There is no special significance to the origin In our third example, shown in Fig. 4, the system first
enters the g1/g2 P 1/2 Laplace-like resonance; however,on the time axis. Note that the end state of the system in

each of these runs is close to that observed at the present this resonance is soon disrupted, and g1/g2 increases past
1 (without entering the Laplace resonance), and is nextepoch: the satellites are trapped in the Laplace resonance,

and the final orbital eccentricities are close to the observed captured into the g1/g2 P 3/2 resonance. When we change
Q91/Q9J to 1.9 3 1023 at time at t 5 104QJ years, the systemforced eccentricities. The three runs differ in initial condi-

tions and in the assumed tidal dissipation functions. Conse- jumps into the Laplace resonance. In this example there
are two eccentricity pumping episodes, one for g1/g2 Pquently, the runs differ in the sequence of Laplace-like

resonances that the satellites encounter and temporarily 1/2 and one for g1/g2 P 3/2. If resurfacing is associated
with each episode, two resurfacing events would occur.enter before reaching the current state.
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Evolutionary paths as shown in Figs. 2, 3, and 4 represent
plausible paths to the current state: in all three cases the
system ends in the Laplace resonance. However, this has
occurred only because we increased Q91/Q9J by a factor of
p3 during each run; we will see later that decreasing

FIG. 2. First example run: The system was temporarily captured in
the g1/g2 P 3/2 resonance before evolving into the Laplace resonance.
Shown are time evolution of the eccentricities of (a) Io, (b) Europa, and
(c) Ganymede, and (d) the ratio g1/g2; panel (e) shows the assumed
Q91/Q9J over time. The time axes in (a)–(e) are the same and run from
0 to 1.3 3 104QJ years. In this run, the ratios of the tidal dissipation
functions, Q9i /Q9J (Q9 ; Q/k), were Q93/Q9J 5 0.127 and Q92/Q9J 5 4.1 3

1023; Q91/Q9J was initially set to 4 3 1024 and was changed at time 104QJ

years to 1.27 3 1023, which caused the system to jump from g1/g2 P 3/2
FIG. 3. Second example run: The system was temporarily capturedinto the Laplace resonance (g1 5 g2) after rapid fluctuation of the

in the g1/g2 P 2 resonance before reaching the current configuration.variables. The state of the system at the end of the integration is close
All panels are the same as in Fig. 2. The tidal parameters Q9i /Q9J are theto that observed at present.
same as for Fig. 2, except that at 104 QJ years, Q91/Q9J was changed to
2.5 3 1023. This change disrupted the g1/g2 P 2 resonance and allowed
capture into the Laplace resonance.
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heat flow measured by Veeder et al. (1994) may require
time variable Q91/Q9J, given the lower bound on the time-
averaged QJ (Goldreich and Soter 1966, Yoder and Peale
1981). Furthermore, laboratory experiments have shown
that terrestrial rocks have strongly temperature-dependent
Q at high frequencies (Berckhemer et al. 1982). Although
data at low frequencies are lacking, it is reasonable to
expect temperature dependence at tidal frequencies also,
especially at temperatures near the solidus. In addition,
Io’s and Europa’s second-degree Love numbers depend
on satellite structure: they are near p0.02 for a frozen
interior but close to p1 for a massively molten interior.
Changes in satellite internal temperature or structure could
thus cause large variations in Q9i . Finally, processes may
act in Jupiter to produce changes in QJ (e.g., Stevenson
1983, Ioannou and Lindzen 1993), possibly of large ampli-
tude. Any of these mechanisms could produce time-vari-
able Q91/Q9J and may allow disruption of the g1/g2 P 2 or
g1/g2 P 3/2 Laplace-like resonances followed by capture
into the Laplace resonance.

When Q91/Q9J oscillates (as a sinusoid or square wave)
with periods of p108–109 years and amplitudes comparable
to that used in Figs. 2–4, the Laplace-like resonances are
generally disrupted near a maximum in the cycle (not nec-
essarily the first). Subsequent minima of Q91/Q9J, however,
do not cause a second resonance capture into the Laplace-
like resonance—the system generally remains in the La-

FIG. 4. Third example run: The system evolved through both the
g1/g2 P 1/2 and g1/g2 P 3/2 resonances in this run. All panels are the
same as in Figs. 2 and 3. The ratios of tidal Q9i /Q9J are exactly the same
as those used in Fig. 2, except for a change in Q91/Q9J to 1.9 3 1023 at
104QJ years. The main differences are the initial values of g1 and g2.

Q92/Q9J by a factor of p100 also leads to disruption. Super-
ficially, the discrete changes we make in the tidal Q’s in
these numerical experiments may appear artificial to the
reader; however, despite the fact that most analytical or- FIG. 5. Paths of the system in the three example runs of Figs. 2–4
bital modeling assumes constant Q, time variability of are displayed on an g1–g2 diagram. Note that all three paths change to

high slope at g1 P 238 day21.Q91/Q9J and Q92/Q9J is very likely. Indeed, the high ionian
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place resonance itself. The Greenberg (1982)/Ojakangas described by the Yoder and Peale (1981) scenario, g1 ini-
tially increases much faster than g2, so the system movesand Stevenson (1986) model, in which the coupling be-

tween orbital dynamics and geophysics drives oscillation almost horizontally (with low positive slope) across the
g1–g2 plot. Eventually, g1 achieves equilibrium while g2in Q91/Q9J, thus constitutes a plausible mechanism for dis-

ruption of the g1/g2 P 3/2 or 2 resonance and capture continues to increase, so g1/g2 minimizes and begins in-
creasing, and the slope turns toward vertical (i.e., highinto the Laplace resonance.
positive slope). If Q91/Q9J P 1023, as assumed by Yoder and
Peale (1981), this happens at g1 P 21.28 day21, as shown

2.3. Capture Statistics for the g1/g2 P 3/2 and g1/g2 P 2
in Fig. 1. Unless g2 is very close to zero, the minimum

Resonances
occurs at g1/g2 , 1, so that the system encounters the
Laplace resonance before encountering g1/g2 P 3/2 or 2We have seen that the g1/g2 P 3/2 and g1/g2 P 2

Laplace-like resonances excite Ganymede’s eccentricity to from below. At these low values of ug1u and ug2u, capture
into the Laplace resonance is ensured (Yoder and Pealesufficiently high values that the consequent enhanced tidal

heating could be geophysically significant. To estimate the 1981), so entry into g1/g2 P 3/2 or 2 cannot occur.
When Q91/Q9J is lower, however, the equilibrium valueviability of this scenario, we have to consider two issues:

(1) What are the capture probabilities for g1/g2 P 3/2 and of g1 is more negative. This phenomenon has two effects
which favor capture into g1/g2 P 3/2 or 2. First, for given2 resonances assuming they are encountered? (2) What

conditions allow g1 and g2 to evolve in such a manner initial g1 and g2, equilibration occurs at larger values of
g1/g2 than is possible for greater Q91/Q9J. Thus, some runsthat the resonances are encountered?

To answer these questions, we made many numerical minimize at g1/g2 greater than 1, which is essentially impos-
sible at Q91/Q9J P 1023. These runs will never encountersimulations with a large range of initial conditions. Our

study covered the range (29,22) and (28,21) deg/day for the Laplace resonance, and will therefore be captured into
g1/g2 P 3/2 or 2 with near-unit probability if the minimumthe initial values of (g1, g2), with initial g1/g2 ranging

from 0.2 to 3.1. We used a variety of Q91/Q9J values and value of g1/g2 is between 1 and 2. The fraction of initial
g1 and g2 values for which such ensured capture occursQ93/Q9J values. Most runs used Q92/Q9J 5 4 3 1023 (which

implies Q2 5 100 for k2 5 0.03, QJ 5 3 3 105, and kJ 5 increases with decreasing Q91/Q9J. Second, scenarios that
encounter the Laplace resonance from below do so at0.38); in a few runs we varied Q92/Q9J by factors of p2. The

Q9i /Q9J are constant in time for all runs discussed in this sub- larger negative values of g1, for which capture into the
Laplace resonance is unlikely (Yoder and Peale 1981).section.

First consider capture probabilities. Of 88 runs encoun- There is thus a significant probability that the system will
not enter the resonance, but instead that g1/g2 will con-tering g1/g2 P 3/2 from above, none was captured; how-

ever, of 64 runs encountering g1/g2 P 3/2 from below, 60 tinue to increase. The system will then be captured into
g1/g2 P 3/2 or 2 with high probability. Our simulationswere captured. For the g1/g2 P 2 resonance, 0 of 36 runs

were captured from above and 35 of 37 were captured confirm this picture. Of the 27 runs that minimize at g1/
g2 , 1 (for Q91/Q9J P 4 3 1024), 11 entered g1/g2 5 3/2from below. Thus, for both resonances, capture probabili-

ties from below are very high, but capture from above and 16 entered the Laplace resonance. (The run shown in
Fig. 4 is one of the 11 that entered g1/g2 P 3/2.) Theseapparently cannot occur. This behavior contrasts with that

of the g1/g2 P 1/2, 2/3, and 3/4 resonances, for which runs encountered the Laplace resonance at g1 and g2 be-
tween 23 and 248 day21.capture occurs from above (Malhotra 1991). This also dif-

fers from the Laplace resonance, for which capture from These results are shown graphically in Fig. 6 which shows
the capture probabilities into various resonances on aneither above or below can easily occur. The runs encoun-

tering these resonances from above use Q91/Q9J 5 (6–400) g1–g2 diagram. For concreteness, we show probabilities
for Q91/Q9J 5 4 3 1024. The figure depicts the capture3 1025, while those from below use Q91/Q9J 5 (6–80) 3

1025. We noticed no dependence of capture probability on probabilities into (a) the Laplace resonance, (b) the g1/
g2 P 3/2 resonance, (c) the g1/g2 P 2 resonance, and (d)Q91/QJ within that range.

Next consider conditions leading to resonance encoun- other resonances. The shading at a given (g1, g2) point
gives the capture probability for the resonance in question,ter. From a wide variety of initial g1 and g2, capture into

g1/g2 P 3/2 or 2 occurs commonly for Q91/Q9J # few 3 for evolution beginning at that point on the diagram. (The
runs that enter g1 5 g2 often pass through g1/g2 P 1/2,1024, but never for Q91/Q9J P 1023. This phenomenon results

not from a different capture probability at higher Q91/Q9J 2/3, or 3/4 first.) Dark hatching corresponds to unit proba-
bility, white to zero probability, and light hatching to inter-but because the resonances are never encountered from

below for these large values. The runs displayed in Figs. mediate (p50%) probability. The axes span approximately
0 to 258 day21. As can be seen, there are large portions2, 3, and 4 suggest an explanation for this phenomenon,

which we have confirmed with another p100 runs. As of the diagram for which capture into g1/g2 5 3/2 or 2 is
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FIG. 6. Schematic summary of capture probabilities as a function of initial g1 and g2 for the different resonances, shown on g1–g2 plots.
The probabilities shown hold for Q91/Q9J P 4 3 1024. Capture probabilities from given initial (g1, g2) are 1 if the point is dark-hatched, 0 if the
point is white, and intermediate for light hatching. The four panels show probabilities for capture into (a) the Laplace resonance, (b) g1/g2 P
3/2, (c) g1/g2 P 2, and (d) other states characterized by evolution to high g1/g2 values. The probabilities depend on Q91/Q9J, as described in the text.

ensured. More than half the area has moderate capture much greater tidal heating in Ganymede than the g1/g2

P 1/2 resonance identified in Malhotra (1991). In Fig. 7,probability for g1/g2 P 3/2 and for the Laplace resonance.
Runs starting in the dark region indicated in Fig. 6d evolved we display the maximum eccentricity and energy dissipa-

tion that Ganymede can achieve in the g1/g2 P 3/2 andtoward greater g1/g2, stabilizing at g1/g2 p 8–40, de-
pending on initial conditions. We surmise that in these 2 resonances, and compare them with the maximum possi-

ble for the g1/g2 P 1/2 resonance. As the dissipated powerruns, where the system is initially very close to the Europa–
Ganymede 2 : 1 resonance, equilibrium of the 2 : 1 pairwise
resonances was achieved without the system ever becoming
captured in a Laplace-like resonance.

The probabilities shown in Fig. 6 depend on Q91/Q9J. For
smaller values of Q91/Q9J, the pattern would be similar, but
the axes would span a larger range of g1 and g2 and con-
versely for larger values of Q91/Q9J. For example, for Q91/
Q9J p 7 3 1025, the axes span 0 to 2108 day21 in g1 and
g2. If Q91/Q9J 5 1 3 1023 the picture is very different:
capture into the Laplace resonance would occur from ev-
erywhere in the g1–g2 diagram except possibly for very
small initial values of ug2u; capture into g1/g2 P 3/2 or 2
is impossible. The corresponding Fig. 6a would then be
almost fully dark-hatched, and Figs. 6b and c would be
fully white.

Capture probability also depends on e3 before resonance
encounter. We conclude in the Appendix that capture into
the g1/g2 P 2 resonance is likely if the initial e3 # 0.001.
Because the damping time for the eccentricity is on the
order of 108 years for reasonable (Q/k)3, Ganymede’s ec-
centricity would likely have been negligible if resonance
encounter occurred more than half a billion years after
Solar System formation.

In summary, for plausible values of Q91/Q9J, capture into
g1/g2 P 3/2 or g1/g2 P 2 is moderately probable. For a FIG. 7. (a) Maximum eccentricities and (b) the dissipated power
substantial fraction of plausible initial conditions, the satel- associated with those eccentricities, for the g1/g2 P 2, g1/g2 P 3/2, and

g1/g2 P 1/2 resonances, as a function of Q93/Q9J, the ratio of Q/k forlites pass through the g1/g2 P 1/2, 2/3, or 3/4 resonance.
Ganymede to that for Jupiter. For the g1/g2 P 3/2 and 2 resonances,
‘‘maximum eccentricity’’ is the equilibrated (steady-state) eccentricity;
for the g1/g2 P 1/2 resonance, it is that at the peak of the largest pos-2.4. Characteristics of g1/g2 P 3/2 and 2 Resonances
sible eccentricity ‘‘bump.’’ (Runs for g1/g2 P 3/2 and 2 used Q91/Q9J 5

As mentioned in the Introduction, the g1/g2 P 3/2 and 4 3 1024, and those for g1/g2 P 1/2 used 1.2 3 1023. All runs used
Q92/Q9J 5 4 3 1023.)g1/g2 P 2 Laplace-like resonances provide potentially
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TABLE Idepends on Q93/Q9J, we plot the eccentricity and dissipation
Disruption from v1/v2 P 3/2 into Other Resonancesas a function of Q93/Q9J. The eccentricity shown is the

steady-state eccentricity occurring after equilibration of
Time of disruption (QJ years)

the three-body resonance. The dissipation is calculated
from Q93/Q9J, Q9J, and the equilibrated eccentricity using (Q91/Q9J)0 3 3 103 7 3 103 104 1.3 3 104

the formula for tidal dissipation in a homogeneous, syn-
5 3 1024 No No No Nochronously rotating satellite in an eccentric orbit (Peale
8 3 1024 No No No Noand Cassen 1978),

1.3 3 1024 g1 5 g2 g1 5 g2 g1 5 g2 g1/g2 P 2

Note. Entries display the resonance entered after disruption. RunsĖ 5
21
2

k
Q

R5GM 2
pne2

a6 ,
labeled ‘‘no’’ were not disrupted from g1/g2 P 3/2.

where Ė is the dissipated power, R is the satellite’s radius,
a, e, and n are the orbital semimajor axis, eccentricity, and

ity for g1/g2 P 1/2 shown in Fig. 7 are the maximum found
mean motion, Mp is the primary’s mass (Jupiter), G is the

by Malhotra; capture at other g1 can produce a power for
gravitational constant, Q is the satellite’s effective tidal

g1/g2 P 1/2 up to p10 times lower.
dissipation function, and k is the satellite’s second-degree

Two runs (with Q93/Q9J P 1021–1022) entering g1/g2 P
Love number; we use modern values a 5 1.07 3 109 m

3/2 yielded anomalously low eccentricities of p0.008.
and n 5 1.0 3 1025 s21. For the highest eccentricities shown,

These values fall far below the curve in Fig. 7. We do not
the equilibrium eccentricity is reached 1–2 3 104 QJ years

understand this phenomenon, but the probability appears
after resonance capture; however, for the lowest eccentrici-

small, since it occurred in only 3% of our runs for g1/g2ties, the equilibration time is only p103 QJ years. The
P 3/2 and never occurred for g1/g2 P 2.

maximum eccentricity and dissipation for g1/g2 P 3/2 or
2 are significantly greater than for g1/g2 P 1/2. Interest-

2.5. Disruption of g1/g2 P 3/2 and 2 Resonances
ingly, as Q93/Q9J R y, the eccentricity saturates at a finite
value, and as Q93/Q9J R 0, the eccentricity tends to zero. For constant Q9i /Q9J values, none of the runs that entered

g1/g2 P 3/2 or 2 was ever disrupted from the resonance.The dissipation requires more careful consideration. For
a given Q9J, the dissipation saturates at a finite value as Thus, if the Q/k are constant in time, the g1/g2 P 3/2 and

2 resonances cannot be possible paths to the current state.Q93 R 0 but tends to zero for Q93 R y; however, for a
given Q93, dissipation R y as Q9J R 0, while dissipation We find that by changing Q91/QJ or Q92/Q9J during the run,

however, the resonances can be disrupted and the satellitestends to zero for Q9J R y. Dissipation is thus not solely a
function of Q93/Q9J; we plot it as such by incorporating QJ subsequently evolve into the Laplace resonance.

We did a number of runs to characterize the conditionsinto the vertical axis, using kJ 5 0.38. For QJ p 3 3 105,
the maximum dissipation for these resonances is few 3 1011 leading to disruption. First consider the g1/g2 P 3/2 reso-

nance. This set of runs was started with g1 5 25.68 day21W, about an order of magnitude lower than the primordial
radiogenic heating rate (using carbonaceous chondritic ra- and g2 5 23.28 day21, with initial g1/g2 5 1.8. The system

thus encountered the g1/g2 P 3/2 resonance from above,dionuclide abundances for Ganymede’s rock). If the reso-
nances are disrupted before equilibration occurs, the actual passed through it without capture, minimized at g1/g2 Q

1.2, and as g1/g2 increased to 1.5, it entered the g1/g2 Ppeak eccentricity and dissipation would be lower, as occurs,
for example, in Fig. 4 during the g1/g2 P 3/2 resonance. 3/2 resonance from below at g1 5 22.58 day21. We used

Q93/Q9J 5 0.0127. The system entered resonance at t 5We find that the dissipation and eccentricity for g1/g2

P 3/2 are roughly independent of g1 or g2 at capture. For 2300QJ years, and we continued the integration until 1.7
3 104 QJ years (5 byr for QJ 5 3 3 105). During this initiala given Q93/Q9J, runs achieving values of ug1u from 2 to 88

day21 at capture and from 1.5 to 4.38 day21 at equilibrium phase of the run, we kept Q91/Q9J constant at 4 3 1024.
Then, at a time t0, we changed Q91/Q9J to another value,of the three-body resonance yielded steady-state eccentric-

ities differing by only 4%. Similar results hold for g1/g2 (Q91/Q9J)0. We used several different values of t0 [3300QJ,
6600QJ, 104 QJ, and 1.33 3 104 QJ years] and of (Q91/P 2. In contrast, Malhotra (1991) found that for g1/g2 P

1/2 the maximum eccentricity depends strongly on g1 at Q9J)0 [5.0 3 1024, 7.6 3 1024, and 1.3 3 1023].
The results of these 12 runs are summarized in Table I.capture. This occurs because entry into the resonance at

lower values of g1 and g2 allows a longer resonance life- None of the runs for the smaller two values of (Q91/Q9J)0

were disrupted, and all four runs for the larger value weretime, which leads to higher eccentricities; however, the g1/
g2 P 3/2 and 2 resonances are never disrupted by them- disrupted. The conditions for disruption thus seem rela-

tively insensitive to the time during resonance at whichselves, so the lifetimes are not short enough to prevent
equilibration of the eccentricity. The power and eccentric- disruption occurs. Of the four runs that were disrupted,
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three were captured into the Laplace resonance and one theory, which predicts the Laplace resonance to be unsta-
ble for e1 . 0.012.into g1/g2 P 2. Disruption usually occurred p103 QJ years

after t0 rather than immediately; such delays are evident The above results can be understood as follows in light
of the analysis given in the Appendix. Within any reso-in Figs. 2–4 for our example runs. (When the system is

disrupted from resonance, the new path taken is not pre- nance, the equilibrium value of g1 (and hence also the
equilibrium value of Io’s forced eccentricity, e12) is deter-dictable on a case-by-case basis. Thus, we cannot infer

from Table I that capture probabilities into g1 5 g2 vs g1/ mined by the value of D1 Q 4.85(Q9J/Q91); e12 is proportional
to Q91/Q9J [see Eqs. (A49) and (A60) in the Appendix].g2 P 2 vary with time of disruption from g1/g2 P 3/

2. Rather, our runs suggest only that disruption into the For Q91/Q9J 5 4 3 1024, we find from Eq. (A60) that e12 Q
0.0020 in the g1/g2 P 2 Laplace-like resonance; this isLaplace resonance is more likely than into g1/g2 P 2 in

an average sense.) verified in the numerical simulations. (We have also esti-
mated the equilibrium value for the g1/g2 P 3/2 Laplace-We also tried two runs for smaller values of Q93/Q9J, 1.27

3 1023 and 1.27 3 1024, with (Q91/Q9J)0 5 1.3 3 1023 and like resonance: e12 P 0.0023.) Note that the three-body
resonant interactions also force large-amplitude oscilla-Q92/Q9J 5 4.1 3 1023. The time between t0 and disruption

increased substantially over the case with Q93/Q9J 5 0.0127. tions about the mean forced eccentricity, so that the maxi-
mum eccentricity is significantly larger. When we changeThe first run was disrupted, but the second run did not

disrupt before the end of the simulation. The resonance the value of Q91/Q9J during the evolution, the equilibrium
is shifted, and the system tries to evolve to the new equilib-appears to be slightly more stable at low Q93/Q9J, presum-

ably because of the lower eccentricities. Using a greater rium while maintaining the three-body resonance lock. A
decrease in Q91/Q9J shifts e12 and g1 to smaller values, andvalue (Q91/Q9J)0 5 1.9 3 1023 allows disruption of the reso-

nance almost immediately at these low Q93/Q9J values, how- the system accordingly moves to the lower equilibrium
point, with no loss of stability. An increase in Q91/Q9J, onever. Thus, the dependence on Q93/Q9J seems much weaker

than that on (Q91/Q9J)0. the other hand, raises these equilibrium values, and the
system tries to move toward this higher equilibrium. InWe also made four runs for g1/g2 P 3/2 in which we

kept Q91/Q9J constant over the run, but in which we in- this case, there are several sources of instability.
creased or decreased Q92/Q9J by one or two orders of magni-

1. The resonances are unstable when e1 exceeds some
tude at time t0. Our initial value was Q92/Q9J 5 4.1 3 1023

maximum value. For the Laplace resonance, Yoder and
(same as that in the runs discussed above). We found that

Peale (1981) estimated the upper limit to be 0.012 from a
abruptly increasing Q92/Q9J by one or two orders of magni-

linear stability analysis. For the other Laplace-like reso-
tude during the run produced no visible effect on the reso-

nances, we expect a smaller upper limit for stability.
nances. Decreasing by one order of magnitude destabilized

2. A second, qualitatively distinct source of instability
but did not disrupt the resonance, and decreasing by two

is the overlap of all Laplace-like resonances sufficiently
orders of magnitude knocked the system into the La-

close to the origin in the g1, g2 plane. The numerical
place resonance.

explorations by Malhotra (1991) as well as those in the
Next consider g1/g2 P 2. We find that this resonance

present work indicate that sufficiently close to the origin
is somewhat more stable than g1/g2 P 3/2, requiring an

in the g1, g2 plane, the phase space is dominated by the
increase in Q91/Q9J to (Q91/Q9J)0 5 1.9 3 1023 for disruption

Laplace resonance. The Galilean satellites evolving along
(using the same Q93/Q9J and Q92/Q9J as the 12 runs in Table

one of the Laplace-like resonances, g1/g2 P j/( j 1 1) or
I). Changing Q92/Q9J (but not Q91/Q9J) during the runs had

( j 1 1)/j, eventually exit that resonance when both ug1u
the same effect as for the g1/g2 P 3/2 resonance: increas-

and ug2u become sufficiently small; after a period of chaotic
ing Q92/Q9J by one or two orders of magnitude had no effect,

evolution, they eventually enter the Laplace resonance.
decreasing it by one order of magnitude destabilized but

3. We see from Eqs. (A59) and (A60) that, after Io’s
did not disrupt the resonance, and decreasing it by two

eccentricity has reached equilibrium, an increase in (Q91/
orders of magnitude disrupted the resonance, with subse-

Q9J) by a factor greater than 55.2/21.0 Q 2.6 changes the
quent capture into the Laplace resonance.

sign of the tidal term in the pendulum-like equation for the
Both resonances are stable to large decreases in Q91/

g1/g2 P 2 Laplace-like resonance. (This factor is slightly
Q9J from 4 3 1024 to 3 3 1025. The change simply shifted

different for other Laplace-like resonances.) This means
the three-body equilibrium from 21.5 to 288 day21.

that the tidal torque on the equivalent pendulum would
Finally, we mention two runs within the Laplace reso-

change direction, causing a slow increase of libration ampli-
nance, during which we changed Q91/Q9J to the large value

tude and eventual disruption of the resonance librations.
p1022. In these runs, Io’s eccentricity reached a maximum
value of 0.012 after the change, soon followed by disruption All of the above three sources of instability come into play

when we increase Q91/Q9J during the course of the evolution.of the Laplace resonance. The system then settled at g1/
g2 P 9/10. This result is consistent with the Yoder–Peale Which of them is the primary cause of resonance disruption
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depends on the exact parameters and state of the system. occurred; the system equilibrated at values of g1 greater
than that for the Io–Europa pairwise resonance alone. InBut it is clear that even in the absence of the first two, a

sufficiently large increase in Q91/Q9J during the course of contrast, resonances below g1/g2 5 1 are always disrupted,
usually into the Laplace resonance or g1/g2 P 3/2 (de-the evolution would certainly disrupt the resonance.

In the numerical experiments where we start with Q91/ pending on Q91/Q9J); these resonances never achieved equi-
librium. The resonances above the Laplace resonance thusQ9J 5 4 3 1024, and later increase its value by a factor of

about 3, we note that the g1/g2 P 3/2 or 2 Laplace-like seem to exhibit dynamics very different from those below
the Laplace resonance.resonance is not immediately disrupted (cf. Figs. 2–4). Io’s

eccentricity increases toward the new equilibrium value,
while the ratio g1/g2 is, on average, maintained at the 3. GANYMEDE’S FREE ECCENTRICITY
resonant value. During this period, Ganymede’s forced
eccentricity is also maintained at a high value, although In this section, we consider the problem of Ganymede’s
it does not continue its previous increase; this is further large free eccentricity, efree 5 0.0015. This has long been
evidence of the fact that the Laplace-like resonance re- a puzzle because the tidal damping time for Ganymede’s
mains in place with the new value of Q91/Q9J, but there is eccentricity is 106 Q3, or about 108 years for a plausible
no longer the same rate of secular transfer of orbital energy Q3 P 102; its free eccentricity should therefore have long
and angular momentum to Ganymede from Io and Europa. damped by the present time. Although free eccentricity is
Eventually the g1/g2 P 3/2 or 2 resonance does become often portrayed as a ‘‘remnant’’ primordial eccentricity,
unstable, when Io’s mean forced eccentricity approaches orbital resonances can pump the free as well as the forced
p0.005 (maximum e1 exceeds p0.01) This is followed by eccentricity. (The free eccentricity is manifested in Figs.
a short period, p103 QJ years, of chaotic, large-amplitude 2–4 as a rapid oscillation about the mean value.) Since
fluctuations in all dynamical variables, culminating in the the Laplace resonance does not pump Ganymede’s free
satellites’ entering the Laplace resonance. The Laplace eccentricity, efree may thus provide a useful constraint on
resonance cannot maintain Ganymede’s high forced eccen- past orbital evolution. We find that the free eccentricity
tricity, so e3 plummets rapidly. It appears likely in this case Ganymede attains in the g1/g2 P 3/2 or 2 resonance is
that the parameters of the system conspire in such a way greater for smaller Q91/Q9J, possibly because smaller Q91/
that all three causes of instability identified above occur Q9J leads to equilibration of the three-body resonances
nearly simultaneously. closer to the (g1, g2) origin. For constant Q91/Q9J P 4 3

In the above numerical experiments, we have chosen to 1024, the g1/g2 P 3/2 and 2 resonances pump Ganymede’s
use a very simple step-function model for the time variation free eccentricity to p6–9 3 1024, independent of Q93/Q9J.
of Q91/Q9J. This is admittedly not a physically realistic Although this is almost an order of magnitude higher than
model; however, physically realistic models for the Q and that typically achieved during g1/g2 P 1/2, it is still a factor
k2 of Io as well as the Q of Jupiter remain highly uncon- of p2 lower than that observed.
strained at present. Given this, building a specific physical We consider here the size of an asteroidal or cometary
model for the evolution of these parameters and folding impactor required to excite Ganymede’s eccentricity to
it in with the orbital dynamics model are poorly justified. 0.0015, and compare this estimate with the impactor masses
The numerical experiments here do serve our limited pur- obtained from Ganymede’s largest craters.
pose of investigating the response of the three-body La- Let the comet strike Ganymede at an angle u tangent
place-like resonances to changes in Q91/Q9J. to Ganymede’s orbit, where u is measured in an inertial

reference frame centered on Jupiter. Let u p 0 imply an
overtaking collision and u p f imply a head-on collision.2.6. Other Results
We assume the comet strikes through Ganymede’s center

We report in this section the results of a few runs in of mass, so no change in rotation occurs. We further assume
which the system entered other resonances. One entered an inelastic collision in which Ganymede retains the com-
g1/g2 P 13/6, and another entered what was perhaps g1/ etary mass. If the eccentricity is initially zero, then the
g2 p 7/3 or 11/5. Two runs spent a few percent of the eccentricity after impact is (to second order in m/M, which
integration time in g1/g2 P 4/3 before disruption into is taken to be a small quantity)
another resonance (g1/g2 P 2 in one case and g1/g2 p 7/3
in another). None of these resonances pumps Ganymede’s
eccentricity, and the combined probabilities for these paths e2 5 Sm

MD2 F4 1
v2

c

v2
i

(1 1 3 cos2u) 2 8
vc

vi
cos uG,

appear low.
These resonances are dynamically similar to the g1/g2

P 3/2 and 2 resonances: capture occurred only from below, where m and vc are the cometary mass and speed, and M
and vi are Ganymede’s mass and speed, respectively. Bothand, with the exception of g1/g2 P 4/3, disruption never
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speeds are measured relative to Jupiter. For vc 5 vi and the maximum possible for the g1/g2 P 1/2 Laplace-like
resonance identified by Malhotra (1991). Capture proba-u 5 0, the comet should ‘‘soft land’’ on Ganymede without

perturbing the eccentricity. As required, the equation gives bilities for these two resonances are p0.9 if they are en-
countered from below (i.e., with g1/g2 increasing withe 5 0 for this situation.

A comet capable of pumping Ganymede’s eccentricity time); the capture probability is negligible otherwise. We
have found that resonance capture can occur with initialto 0.0015 must thus be of mass p1020 kg. Is this plausible?

The largest fresh crater on Ganymede is Gilgamesh, which conditions in a substantial fraction of the g1–g2 plane (i.e.,
for a large range of initial a1/a2 and a2/a3 values) providedhas a probable excavation diameter of 550 km (Shoemaker

et al. 1982). We calculate the transient crater diameter Q91/Q9J # 6 3 1024. This upper limit is slightly smaller than
that needed to maintain Io’s current eccentricity in steadyusing the relation from McKinnon and Schenk (1995), and

then estimate the impactor mass from the scaling law in state, Q91/Q9J P 1.1 3 1023 (cf. Yoder and Peale 1981). For
the latter value, the properties of the evolution of g1 andChapman and McKinnon (1986, p. 502),
g2 conspire with capture statistics for the Laplace reso-
nance to prevent the system from ever encountering these
new resonances from below. This explains why they werem 5

4f
3

r F 3V
4fAG3/(32a) S3.22g

u2 D3a/(32a)

,
not seen by Malhotra (1991), who restricted her study to
Q91/Q9J P 1.1 3 1023. We note that the smaller values of

where V is the transient crater volume, r is the impactor Q91/Q9J (which allow capture in the g1/g2 P 3/2 and g1/g2
density (assumed equal to the target density), u is impact P 2 resonances) are reasonable, and could in fact be close
speed, g is surface gravity, and A and a are dimensionless to the modern value because that required for equilibrium
parameters. Using nominal values u 5 15 km sec21, g 5 at present may be too large to maintain Io’s current heat
1.5 m sec22, plus A 5 0.19 and a 5 0.65 appropriate to flow (Veeder et al. 1994).
a solid ice target, we find that a 1017-kg bolide created These new resonances differ from g1/g2 P 1/2 in one
Gilgamesh. Choosing smaller values for A and a allows a important respect: they achieve stable equilibria and,
larger impactor for a given crater size. Using A 5 0.1 and therefore, are never disrupted if the Q/k are constant in
a 5 0.5, which are plausible lower bounds, implies an time; however, we find that increasing Q91/Q9J by a factor
impactor of mass p1018 kg, still far too small. Other large of p3 or decreasing Q92/Q9J by a factor of p100 disrupts
impact features on Ganymede, such as palimpsests, are so the resonances, allowing capture into the Laplace reso-
old that any eccentricity they produce would be damped nance with high probability. We have verified many of
by the present time. Thus, we conclude that Ganymede’s the results of our numerical simulations by a perturbation
eccentricity cannot have been produced by an impact. analysis of the low-order resonant interactions.

Although the g1/g2 P 3/2 and 2 resonances excite Ga- Just as in the previous study of Malhotra (1991), the
nymede’s free eccentricity to only half the current value net orbital expansion of the Galilean satellites required in
in our runs, paths may exist that allow larger free eccentrici- these evolutionary paths is easily accommodated with a
ties. Exploratory runs suggest that these resonances are tidal dissipation function for Jupiter, QJ, of a few 3105.
slightly more stable to gradual billion-year changes in In two companion papers we discuss the implications
Q91/Q9J than to abrupt changes (although disruption can of resonance passage for Ganymede’s thermal history. In
still occur). Slow change to Q91/Q9J 5 1023 leads to efree 5 Showman et al. (1996) we couple the orbital model to an
1.0 3 1023 in cases when disruption does not occur, and internal model for Ganymede. In certain circumstances,
larger efree may be possible if Q91/Q9J rises even higher nonlinear ‘‘thermal runaways’’ can occur within Ga-
before disruption. nymede, causing internal warming and melting of the ice

mantle. In Showman and Stevenson (1996), we propose
models of local, near-surface thermal runaways, and evalu-4. SUMMARY
ate the efficacy of several resurfacing mechanisms. Because
the greater dissipation increases the likelihood of resurfac-We have used the model of Malhotra (1991) to explore

the orbital dynamics and tidal evolution of Io, Europa, ing, we favor g1/g2 P 3/2 or 2 over g1/g2 P 1/2 for the
orbital history of the Galilean satellites before evolutionand Ganymede near the Laplace resonance. Our principal

results are those relevant to Ganymede’s thermal history. into the Laplace resonance.
Since the current resonances do not explain Ganymede’sWe have shown that if the satellites passed through a La-

place-like resonance characterized by either g1/g2 P 3/2 free eccentricity, efree is a remnant of Ganymede’s prior
history. We have shown that the mass of a cometary oror g1/g2 P 2, Ganymede’s eccentricity could have risen as

high as p0.07. These resonances produce a tidal dissipation asteroidal impactor required to pump efree to its current
value is p102–103 times larger than that which producedrate several hundred times times higher than at the present

epoch (for reasonable QJ), and p2–30 times higher than Gilgamesh, the only candidate crater for such an impact.
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We surmise that the current free eccentricity is thus rem- tricity. [We also take account of three other sources of
secular terms: in the Io–Ganymede interaction, the secularnant from an ancient resonance passage. The g1/g2 P 3/

2 and 2 resonances can pump efree up to two-thirds its perturbations of Callisto on Io, Europa and Ganymede,
and the effects of the oblateness of Jupiter. Details onmodern value. Our models employ constant or step-func-

tion Q9i /Q9J, however. More realistic time variation in these these are not essential to the analysis here; the interested
reader is referred to Malhotra (1991).] The expansion ofparameters may yield larger efree.

Other observed orbital parameters of the Galilean satel- R(12) is given by
lites also hold memory of their prior evolution and may
provide further constraints. The libration amplitudes for R(12) 5 f0(e2

1 1 e2
2) 1 f1e1 cos(u1 2 Ã1)

the u11, u12, u23, and Laplace resonances (Sinclair 1975) 1 f2e2 cos(u1 2 Ã2) 1 f3e2
1 cos 2(u1 2 Ã1)

contain information about the age of the resonances, the 1 f4e2
2 cos 2(u1 2 Ã2) (A1)

g1–g2 path followed in the past, the Q9i /Q9J and their time 1 f5e1e2 cos(2u1 2 Ã1 2 Ã2)
histories, and other factors. A successful model of the or- 1 f6e1e2 cos(Ã1 2 Ã2).
bital and thermal history of these satellites should, in prin-
ciple, yield simultaneously the current values of all four The expression for R(23) is obtained by shifting the satellite
libration amplitudes; this constraint could allow some or- indices by 1 (1 R 2, 2 R 3). Here Ãi are the longitudes
bital histories to be excluded. In practice, however, the of periapse; u1 5 2l2 2 l1 and u2 5 2l3 2 l2 are the
factors affecting the amplitudes might be difficult to sepa- pairwise 2 : 1 resonant combinations of mean longitudes
rate, preventing useful constraints on any individual pa- li ; and the fi are functions of Laplace coefficients,
rameter from being developed. Furthermore, passage b( j)

s (a) (a 5 a1/a2 , 1 is the ratio of the semimajor axes).
through resonance inevitably involves the crossing of a The expressions for the fi and their numerical values evalu-
chaotic region of phase space. This means that a certain ated at exact resonance, a 5 (1/2)2/3 5 0.62996, are as
degree of uncertainty in the final values of the orbital follows:
parameters is unavoidable. Finally, it is also worth keeping
in mind that for a dissipative system, there are multiple,
nonunique, paths to an equilibrium (or quasi-equilibrium) f0 5 1

1
8 S2a

d
da

1 a2 d2

da2D b(0)
1/2(a) Q 10.39,

state; the final state of the system would retain only partial
memory of initial conditions and intermediate states.

f1 5 2
1
2 S4 1 a

d
daD b(2)

1/2(a) Q 21.19,
APPENDIX

f2 5 1
1
2 S3 1 a

d
daD b(1)

1/2(a) 2 2a Q 10.43,In this Appendix we give a perturbative analysis of the
evolution of the Galilean satellites near the current pair-
wise 2 : 1 mean motion resonances, the Laplace resonance

f3 5 1
1
8 S44 1 14a

d
da

1 a2 d2

da2D b(4)
1/2(a) Q 11.67, (A2)and the lowest-order Laplace-like resonances. We gener-

ally follow the approach of Yoder and Peale (1981), so
that the first part of the analysis is essentially similar to

f4 5 1
1
8 S38 1 14a

d
da

1 a2 d2

da2D b(2)
1/2(a) Q 13.59,theirs; we provide it here only for completeness and easy

access for the subsequent calculations. We carry the analy-
sis further to isolate the g1/g2 P 2 Laplace-like resonance

f5 5 2
1
4 S42 1 14a

d
da

1 a2 d2

da2D b(3)
1/2(a) Q 24.97,that pumps up Ganymede’s eccentricity. Other Laplace-

like resonances discussed in this paper require even higher
order analysis, and we do not pursue that here. f6 5 1

1
4 S2 2 2a

d
da

2 a2 d2

da2D b(1)
1/2(a) Q 10.58.

For the mutual perturbations of the inner three Galilean
satellites, Io, Europa, and Ganymede, we have two dis-
turbing functions, (Gm1m2/a2)R(12) and (Gm2m3/a3)R(23), The equations for the perturbations are most conve-
where G is the universal constant of gravitation, mi are niently written in terms of the Poincaré variables, (ki, hi)
the satellite masses, and ai are the orbital semimajor axes; 5 (ei cos Ãi, ei sin Ãi), and the angles, u1 and u2. Then,
the indices 1, 2, and 3 refer to Io, Europa, and Ganymede,
respectively. We use a series expansion of the pairwise

k̇1 5 2e2an1


h1
R(12),disturbing function in powers of the orbital eccentricities,

retaining only the terms that describe the secular and 2 : 1
resonant interactions between Io and Europa and between ḣ1 5 1e2an1



k1
R(12), (A3)

Europa and Ganymede, up to the second order in eccen-
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variations. We thus obtain the following first order
‘‘forced’’ variations of ki, hi :k̇2 5 2e1n2



h2
R(12) 2 e3an2



h2
R(23),

d1k1 5 e12 cos(u1 1 «1),
ḣ2 5 1e1n2



k2
R(12) 1 e3an2



k2
R(23), (A4)

d1h1 5 e12 sin(u1 1 «1), (A14)

d1k2 5 e21 cos(u1 1 «21) 1 e23 cos(u2 1 «23),k̇3 5 2e2n3


h3
R(23),

d1h2 5 e21 sin(u1 1 «21) 1 e23 sin(u2 1 «23), (A15)

ḣ3 5 1e2n3


k3
R(23), (A5) d1k3 5 e32 cos(u2 1 «3),

d1h3 5 e32 sin(u2 1 «3), (A16)
ṅ1 5 13e2an2

1


u1
R(12), (A6)

where, to lowest order, we have

ṅ2 5 26e1n2
2



u1
R(12) 1 3e3an2

2


u2
R(23), (A7) u1 5 g1t 1 u10, (A17)

u2 5 g2t 1 u20, (A18)
ṅ3 5 26e2n2

3


u2
R(23), (A8)

and

where the ni are the mean motions of the satellites, and g1 5 2n2 2 n1 (A19)
ei 5 mi/M are the satellite masses relative to the mass of

g2 5 2n3 2 n2 (A20)Jupiter. Note that the lowest-order terms for k̇i, ḣi are
O(e), whereas for ṅi, the lowest-order terms are O(ee).

are the unperturbed frequencies of u1 and u2. The forcedFollowing Yoder and Peale [1981, their equations (3)–
eccentricities are given by(6)], we include the effects of tidal dissipation according to

e12 5
n1e2af1

g1 2 g1
, (A21)Sṅi

ni
D

T
5 2ci(1 2 (7Di 2 12.75)e2

i ), (A9)

e21 5
n2e1 f2

g1 2 g2
, (A22)Sde2

i

dt DT
5 2Sdci(7Di 2 4.75)e2

i . (A10)

e23 5
n2e3af1

g2 2 g2
, (A23)

Now, the lowest-order equations for the (k, h) are as
follows:

e32 5
n3e2 f2

g2 2 g3
, (A24)

k̇1 5 2Jdc1D1k1 2 g1h1 2 n1e2af1 sin u1,

ḣ1 5 2Jdc1D1h1 1 g1k1 1 n1e2af1 cos u1, (A11) The phase lags in Eqs. (A14)–(A16) are given by

k̇2 5 2Jdc2D2k2 2 g2h2 2 n2e1 f2 sin u1 2 n2e3af1 sin u2,
«1 5

7
3

c1D1

g1 2 g1
, (A25)ḣ2 5 2Jdc2D2h2 1 g2k2 1 n2e1 f2 cos u1 1 n2e3af1 cos u2,

(A12)
«21 5

7
3

c2D2

g1 2 g2
, (A26)k̇3 5 2Jdc3D3k3 2 g3h3 2 n3e2 f2 sin u2,

ḣ3 5 2Jdc3D3h3 1 g3k3 1 n3e2 f2 cos u2, (A13)
«23 5

7
3

c2D2

g2 2 g2
, (A27)

where gi are the precession rates induced by the secular
perturbations alone; in Yoder and Peale’s (1981) notation, «3 5

7
3

c3D3

g2 2 g3
. (A28)

gi 5 Ã̇is.
We can obtain an approximate solution of these equa-

tions by assuming that u̇1 5 2n2 2 n1 and u̇2 5 2n3 2 The above approximate solution is valid in the regime
where ug1u and ug2u are not too small compared withn2 are slowly varying quantities and neglecting their time
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pn(ee)1/2, a condition that is satisfied for most of the range ṅ1 5 2A1n2
2 sin f 2 n1c1(1 2 14D1e2

12), (A37)
of evolution of the system that we have explored in this

ṅ2 5 2A2n2
2 sin f 2 10.31n1c1D1e2

12, (A38)paper.
To obtain the lowest-order perturbations on the mean ṅ3 5 2A3n2

2 sin f, (A39)
motions, we retain only the first-order eccentricity terms in
the disturbing function and substitute the forced solutions

where[Eqs. (A14)–(A16)] into the right hand side of Eqs. (A6)–
(A8). We also include the dissipative terms [Eq. (A9)].
This yields the following equations that describe the low-

A1 5 23e2e3a21f1 f2
n2

g2 2 g2
, (A40)est-order three-body interaction:

ṅ1 5 13n2
1e2a[ f1e12«1 1 f2e21«21 A2 5 13e1e3af1 f2

n2

g1 2 g2
(1 1 2r), (A41)

1 f2e23 sin(f 1 «23)] 1 (ṅ1)T, (A29)

ṅ2 5 26n2
2e1[ f1e12«1 1 f2e21«21 1 f2e23 sin(f 1 «23)]

A3 5 2
3
2

e1e2 f1 f2
n2

g1 2 g2
, (A42)

1 3n2
2e3a[ f1e23«23 1 f2e32«3

2 f1e21 sin(f 2 «21)] 1 (ṅ2)T, (A30)

andṅ3 5 26n2
3e2[ f1e23«23 1 f2e32«3

2 f1e21 sin(f 2 «21)] 1 (ṅ3)T, (A31)

r 5
g1 2 g2

g2 2 g2
. (A43)where f is the Laplace resonance angle:

f 5 u2 2 u1 5 l1 2 3l2 1 2l3. (A32)
From (A37)–(A39), the lowest order perturbation equa-

tions for g1 and g2 are as follows:The terms involving the phase lags in the above equations
can be simplified as follows:

ġ1 5 2(2A2 2 A1)n2
2 sin f 1 n1c1(1 2 34.6D1e2

12), (A44)
3e2n2

1a[ f1e12«1 1 f2e21«21]
ġ2 5 2(2A3 2 A2)n2

2 sin f 1 10.3n1c1D1e2
12, (A45)

5 7n1c1D1
n1e2af1

g1 2 g1
e12

(A33) and the dynamical equation for f is

1 7n2c2D2
e2

e1
Sn1

n2
D2

a
n2e2 f2

g1 2 g2
e21 f̈ 5 2(A1 2 3A2 1 2A3)n2

2 sin f 2 n1c1(1 2 44.6D1e2
12).

(A46)
Q 7n1c1D1e2

12 1 9.50n2c2D2e2
21,

We note that the coefficient of sin f on the right-handwhere we have set n1/n2 Q 2, a 5 0.63, and used the
side of (A46) is positive. This means that the center ofnumerical values of ei. Similar simplifications follow for
libration is near f 5 f, as is observed at the present epoch.the other terms. We then obtain

It is useful to make some numerical estimates relevant
to our simulations. For the value QJ 5 100 adopted in theṅ1 5 2n1c1[1 2 (7e2

1 1 7e2
12)D1] 1 9.50n2c2D2e2

21
numerical simulations, the magnitude of the tidal dissipa-

1 3n2
1e2af2e23 sin(f 1 «23), (A34)

tion term in Eq. (A46) is p6 3 10210 n2
2, while the ‘‘strength

of the resonance’’ represented by the coefficient of sin fṅ2 5 2n2c2[1 2 (7e2
2 1 7e2

23 2 14e2
21)D2] 2 10.31n1c1D1e2

12

has a magnitude p4 3 1026 n2
2 (where we set n2/ug1 2 g2u1 54.56n3c3D3e2

23 2 6n2
2e1 f2e23 sin(f 1 «23)

P 100, typical value that occurs when the Laplace reso-2 3n2
2e3af1e21 sin(f 2 «21), (A35)

nance is encountered). In other words, the tidal torque is
ṅ3 5 2n3c3[1 2 (7e2

3 2 14e2
32)D3] 2 1.80n2c2D2e2

23 about four orders of magnitude weaker than the strength
1 6n2

3e2 f1e21 sin(f 2 «21). (A36) of the Laplace resonance, even with the ‘‘artificially en-
hanced’’ tidal torque that is necessary to do the numerical
simulations in reasonable computer time. Therefore, weNow, following Yoder and Peale (1981), we retain only

the dissipative effects in Io, and we drop the distinction conclude that the adiabaticity of the real system near the
Laplace resonance is preserved in our simulations.between e1 and e12. Then,
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Eliminating sin f from Eqs. (A44) and (A46), we obtain of the equations for ni and for (ki, hi) [Eqs. (A3)–(A8)],
this time retaining terms of the second order in eccentricity
in the disturbing functions. By expanding the resulting

f̈ 5 2bġ1 1 (b 2 1)n1c1 F1 2
34.6b 2 44.6

b 2 1
D1e2

12G, expressions consistent to the next order in perturbation
theory, we find new terms with arguments corresponding(A47)
to the g1/g2 5 j/( j 1 1) and g1/g2 5 ( j 1 1)/j Laplace-
like resonances.

where
Omitting the details of the long and tedious algebra

necessary to obtain the complete expansions, we reproduce
below only the slow components corresponding to Laplace-b 5 2

A1 2 3A2 1 2A3

2A2 2 A1 like resonances:

5
3 1 (e2/ae3) 1 6(1 1 (2ae2/3e1))r

2 1 4(1 1 (ae2/e1))r
(A48) d2ṅ1 5 13n2

1e2a[(2 f5e23 2 As f1B1)e*1 sin(2u(0)
1 2 u(0)

2 2 Ã*1 )

1 (4f4e23 2 As f2B1)e*2 sin(2u(0)
1 2 u(0)

2 2 Ã*2 )],
5 1.37

r 1 0.48
r 1 0.37

. (A53)

d2ṅ3 5 26n2
3e2[(4f3e21 1 As f1B2)e*2 sin(2u(0)

2 2 u(0)
1 2 Ã*2 )

Note that b is greater than 1 for all positive values of r
1 (2 f5e21 1 As f2B2)e*3 sin(2u(0)

2 2 u(0)
1 2 Ã*3 )],and that its numerical value varies in the small range (1.4,

(A54)1.65) for r in the range p1/5 to p5.
For the Laplace resonance, we recover Yoder and

d2ṅ2 5 22
n2

2e1

n2
1e2a

d2ṅ1 2
1
2

n2
2e3a

n2
3e2

d2ṅ3, (A55)Peale’s (1981) results by setting r 5 1; then b 5 1.48, and
we have

where u(0)
i refers to the zeroth-order solution given in Eqs.

f̈ 5 21.48ġ1 1 0.48n1c1(1 2 13.7D1e2
12). (A49) (A17) and (A18). We see that there are two Laplace-like

resonances, g1/g2 P 1/2 and g1/g2 P 2, that arise at this
Furthermore, since f librates within the Laplace reso- order in the perturbation analysis. Furthermore, there are
nance, we have kf̈l 5 0. Then Eq. (A49) indicates that the two resonant arguments for each of these. Yoder and Peale
equilibrium value of Io’s forced eccentricity in the Laplace (1981) had discussed the former resonances (i.e., the g1/
resonance is given by e12 5 (13.7D1)1/2 where ġ1 (and g2 P 1/2), but not the latter. Here we consider only one
ġ2) vanish. of the g1/g2 P 2 resonances, namely,

Away from the Laplace resonance, Eqs. (A44)–(A46)
give the following first-order periodic components in the c3 5 2u2 2 u1 2 Ã3, (A56)
perturbations of ui:

which is of interest for Ganymede. [In principle, we should
first establish the conditions under which the two g1/g2d1u1 5 B1 sin f, B1 5

(2A2 2 A1)n2
2

(g2 2 g1)2 , (A50)
P 2 Laplace-like resonances are decoupled and can be
analyzed separately. Here we note only that to the order
considered, there is no direct coupling between the c3 andd1u2 5 B2 sin f, B2 5

(2A3 2 A2)n2
2

(g2 2 g1)2 . (A51)
c2 5 2u2 2 u1 2 Ã2 resonances, i.e., we find no terms with
arguments that are linear combinations of c2 and c3, and

To obtain the slow frequency terms describing Laplace- use this as justification for analyzing the c3 resonance in
like resonances, g1/g2 P j/( j 1 1) or ( j 1 1)/j, we note that isolation.]
such terms can arise in higher-order perturbation theory From (A53)–(A55) we obtain the following perturbation
through combinations of the lower-order solutions. Ac- equations for the c3 components in g1 and g2,
cordingly, we assume a solution of the form

ġ*1 5 16n2
2e3a(2 f5e21 1 As f2B2)e*3 sin c*3

(ki, hi) 5 (k*i 1 d1ki, h*i 1 d1hi), (A52) 1 n1c1(1 2 34.6D1e2
12), (A57)

ġ*2 5 2(12n3
3e2 1 3n2

2e3a)(2 f5e21 1 As f2B2)e*3 sin c*3where d1ki, d1hi are the first-order ‘‘fast’’ perturbations
1 10.3n1c1D1e2

12, (A58)[Eqs. (A14)–(A16)], and k*i , h*i refer to the slow compo-
nents corresponding to a Laplace-like resonance. We sub-
stitute the lowest-order solutions into the right-hand sides and the pendulum-like equation for c*3 ,
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c̈*3 Q 2(24n2
3e2 1 12n2

2e3a)(2 f5e21 1 As f2B2)e*3 sin c*3 e*32 Q 1.26 3 1029 S n2

2g2 2 g1
DS n2

g1 2 g2
D

(A64)
2 n1c1(1 2 55.2D1e2

12),
(A59) F1 2 1.67 3 1024 Sn2

g1
D2G.

where we have neglected Ã̈*3. Equation (A59) shows that
center of libration of c*3 is near 0. Comparison of Eq.
(A59) with Eq. (A46) shows that the c3 resonance is We note that as ug1u decreases, the first two factors contrib-
weaker than the Laplace resonance by a factor of pe*3. ute to increasing Ganymede’s forced eccentricity, while
This means that for the value QJ 5 100 adopted in our the factor in square braces diminishes it. Thus the general
numerical simulations, the tidal dissipation term in Eq. behavior is that e*32 at first increases, reaches a maximum,
(A59) is about two orders of magnitude weaker than the then decreases and vanishes (and the c3 resonance is dis-
strength of the c*3 resonance [see discussion following Eq. rupted) as ug1u decreases. [Numerical experiments revealed
(A46)]. Therefore, we conclude that the adiabaticity of similar behavior of the forced eccentricity of Ganymede
the evolution of the real system near this resonance is as well as Europa in other Laplace-like resonances; see
preserved in our simulations. Malhotra (1991).] The factor in square braces vanishes

Eliminating e*3 sin c*3 from (A57) and (A59), we have when g1/n2 Q 0.013. The forced eccentricity of Io corre-
sponding to this value is P0.003; however, long before g1

and e12 reach these values, we expect the above solutionc̈*3 5 22.51ġ1 1 1.51n1c1(1 2 21.0D1e2
12). (A60)

to break down.
The approximate ‘‘forced’’ solution for k*3 , h*3 given in

When the satellites are locked in this resonance, we have Eqs. (A62) and (A63) is valid provided 2g2 2 g1 varies
kc̈*3 l5 0. Equation (A60) then indicates that within the c3 slowly and its magnitude is not too small compared with
resonance Io’s forced eccentricity e12 reaches an equilib- nuee21e3u1/2, the quantity that describes the approximate
rium value at e12 5 (21D1)21/2, where ġ1 vanishes; however, strength of the c3 resonance [see Eq. (A59)]. (More pre-
this is not a true equilibrium of the system because Ga- cisely, use of a Hamiltonian formalism yields the critical
nymede’s forced eccentricity continues to grow. value, e*3,crit, for the c3 resonance which provides an equiva-

The forced eccentricity of Ganymede within the c3 reso- lent estimate of the regime of validity of the approximate
nance is obtained by considering the equations for k*3 , forced solution. We find e3,crit P 1023.) Thus, we conclude
h*3 , including terms up to the second order in eccentricity that the above solution breaks down by the time Ga-
in the disturbing function, using the first-order solutions nymede’s eccentricity is excited to values p1023 after the
[(A14)–(A16), (A50), (A51)] to obtain the (2u2 2 u1) satellites are captured in the c3 resonance. We also con-
component in the perturbation equations. We find clude that capture into the c3 resonance has high probabil-

ity if Ganymede’s initial eccentricity is smaller than 1023.
We do not pursue this analysis further, for the degree ofk̇*3 5 2e2n3( f5e21 1 As f2B2) sin(2u(0)

2 2 u(0)
1 ),

(A61) difficulty increases greatly at this stage. Many uncontrolled
approximations are necessary to push the analysis further,ḣ*3 5 1e2n3( f5e21 1 As f2B2) cos(2u(0)

2 2 u(0)
1 ),

and it has proven difficult to control the proliferation of
terms that occurs in a higher-order analysis. The abovewhich yield the following approximate solution,
analysis does show that (1) low-order Laplace-like reso-
nances exist that can excite Ganymede’s eccentricity, and
(2) the g1/g2 P 2 resonance is sufficiently strong for reso-k*3 5 e*32 cos(2u(0)

2 2 u(0)
1 ), h*3 5 e*32 sin(2u(0)

2 2 u(0)
1 ),

nance capture to occur and for the c3 libration to be main-(A62)
tained. The analysis increases our confidence in the validity
of the numerical results.where
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