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1 Introduction

There are several known conditions for an infinite convergent series of posi-
tive rational numbers to have an irrational (or transcendental) sum. There
are also other results about the irrationality or transcendence of particular
constants expressed as series of positive rationals. In general, it seems to be
hopeless to obtain general irrationality criteria which are sufficiently strong
to imply the irrationality of many particular constants.

R. Apéry’s wonderful proof [2] of the irrationality of ζ(3) belongs to the
second class. The aim of this paper is to survey some of the general criteria
of irrationality and to discuss some irrationality and trancendency results,
mainly about series of reciprocals of binary recursive sequences. The only
place when we will cite again Apéry’s name will be in the next section, when
we will mention a result due to André-Jeannin [3]. He used Apéry’s method
in order to prove the irrationality of the series of reciprocals of Fibonacci
numbers. Speaking about Apéry’s method, it would be fair to see his proof
as belonging to the midle class of particular irrationality assertions yield-
ing some new ideas for irrationality proofs, although we cannot speak yet of
Apéry’s criterion of irrationality. We refer to [8] and [18] for several devel-
opments of Apéry’s method.

The irrationality and the trancendence of series of reciprocals of binary
recursive sequences is discussed in the third section, while the particular case
of Fibonacci and Lucas numbers is considered in the next one. In the last
section we deal with some general irrationality criteria related to a conjecture
of P. Erdős.

We will make two conventions. The first one is that all series which
appear are supposed to be convergent. The second one is the following. Let
(an), n ≥ 0, be a sequence of complex numbers and (sh), h ≥ 0, be a strictly
increasing sequence of integers. When writing

∞∑
h=0

1

ash
,

we will understand that the sum is in fact taken over those h with sh ≥ 0
and csh 6= 0.
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2 Sums of reciprocals of Fibonacci and Lucas

numbers.

Let (Fn), n ≥ 0, be the Fibonacci sequence, defined by

F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1 (n ≥ 1).

We define the Lucas sequence by

Ln = Fn−1 + Fn+1.

Using R. Apéry’s method, André-Jeannin [3] proved in 1989 that the series
of reciprocals of Fibonacci numbers is an irrational number :

θ0 =
∞∑
n=0

1

Fn
/∈ Q.

In fact, in [3] there is a more general result implying also the irrationality
of reciprocals of more general recursive sequences (cf. the next section).
Recently, Bundschuch and Väänänen [14] obtained an irrationality measure
for

∑∞
n=0

1
Fn

. Namely, one has :

∞∑
n=0

1

Fn
= −5 +

√
5

2
Lq(

1 +
√

5

2
)

where q = −(3 +
√

5)/2 ∈ Q(
√

5) and

zLq(−z) =
∞∑
n=1

zn

qn − 1
=
∞∑
n=1

z

qn − z

and, using this, they obtained 6/(1 − (3/π2)) ≈ 8.62 . . . as a measure of
irrationality for θ0. We refer to [14] for the details. We still don’t know if θ0

is a transcendental number.
Surprising facts are known if the sum is taken not over the whole sequence.

For instance, we have

θ1 =
∞∑
n=0

1

F2n
=

7−
√

5

2
∈ Q(

√
5)

(cf. Good [28] , Hoggatt and Bicknell [34], [35], and Cuculière [19]). Therefore
θ1 is algebraic. The trancendence of
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θ2 =
∞∑
n=0

1

n!F2n

was proved independently by Mignotte [44] and Mahler [42].
P. Erdős and R.L. Graham [23, pp. 64-65] have raised, among many

problems, the following ones :
A. What is the character of

θ3 =
∞∑
n=1

1

F2n+1

and θ4 =
∞∑
n=1

1

L2n
?

B. Is it true that if (n(k)), k ≥ 1, is a sequence of positive integers such
that there exists a constant c > 1 with n(k + 1)/n(k) ≥ c for every k, then
the sum of the sum of the series

∑∞
k=1

1
Fn(k)

is irrational ?

The author [5] proved that θ3 and θ4 are irrational, while Bundschuh and
Pethö [13] showed that θ3 is transcendental. André-Jeannin [4] proved that
θ4 /∈ Q(

√
5). Recently, Becker and Töpfer [11] proved a general theorem (see

later) implying that θ3 and θ4 are transcendental.
For the second part of the Erdős-Graham’s problem, we know [6] the

affirmative answer for c ≥ 2. We will return to this problem in the next
section.

3 Sums of reciprocals of binary recursive se-

quences

Let P andQ be two coprime integers. Let α and β be the roots of the equation
x2 − Px + Q = 0. Consider the binary recursive sequences Un = Un(P,Q)
and Vn = Vn(P,Q) defined, respectively, by

Un =
αn − βn

α− β
and Vn = αn + βn , n ≥ 0.

Then Un+2 = PUn+1 − QUn, n ≥ 0, and the same recurrence relation holds
for Vn.

The following formula was obtained in 1878 by Lucas [41, p. 225] :

∞∑
n=1

Q2n−1r

U2nr

=
βr

Ur
, r ≥ 1.
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This implies that

Θ0 =
∞∑
n=1

1

U2nr

/∈ Q

whenever Q = ±1 and ∆ = P 2 − 4Q > 0. Indeed, Ur and Vr are integers,
α − β is irrational and βr = (Vr − Ur(α − β))/2 is irrational. Many special
cases of this result were re-discovered in the seventies. As we will see a little
bit later, Becker and Töpfer [11] showed that algebraic numbers of this kind
belong to a explicitely given exceptional set.

In the above section, we mentioned that the second Erdős-Graham’s prob-
lem for Fibonacci numbers has a positive solution for c ≥ 2. In fact [6],

Θ1 =
∞∑
n=1

1

Un(k)

/∈ Q

whenever n(k+1) ≥ 2n(k)−1 for all sufficiently large k for P > 0 and Q < 0.
Wayne McDaniel [43] assumed that ∆ > 0 and proved that Θ1 is irrational if
n(k+ 1) ≥ 2n(k) for large k, for all sequences Un with P > 0, (P,Q) = 1 and
P 2− 4Q > 0. He also proved that if n(k+ 1) ≥ 2n(k)− 1 for all large k and
n(k) is even, then the result holds for all such positive parameters P and Q.
Similar results hold for the sequences Vn. André-Jeannin [4] has shown that,
if P > 0 and Q = ±1, then

Θ2 =
∞∑
n=1

1

Un
/∈ Q.

The following result was proved recently by Becker and Töpfer [10]: we
have

Θ3 =
∞∑
n=0

εn

V2n
/∈ Q

whenever ε = ±1, the roots α and β are distinct, not necessarily real, |α| ≥
|β|, and α/β is not a root of unity. In fact, if ∆ > 0, not a perfect square,
Θ3 is even a trancendental number [11]. In the same paper, the authors
were able to carry out a complete study of similar trancendency problems for
binary recursive sequences with irreducible companion polynomial of positive
discriminant. The proofs are based upon Mahler’s method for transcendency.
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Theorem 1 (Becker and Töpfer [11]) Let (Rn), n ≥ 0, be a sequence of
integers which is not eventually periodic and satisfies the recurrence relation

Rn+2 = PRn+1 −QRn (n ≥ 0) ,

with integers P and Q satisfying P 6= 0 , ∆ = P 2− 4Q > 0. Suppose that ∆
is not a perfect square.

Let (bh), h ≥ 0 , be a periodic sequence of algebraic numbers which is not
indentically zero and let d, k, and l be integers with d ≥ 2 and k ≥ 1.

Then

Θ4 =
∞∑
h=0

bh
Rdhk+l

is algebraic if and only if (bh) is a constant sequence, d = 2, |Q| = 1, and
Rl = 0. Moreover, if Θ4 is algebraic, then Θ4b

−1
0 ∈ Q(

√
∆) \Q.

For other results of this type, we refer the interested reader to [38], [40],
[45], [13], [31], [10], [11].

4 The Sylvester sequence and a problem of

Erdős

In proposition 20 of Book IX of his Elements, Euclid gave a proof like the
following that there are infinitely many primes. Suppose that p1, . . . , pn are
all the primes we know about. Let

Pn =
n∏
i=1

pi .

Then 1 + Pn is not divisible by any of the primes p1, . . . , pn, so the prime
factors of 1 + Pn are new to us. Hence, the number of primes is unbounded.
If we “discover” just the smallest prime factor of 1 +Pn and if we begin with
2, then we are lead in a natural way to the sequence

2, 3, 7, 43, 13, etc.

Shanks [53] has conjectured that this sequence contains all primes and he
gave a heuristic argument which makes this conjecture plausible. For this
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and other similar Euclid sequences we also refer to Guy and Nowakowski [30]
and Wagstaff [58].

If one feels that all prime factors of 1 plus the product of those found so
far are “discoverd”, then one is lead to the sequence

S1 = 2, Sn+1 = 1 + S1 · · ·Sn.

The terms of this sequence can be computed without any factoring since

Sn+1 = S2
n − Sn + 1 = Sn(Sn − 1) + 1 .

We refer to Guy and Nowakowski [30] and Odoni [46] (and the references
cited therein) for the study of the primes of this sequence.

It seems that this sequence (#331 in [54]) was first mentioned by J.J.
Sylvester in 1880 [55], although some authors attribute it to E. Lucas. We
will call it the Sylvester sequence. It may be worthwile to mention that
the Sylvester sequence appears in many different contexts : see the list of
references for several of the many papers mentioning the Sylvester sequence.

For irrationality assertions, the following greedy property of the Sylvester
sequence may be important : for each N , the first N terms of the Sylvester
sequence are known [37], [20], [36] to give the smallest positive value of

1−
N∑
i=1

1

ai

among all choices of positive integers a1, . . . , aN . In particular, the sum

∞∑
i=1

1

Sn
= 1

is rational. The following open problem due to Erdős conjectures that this
is essentially the only possibility among sequences satisfying an+1/a

2
n ∼ 1.

Conjecture 2 (Erdős [23]) Let (an), n ≥ 1, be a sequence of positive inte-
gers such that

lim
n→∞

an+1

a2
n

= 1.

Then,
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∞∑
n=1

1

an
∈ Q

implies an+1 = a2
n − an + 1 for all large n.

The following are some partial results towards this conjecture.

Theorem 3 (Erdős and Straus [24]) Let (an), n ≥ 1, be an increasing
sequence of positive integers such that

1. lim supn→∞ a
2
n/an+1 ≤ 1 ;

2. the sequence [a1, . . . , an]/an+1 is bounded.

Then the same conclusion as in Conjecture 4.1 holds.

In the above theorem, [a1, . . . , an] denotes the least common multiple of
a1, . . . , an.

The following result is a consequence of a more general result [6].

Theorem 4 ([6]) Let (an), n ≥ 1, be a sequence of positive integers such
that

an+1 ≥ a2
n − an + 1.

Then the same conclusion as in Conjecture 4.1 holds.

A generalization of this result to irrationality of series of rationals can be
found in [6], while a generalization of Erdős-Straus’s result to more general
series was obtained by Oppenheim [48]. A similar result holds for infinite
products [47].

The following variation of Theorem 4.2 can be proved.

Theorem 5 ([7]) Let (an), n ≥ 1, be an increasing sequence of positive in-
tegers such that

1. a2
n/an+1 ≥ 1 ;

2.
∑∞
n=1

(
a2
n

an+1
− 1

)
<∞.

Then the same conclusion as in Conjecture 4.1 holds.
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If one admits also alternating series, then we should mention that

C0 =
∞∑
n=1

(−1)n+1

Sn

is transcendental. Therefore, Cahen’s [15] constant

C =
∞∑
n=1

(−1)n+1

Sn − 1

is also a transcendental number since 2C = C0 + 1. These results were first
proved by Davison and Shallit [21], [52], who also obtained their continued
fractions development. Note that C was also mentioned by Remez [49] and
that the transcendency of Cahen’s constant was also proved, as a corollary
of a more general result, by Becker [9]. A trancendency measure for C was
recently obtained by Töpfer [57].

Acknowledgments. The author would like to thank the organizers of
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to thank R. André-Jeannin, P.-G. Becker, F. Beukers, P. Bundschuh and
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[41] E. Lucas : Théorie des fonctions numériques simplement périodiques,
Amer. J. Math. 1(1878), 184-240.

[42] K. Mahler : On the transcendency of the solutions of a special class of
functional equations, Bull. Austral. Math. Soc. 13(1975), 389-410.

[43] W.L. McDaniel : The irrationality of certain series whose terms are
reciprocals of Lucas sequence terms, Fibonacci Quart. 32(1994), 346-
351.
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