
On Kolmogorov Machines And Related Issues�

Yuri Gurevich

Electrical Engineering and Computer Science Department

The University of Michigan, Ann Arbor

MI 48109-2122, USA

I felt honored and uncertain when Grzegorsz Rozenberg, the president of EATCS, proposed that
I write a continuing column on logic in computer science in this Bulletin. Writing essays wasn't
my favorite subject in high school. After some hesitation, I decided to give it a try. I'll need all
the help I can get from you: criticism, comments, queries, suggestions, etc.

Andrei Nikolayevich Kolmogorov died a few months ago. In recent years he chaired the Depart-
ment of Mathematical Logic at the Moscow State University. In a later article or articles, I hope
to discuss Kolmogorov's ideas on randomness and information complexity; here let me take up the
issue of Kolmogorov machines and their close relatives, Sch�onhage machines. I believe, we are a
bit too faithful to the Turing model.

It is often easier to explain oneself in a dialog. To this end, allow me to introduce my imaginary
student Quizani.

� Quizani: I think you should introduce yourself too. Don't assume everyone knows you.

� Author: All right. I grew up in the Soviet Union and started my career in the Ural University
as an algebraist and self-taught logician. In 1973, I emigrated to Israel where I did logic and
taught at Ben-Gurion University. In 1982, I moved to Michigan and to computer science.

� Q: Now, why should I care about Kolmogorov machines? I am sure that neither IBM nor
Apple produces them. What is wrong with good old Turing machines?

� A: I believe that the Kolmogorov model gives a better measure for time complexity. In
particular, it is more appropriate for lower time complexities like real time or linear time. Of
course, the two models give the same classes of computable functions and polynomial-time
computable functions, but they are expected to de�ne di�erent versions of many other time
complexities, like n2 or 2n.

� Q: How do you know that the Kolmogorov model gives a better measure of time complexity?

� A: Well, that is what this article is all about. But I should admit at the outset the circum-
stantial character of the evidence.

� Q: So what are Kolmogorov machines?

�As in \The Logic In Computer Science Column", Bulletin of European Assoc. for Theor. Comp. Science, Number

35, June 1988, 71{82

1



� A: Kolmogorov, or Kolmogorov-Uspensky, machines [Ko1, KU, US] are similar to Turing
machines except that the tape can change its topology. I will use an unorthodox presentation
of KU machines that seems more convenient [L2]; it is somewhat inuenced by Sch�onhage's
presentations of his machines [Sh]. The tape is a �nite connected graph with a distinguished
(active) node. The graph is directed but symmetric: If there is an edge from u to v then there
is an edge from v to u. The edges are colored in such a way that the edges coming out from
any one node have di�erent colors. Thus, every path from the active node is characterized
by a string of colors. The number of colors is bounded (for each machine).

The neighborhood of the active node of some �xed (for every machine) radius is called the
active zone. (One may suppose that the radius always equals 2.) For each isomorphism type
of the active zone, the program speci�es a sequence of instructions of the following forms:

1. add a new node together with a pair of edges of some colors between the active node
and the new one,

2. remove a node and the edges incident to it,

3. add a pair of edges of some colors between two existing nodes,

4. remove the two edges between two existing nodes,

5. halt.

Executing the whole instruction sequence creates the next con�guration of the tape.

� Q: I don't understand why do you need the halt instruction. Some types of the active zone
may be assigned the empty instruction sequence. If and when the active zone is of such type,
the machine will stop.

� A: This is a legitimate approach, but apparently Kolmogorov considered the initial tape as
the input and the �nal tape as the output [L2]. In your approach, the output cannot serve
as an input for the same machine. Let us �x a set C of colors and consider the data type D
comprising connected, directed, symmetric C-colored graphs with a distinguished node such
that the edges coming out from any one node have di�erent colors. If you want that every
computable function f from D to D is computable by an appropriate KU machine M, then
your approach cannot be used and the halt instruction is handy. The desired M may be
allowed to use additional colors; it su�ces to use the additional colors only for edges from
the active node.

� Q: What did Kolmogorov and Uspensky prove about their machines?

� A: Kolmogorov and Uspensky write that they just wanted to comprehend the notions of
computable functions and algorithms, and to convince themselves that there is no way to
extend the notion of computable function. They consider �rst a more general tape that is a
�nite �rst-order structure of a �xed �nite signature. The only restriction is that the number
of relation instances involving any particular element is bounded. The more general machines
can be easily simulated (real-time simulated in the sense of [Sh]) by the canonical machine
described above.

It seems that the thesis of Kolmogorov and Uspensky is that every computation, performing
only one restricted local action at a time, can be viewed as (not only being simulated by, but

2



actually being) the computation of an appropriate KU machine (in the more general form).
In a sense, this is stronger than Turing's thesis. The only theorem proved in [KU] is that
every partial recursive function is KU computable.

� Q: Is there any evidence that the KU model is indeed more powerful than the Turing model?

� A: Grigoryev [Gr] exhibited a function real-time computable by some KU machine but not
real-time computable by any Turing machine.

� Q: What does real-time computable mean?

� A: The following description is appropriate in the case of Turing or KU machines: A real-
time algorithm inputs a symbol, then outputs a symbol within a �xed number c of steps, then
inputs a symbol, then outputs a symbol within c steps, and so on. In the case of more powerful
machines, one may want to speak about more complicated data items (than just symbols) as
one-step inputs or outputs [PS]. In applications, the situation is much more di�cult. There
is no consensus among experts on real-time systems what real-time computability is.

� Q: How does Grigoryev exploit changing topology?

� A: The idea is simple. Prompted by input, the desired real-time KU machine builds a
regular binary tree of some depth d, whose edges are labeled with 0's and 1's, and returns
to the root of the tree. Then, reading a binary string of length d, the machine traverses the
corresponding branch of the tree and outputs the labels. No Turing machine can carry out
that task because the number of cells its heads can visit in at most n steps, from a given
con�guration, is bounded by a polynomial of n.

(Grigoryev mentions that general devices with polynomial-access memory were introduced in
[CA], and that his impossibility proof is similar to the proof of the main result in [PFM].)

� Q: Is KU linear time more powerful than Turing linear time?

� A: This is an open problem. In general, the notion of linear-time computability is very de-
pendent on the computational model. A closely related class NL of functions KU computable
in nearly-linear time n � lognO(1) is very robust [GS]. Instead of the KU model, one can use
the Sch�onhage model, numerous RAM models, and so on and so forth. It is conjectured in
[GS] that not all NL functions are Turing computable in nearly linear time (the latter class
was studied by Schnorr [Sr]).

� Q: Is Grigoryev's result the only hard evidence that the KU model is more powerful than the
Turing model?

� A: I don't know any additional hard evidence and would appreciate any information from
the readers on the issue.

� Q: What are additional advantages of KU machines vs. Turing machines?

� A: There is a number of theorems that have a nice, and sort of complete, form in the KU
model. It is not known and probably not true that these theorems, in their exact formulations,
survive in the Turing model. The following theorem of Leonid Levin, a former student of
Kolmogorov who teaches now at Boston University, is a good illustration.

3



De�nition 1 Let F (w) = x be a computable function from binary strings to binary strings.
Say that an algorithm A conclusively inverts F if, given any x in the range of F , A computes
an F -witness w for x and then runs F to check that F (w) = x. A diverges on inputs outside
the range of F .

Theorem 1 (L1, L2) For every computable function F (w) = x from binary strings to bi-
nary strings, there exists a KU algorithm A such that A conclusively inverts F and (Time of
A on x) = O(Time of B on x) for every KU algorithm B that conclusively inverts F.

For example, F may extract the theorem from a proof in a �xed formal system, or F may be
a function which, given a propositional formula x and a satisfying assignment for x, produces
x.

� Q: This is very interesting. It follows that if SAT is polynomial-time decidable then Levin's
algorithm for SAT is polynomial-time as well. The corollary has nothing to do with the KU
model and should remain true for the Turing model as well.

� A: That is correct. One can prove that in the Turing model there exist inverting algorithms
that are optimal in a weaker sense.

� Q: I would like to see the proof of Levin's theorem.

� A: Levin never published the proof, but he kindly explained it to me (in his usual telegraphic
style): Identify machines with binary strings representing their programs. If p is a machine,
let T (p; x) be the time that the universal machine U needs for simulating p on input x. By
analogy with what is known as Kolmogorov or information complexity (introduced explicitly
or implicitly by Kolmogorov [Ko2], Solomono� [So] and somewhat later Chaitin [Ch]), de�ne
the Levin complexity (this is my term) of a string w relative to x (and F ):

L(w=x) = minfjpj + log(T (p; x)) : Given x; p computes w and then runs F on w and �nds
out whether F (w) = xg

Here the logarithm is of base 2. Notice that every L(w=x) is �nite. Given x, the desired A
tries all strings w in the order of L(w=x) until it conclusively inverts F .

Lemma 1 All strings of Levin complexity � k can be generated and tested in 2k steps.

(It is not clear and probably not true that the lemma remains true in the Turing model, though
the KU model is not the only suitable model; another suitable model is that of Sch�onhage
[Sh].)

Hence F can be conclusively inverted in time 2m(x) where m(x) = minfL(w=x) : w is an F �
witness forxg.

Suppose that some machine B conclusively inverts F in time t(x). There exists a constant
b, depending on B, such that T (B; x) � b � t(x). Then m(x) � jBj + log(b � t(n)) and
2m(x) � (2jBj) � b � t(x)

� Q: And how di�cult is the lemma?

4



� A: The lemma is not very di�cult. It is supposed that the universal machine U reads the
given program p bit by bit. Consider the run of U on p and x until U halts or requires an
extra bit of program or makes 2(k�jpj) steps, whichever comes �rst. If U reads all of p and
does not require an extra bit, say that p is a good program for x and k.

The algorithm A generates and tries all good programs p in the lexicographical order. It
starts by running U on program 000... . When U halts or runs out of time, A knows the
�rst good program. Let p be the good program generated and tested most recently. If p
contains only 1's, the process is �nished. Otherwise p can be presented in the form q0r where
r contains no 0's. In this case, A resets U and runs it on program q1000::: until U halts or
runs out of time. This way A generates and tests the good program that is the successor of
p in the lexicographical order.

For each good p, A runs U on p and x for at most 2(k�jpj) steps. Notice that 2(k�jpj) is
the number of k-bit continuations of p. Since no two good programs have common k-bit
continuations, the total simulation time is bounded by 2k:

� Q: I wonder why do you think that Levin's theorem, in its exact form, is not true in the
Turing model. We know that KU machines work better with trees. Are there additional
advantages of KU machines used in the proof?

� A: Yes. A universal Turing machine has a certain number j of tapes, and the question arises of
simulating machines with greater number of tapes. Even if it simulates only j-tape machines,
there is a problem of counting steps without loosing time.

� Q: Allow me a naive question. Do you see any practical use for KU machines? Recon�guring
hardware has got to be ridiculously ine�cient. Also, in order to build a tree (as required in
Grigoryev's proof) in our 3-dimensional space, a KU machine must use very long edges and
to arrange the cells in some manner available also to a TM with a 3-dimensional tape.

� A: Of course, KU machines are theoretical machines. But maybe it is possible to build them
after all. Doesn't the human brain resemble somewhat a parallel KU machine?

� Q: I don't know. Let me raise another subject. You have mentioned Sch�onhage machines.
Tell me about them.

� A: The Sch�onhage model [Sh] can be quickly described as the generalization of the KU model
where the tape graph is not required to be symmetric (though Sch�onhage's description is very
di�erent). Thus, the fan-in is not necessarily bounded, though the fan-out is still bounded
by the number of colors.

� Q: But too many edges cannot enter the same physical location.

� A: Think about edges as pointers. Similar machines were considered by Knuth [Kn, p. 462-
463].

� Q: But then the amount of information at one node may be unbounded. The addresses of
pointers from a node v should be somehow stored at v. As the number of nodes grows, the
addresses cannot be bounded.

5



� A: That is correct.

� Q: Did Sch�onhage introduce his machines as an improvement of KU machines?

� A: No. I believe that the three models - those of Kolmogorov, Knuth and Sch�onhage - were
conceived independently. In contrast with the "competitors", Sch�onhage provided convenient
syntax and proved some theorems about his machines. He proved, for example, that his
machines can simulate Turing machines with in�nite multi-dimensional tapes in real time.

� Q: I don't understand. Sch�onhage's machines generalize KU machines which generalize Turing
machines. What is there to prove?

� A: Suppose that the simulated Turing machine has a two-dimensional tape that is in�nite
from the very beginning.

� Q: I thought that a Turing machine is supposed to be only potentially in�nite, not actually
in�nite.

� A: All right. Then imagine a Turing machine with a two-dimensional tape which is always
a square. If the machine needs to create another cell, it extends the current square to a
larger square in one step. The simulating Sch�onhage machine should ensure that the eastern
neighbor of node (i; j + 1) is also the northern neighbor of node (i + 1; j). It is not clear at
all how to achieve that in the course of a real-time sim-ulation.

� Q: Please, de�ne real-time simulations.

� A: Sorry, allow me to sidestep that issue; this article is getting too long. Let me only say
that if the simulated machine computes in real time, then the simulating machine computes
in real time too.

� Q: Why did Sch�onhage introduce his machines?

� A: Pointing out that "so far no uni�ed and generally accepted measure for the time complex-
ity of algorithmic problems has been established", Sch�onhage writes that his model "possesses
extreme exibility and should therefore serve as a basis for an adequate notion of time com-
plexity".

� Q: Do you agree with his suggestion?

� A: Pragmatically speaking, the Sch�onhage model provides a good measure of time complexity
at the current state of art (though I would prefer something along the lines of the random
access computers of Angluin and Valiant [AV]). On the theoretical side, all good things said
above about the KU model apply also to the Sch�onhage model. Still, I don't think that
Sch�onhage's suggestion has su�cient theoretical justi�cations. What exactly does extreme
exibility mean? One possible formalization of his thesis is that every sequential computing
device can be simulated in real time by an appropriate Sch�onhage machine [Gu]. But then
the problem what is a computing device arises. You said, for example, that Turing machines
with actually in�nite tapes are not legitimate computing devices. I would be very interested
to hear arguments for and against this or another formalization of Sch�onhage's thesis.

6



� Q: Are Sch�onhage machines more powerful than KU machines with respect to real time?

� A: That is a hard question; some progress is reported in [St]. Sch�onhage machines seem
more powerful with respect to real time and linear time. They can multiply integers in linear
time [Sh]; KU machines probably cannot do that. It is known that Turing machines cannot
multiply integers in real time [CA, PFM].

� Q: Which of the two models, I mean the KU model and the Sch�onhage model, is philosophi-
cally, if you will, preferable.

� A: That is a hard question too.

� Q: Finally, do you call all this logic?

� A:Well, the theory of algorithms was traditionally a part of logic. Also, these are foundational
questions, and I �nd it di�cult to distinguish clearly between foundational and logical issues.

� Q: Some logicians sound imperialistic.

� A: I know, and I wonder what the readers have to say.

Thankful Acknowledgements

Andreas Blass, Kevin Compton, Naomi Gurevich, Leonid Levin, Arch Naylor, Georg Schnitger and
Joel Seiferas commented on a draft of this article.

References

[AV] Angluin D. and Valiant L. G., "Fast Probabilistic Algorithms for Hamiltonian Circuits and
Matchings", Journal of Computer and System Sciences 18 (1979) 155-193.

[CA] Cook S. A. and Aanderaa S. O., "On the Minimum Computation Time of Functions",
Trans. Amer. Math. Soc. 142 (1969), 291- 314

[Ch] Chaitin G. J., "On the Length of Programs for Computing Finite Binary Sequences", Jour-
nal of ACM 13 (1966), 547-569, and "On the Length of Programs for Computing Finite
Binary Sequences: Statistical Considerations", Journal of ACM 16 (1969), 145-159

[Gr] Grigoryev D. Y., "Kolmogorov Algorithms are Stronger than Turing Machines", Investiga-
tions on Constructive Mathematics and Mathematical Logic. VIII, Notes of the Leningrad
Branch of Steklov Math. Institute 60 (1976), 29-37

[GS] Gurevich Y. and Shelah S, "Functions Computable in Nearly Linear Time", Amer. Math.
Soc. Abstracts 7:4 (1986), p. 236

[Gu ] Gurevich Y., "Algorithms in the World of Bounded Resources", In "The Universal Turing
Machine - a Half-Century Story", (ed. R. Herken), Oxford University Press, 1988.

[Kn] Knuth D. E., "The Art of Computer Programming", vol. 1, Addison -Wesley, Reading, MA,
1968.

7



[Ko1] Kolmogorov A. N., "To the De�nition of an Algorithm", Uspekhi Mat. Nauk 8:4 (1953),
175-176

[Ko2] Kolmogorov A. N., "Three Approaches to the De�nition of 'the Quantity of Information'
Notion ", Problems of Information Transmission 1:1 (1965), 3-11

[KU] Kolmogorov A. N. and Uspensky V. A., "To the De�nition of an Algorithm", Uspekhi Mat.
Nauk 13:4 (1958), 3-28 (Russian); English translation in AMS Translations, ser. 2, vol. 21
(1963), 217-245

[L1] Levin Leonid, "Universal Search Problems", Problems of Information Transmission 9:3
(1973), pages 265-266

[L2] Levin Leonid, Private Communication

[PFM] Paterson M. S, Fischer M. J. and Meyer A. R., "An Improved Overlap Argument for On-
Line Multiplication", SIAM-AMS Proc. 7 (1974)

[PS] Preparata Franco P. and Shamos Michael Ian, "Computational Geometry: An Introduc-
tion", Springer-Verlag, New York, 1985

[Sh] Sch�onhage A., "Storage Modi�cation Machines", SIAM J. on Computing 9:3 (1980), 490-
508

[Sr] Schnorr Claus P., "Satis�ability is Quasilinear Complete in NQL", JACM 25:1 (1978),
136-145

[St] Schnitger Georg, "Storage Modi�cation Machines vs. Kolmogorov-Uspensky Machines: An
Information Flow Analysis (Extended Abstract)", Manuscript, Penn State University, Dec.
1987

[So] Solomono� R. J., "A formal theory of inductive inference. Part I", Information and Control
7:1 (1964), 1-22

[US] Uspensky V. A. and Semenov A. L., "Theory of Algorithms: Main Discoveries and Appli-
cations", Nauka, Moscow, 1987

8


