
Page

ISSN1830-3609

As we reach the end of another year, it is a
good time to look back at the little more
than two years since we began operations.
It is valuable to revisit the roots of ENISA:
i.e., our founding regulation, EC460/2004.
Article 3 of the Regulation details our main
tasks, which, put simply, are to:

• Give iinnddeeppeennddeenntt,, eexxppeerrtt aaddvviiccee to the
EU, as the first step towards the drafting
of legislation

• RReessppoonndd ttoo rreeqquueessttss from Member States
and the EU

• CCoolllleecctt aanndd aannaallyyssee data on security
incidents and emerging risks

• PPrroommoottee bbeesstt pprraaccttiicceess in risk assessment
& risk management, awareness-raising
and computer security incident response.

Comparing the Regulation with our Work
Programmes for 2006 and 2007, I am
delighted to see that the Agency has
delivered its operational and administrative
tasks in full.

Our activities by the end of 2007 were
challenging and numerous. Let me mention
but a few of our achievements spread across
Europe. We organised workshops on ‘Risk
management – Why Business Needs it?’ in
Barcelona, on ‘A Data Collection Framework
on security incidents and consumer
confidence’, co-located with eChallenges in
The Netherlands, and on the ‘Barriers and
Incentives for NIS in the Internal Market for
eCommunications’ in Brussels. We held a
meeting of our Permanent Stakeholders’
Group in Brussels on the Work Programme
2008, focusing on resilience, and our
feasibility study into a European Information
Sharing and Alert System (EISAS) was
finalised.

ENISA has also recently launched Position
Papers on Botnets, Social Networking Sites,
and Online Reputation Systems, which have
already had an impact on both Network and
Information Security (NIS) and international
media.

The process of preparing next year’s Work
Programme, with decisions on the Agency’s
priorities being taken jointly with all the
stakeholders, guarantees that our activities
are in line with the NIS needs, expectations
and demands of the whole of Europe. The
adoption of ENISA’s Work Programme 2008
by our Management Board is a positive
acknowledgement that a multi-stakeholder
process for defining activities and
establishing priorities is the way forward for
Europe. I thank all our staff and stakeholders
for their hard work which made this
achievement possible.

The Work Programme 2008 title is ‘ENISA
driving for impact’, with the focus on a
number of Multi-Annual Thematic
Programmes (MTPs):

MTP 1 ‘Improving resilience in European
e-Communication networks’ focuses on the
identification of current best practices, gap
analysis, analysing Internet integrity
technologies, and the stability of networks.
This MTP will support the review of the EC
Electronic Communication Directives. MTP 2
will develop and maintain co-operation
models, in order to use and enhance the
existing networks of actors in NIS. In 2008
this MTP will be devoted to a) the
identification of Europe-wide security
competence circles in Awareness Raising &
Incident Response, b) co-operation on the

Vol. 3, No. 4, Oct-Dec 2007

Andrea Pirotti, Executive Director of ENISA

AA WWoorrdd ffrroomm tthhee EExxeeccuuttiivvee 11
DDiirreeccttoorr

AA WWoorrdd ffrroomm tthhee EEddiittoorr 22

FFrroomm tthhee WWoorrlldd ooff SSeeccuurriittyy –– 33
AA WWoorrdd ffrroomm tthhee EExxppeerrttss
Cycles of Software Crises 33

The Whys and Hows of Assuring 55
Secure Software

Technology Leaders Tackle 99
Software Assurance

The 10 Most Common Sins of 99
Software Developers

Security Skills of Software 11
Developers

Leading the Way to More 1144
Secure Software

Providing Assurance for Security 1155
Software – Insights into the
Common Criteria

FFrroomm oouurr OOwwnn EExxppeerrttss 1177
ENISA Position Papers 1177

Towards an EISAS 2211

FFoooodd ffoorr TThhoouugghhtt 2233
Stop Using the Traffic Analogy

EENNIISSAA SShhoorrtt NNeewwss 2244

IN THIS EDITION

Secure Software

2 ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

Most IT security problems today stem from
vulnerabilities in software. The fact that only
a small fraction of these vulnerabilities are
being exploited by attackers shows that
there is still a great risk that more will take
advantage of the constantly increasing
number of newly found vulnerabilities.

By ‘Secure Software’ we mean software that
is robust in the face of both intentional and
unintentional incidents. To minimise risk it is
important that the software industry
re-examines the way software is built,
shipped and deployed. The traditional
approach of securing the perimeter and
applications via security product add-ons
such as firewalls and intrusion detection
systems has proved to be inadequate. It is
therefore clear that software developers will
have to take their share of the responsibility
for improving application security.

The challenge to the application
development community is to create the
conditions where a focus on functionality
does not imply insecure applications. The
key question is how we can be reasonably
confident that the applications we run are
secure if developers do not pay adequate
attention to security issues.

Software assurance encompasses a
developing set of methods and processes for
ensuring that software functions as
intended without introducing vulnerabilities,
malicious code or defects that could harm
the end-user. Put into practice, software
assurance can reduce IT vulnerabilities,
improve resistance to attack and protect
supply chain integrity.

In this issue of EQ we shed some light on the
practices that could help create more secure
software. Markus Bautsch, the consumer

representative on ENISA’s Management
Board (MB), opens this EQ by looking into
the issue of insecure and uneconomic
software and how to avoid it. Sachar Paulus,
a member of ENISA’s Permanent
Stakeholders’ Group (PSG), provides a
summary of best practices for developing
secure software that complement and go
beyond the standard certification
approaches, advocating the need for self-
regulation in the software industry.

Paul Kurtz presents the industry initiative
SAFECode, the Software Assurance Forum for
Excellence in Code, which was launched in
October 2007. SAFEcode is a non-profit
organisation dedicated exclusively to
increasing trust in information technology
products and services through the
advancement of proven software assurance
methods. The organisation has a technical
and educational focus.

The next two articles focus on enhancing the
security knowledge and awareness of
software developers. Shay Zalalichin
presents the 10 most common sins
committed by software developers, as
identified by the Open Web Application
Security Project (OWASP). Johan Peeters,
Ken van Wyk and Frank Piessens present
their vision of how software developers can
work towards meeting security challenges
without cutting themselves loose from their
economic basis. This vision has inspired the
curriculum design of the secure application
development course that they have been
running since 2005, and which this year is
endorsed by ENISA.

Finally, David Ochel’s article demonstrates
how certification, namely the Common
Criteria, can be effectively used to provide
assurance of a software product’s purported
security functionality, and describes a means
of maintaining a high-level view of a
security evaluation.

Our own expert Giles Hogben introduces the
three Position Papers that ENISA has
recently published representing expert
opinion on important emerging Network
and Information Security risks affecting
Social Networks, Reputation Systems, and
Botnets. Each paper has been produced by
independent expert groups from industry,
academia and Member State governments

who have been selected for their expertise
in the relevant area and do not represent
any specific corporate interests. His article
summarises the findings of these groups.

Marco Thorbruegge discusses the main
points of the feasibility study into a Europe-
wide Information Sharing and Alert System
(EISAS) that ENISA took over in 2007. In
order to provide thorough and responsible
advice to the European Commission, ENISA
first conducted an analysis of the current
state of play in both the public and private
sectors in all EU Member States, and
identified possible sources of security
information which could contribute to an
EISAS.

Last but not least we have the regular ‘food
for thought’ column provided jointly by our
MB member Pernilla Skantze and our PSG
member Nick Coleman, who urge us to stop
using the traffic analogy when discussing
security issues.

All in all, 2007 was a very good year for EQ,
with three special issues and a large number
of downloads. Within the first months of
2008 we will provide a comprehensive
article with interesting statistics about EQ. In
the meantime please continue to send us
your articles. Generally we are open to
articles in all areas of NIS. For the next
edition, which is due at the end of March
2008, we would particularly like to receive
contributions related to the first Multi-
annual Thematic Area of ENISA’s work
programme for 2008, which is:
• Improving resilience in European

e-Communication networks.

We trust this issue will increase awareness
of the need for secure software, and serve
as a good source of information for the
interested reader. I hope you enjoy reading
it as much as I enjoyed editing it!

Sincerely,

Panos Trimintzios
Editor-in-Chief, ENISA Quarterly

Dr. Panagiotis Trimintzios is an Expert at
ENISA responsible for Relations with
Industry, Academia and International
Organisations.

A Word from the Editor

interoperability of pan European eID, and c)
the European NIS good practice Brokerage.
MTP 3 will identify emerging risks for
creating trust and confidence. The Agency
will develop a ‘proof of concept’ of a
European capacity for the evaluation of
emerging risks, linked to a Multi-
Stakeholder Dialogue Forum for public and
private sector decision-makers. Finally, the
Agency will undertake a ‘Preparatory
Action’, which includes a feasibility study

into the needs of and expectations for NIS in
micro-enterprises.

These MTPs will guide us to the doorstep of
the New Year and lead us throughout 2008,
but reflections regarding the Agency’s future
role will also continue; we shall tackle new
challenges and work projects in the months
to come with the same commitment and
team effort that has already brought us so
far in such a short time.

You are all warmly invited to follow the
Agency’s activities and achievements
throughout 2008 on our website and in the
ENISA Quarterly. Wishing you all the best for
a safe 2008 and beyond.

Sincerely,

Andrea Pirotti
Executive Director, ENISA

Two sides of the same coin
Let’s be honest – it can be difficult to find
measures to ensure secure software. On the
other hand it is relatively easy to name
many properties and characteristics of
insecure and bad software. Unfortunately a
lot of responsible managers in software
developing companies, and also a large
number of professional programmers, seem
to be absolutely unaware of issues related
to secure software – or else they quite
simply ignore them. In addition, there is a
common assumption that well-established
tools must be secure and efficient. This can
be a fatal fallacy.

We have seen it all before
Every paradigm persists till new phenomena
occur that no longer coincide with the
predominant doctrine and circumstances. In
the sixties it became obvious that the state-
of-the-art of machine-oriented software
development had reached a dead end. The
evolution of tools could not keep pace with
the technical innovation of hardware. This
was called a ‘software crisis’ because
software projects ran out of time and
budget, and the programmes produced
were of poor quality and no longer
maintainable.

The result was that engineers invented
high-level programming languages with
interpreters and compilers, such as Pascal
and C, which made programming more

abstract and more or less portable. The
improved performance of hardware even
allowed the establishment of multitasking
operation systems.

Later on, in the ’eighties, the information
technology community started to establish
another programming paradigm, whereby
software could be modular and object-
oriented. This approach was even more
abstract, and finally it became possible to
manage larger software projects.

What we observe
Whenever a paradigm shift in programming
became necessary, we observed that many
experts tried to hang on to their traditional
knowledge and tools for as long as possible.
At the very best they adapted their existing
tools to the new challenges, but this was
always at a price, namely an increasing
number of problems; furthermore it finally
led to improper and outdated solutions and
products. Even nowadays – many years after
the last large scale paradigm shift in
information technology – we find many
software products which still suffer from
ambiguity, non-modularity, type-unsafeness
or memory corruption. The latter regularly
leads to memory leaks, dangling pointers or
buffer overflows, which are the cause of
many severe software problems. The list of
drawbacks could be extended, for example,
by SQL- or http-header-injection, which are
related to insecure input, output or
exception handling.

Many apparently evolved programming
languages and development tools only fixed
a small number of minor issues, without
addressing the real challenges. It would

have been better to use really new and
improved tools which, incidentally, do not
necessarily have to break with all traditions.
Outdated programming languages are still
in use today and a pithy comment made by
the famous Swiss computer scientist,
Niklaus Wirth, is appropriate in this context:
“It is indeed absolutely surprising with
which equanimity the notational monster C
was accepted by the world-wide
programmer’s community.” There can really
be no debate about this because, for
example, there are still job adverts asking
for programming skills in C for automotive
security systems today. Who really wants to
drive a car with such an outdated security
system?

What we need
Today we are in the middle of a new
software crisis. The working day of many
programmers is dominated by endless run-
time debugging sessions with trials to fix
the misbehaviour of thousands of lines of
complex software. The widespread use of
run-time debuggers cannot really do much
to achieve more secure software. Run-time
debuggers are not only dispensable, but
also counterproductive and they are not
economical because it is not possible to
completely determine the behaviour of
complex polymorphic objects in modern
run-time environments.

It would be better to use tools which do not
allow insecure structures and hierarchies,
such as weak typing, ambiguous name
spaces or scopes, as well as unchecked open
array pointers. Moreover, these tools must
generate secure machine code by default
with run-time checking of array bounds,

Cycles of Software Crises
How to avoid insecure and uneconomic software

3ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

Markus Bautsch

4 ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

buffer and stack sizes as well as exception
handling. Furthermore, it is not only
possible, indeed it is a necessity to leave
dynamic name binding and memory
disposal to the run-time environment. Last
but not least, the less code is reused and
instead is recreated because of bad software
architecture, the larger the software
programmes become. This means that there
are more errors for the programmers to
check and fix – an expensive and
unnecessary nightmare. To cite Orfali et al.
in their book, The Essential Distributed
Objects Survival Guide (1996): “Only the
consumer gets freedom of choice; designers
need freedom from choice”.

It is a myth that security measures lead to
performance problems. This is not the case
at all because, with modern hardware
memory disposal, security checks and
method calls take less than a microsecond.
This is not noticed by the user, but these
features provide substantially safer and
more secure executable code, and this
reliable code can even be reused in
appropriate architectures. It is important to
mention that this even holds true for
embedded systems and real-time
applications. On the other hand,
development cycles are substantially shorter
– and time is money, isn’t it?

Examples
Let us have a closer look at the four
programming languages, C and its
predecessor C++, Component Pascal (CP),
Java and C Sharp (C#). The table right
compares nine properties which are
important, among other things, for easy,
safe and secure programming.

Niklaus Wirth classifies C++ as “an insult to
the human brain”, not only because of the
shortcomings illustrated in the table; C++
has inherited too many unsafe features from
its predecessor, C. According to the table,
the only advantage could have been the
inheritance of static objects, which can be
implemented very efficiently. Unfortunately
static objects are also very efficient for
garbage collection, which is neither
mandatory nor safe in C++.

Static objects are not possible in Java at all,
but Java also suffers from too many
standard libraries of classes and methods,
which result in rather too high a threshold
for a good command of all possibilities.
Unfortunately it allows multiple

implementation inheritance which is
dispensable and leads to ambiguities and a
large amount of overhead for the compilers.
Last but not least many programming
languages still suffer from complicated or
unstructured syntax, such as too many
hierarchy levels, the possibility of operator
overloading, and missing or confusing
definitions, as well as badly motivated rule
exceptions, which are easily avoidable.
Strangely enough, all these facts do not
seem to have too much impact on the
programming community.

So what should we do about this?
There are best practices for developers,
which should be co-ordinated, propagated
and taught much more frequently and
intensively. If software project leaders do
not understand these vulnerability
problems, they urgently need support and
advice, which should be given to them not
only by academic partners, but also by
standardisation bodies and public
authorities. Lifelong learning is essential; it
is not only students who have to be
educated, but also teachers and decision-
makers.

In addition to extensive and continuous
security education for managers, designers
and developers, there are many interesting
and innovative technological solutions to
help to improve the security properties of
software.

Service-oriented architecture (SOA) is a
good approach for achieving better software
solutions, for example. It supports
distributed computing, code reuse, data and
code encapsulation as well as standardised
and secure interfaces. However, it is
essential that the underlying software
architecture is sophisticated and can be
assessed with regard to risk and quality. This
is often not the case or is inadequately
realised.

This assessment can even be carried out by
the software itself; proof-carrying code
(PCC) is one noteworthy example. This is an
integrated mechanism that allows verifying
software properties via formal proof. The
run-time system can derive information
itself and can decide whether a software
component is safe and may be executed.
The programmer does not have to be
concerned about the safety of a method or
a module – this can be done automatically
by reliable and well-established code; he
only has to make sure that he uses qualified
development tools and run-time
environments. Many researchers are already
studying the capability and benefit of proof-
carrying code, such as in the international
project Mobility, Ubiquity and Security
(MOBIUS, http://mobius.inria.fr), but we
should all intensify our efforts and improve
our knowledge about inherent information
and network security.

C / C++ CP Java C#

Publication 1972/1985 1994 1995 2001

Structured syntax no yes no no

Simplicity and
regularity no yes no no

Cyclic imports
impossible no yes no no

Static objects yes yes no yes

Only simple
implementation
inheritance no yes no yes

Full module safety no yes no yes

Full type safety no yes yes yes

Automatic and
mandatory garbage
collection no yes yes yes

Dynamic loading no yes yes yes

Comparison of example programming languages

Mutual benefit
With technologies which really deserve to
be called new technologies we will benefit
from slimmer and more reliable software,
which is easier to use and to maintain.
Clemens Szyperski states in his book on
Component Software – Beyond Object-
Oriented Programming: “With abstraction,
less becomes possible in theory, but more
becomes possible in practice”.

In mature and proper model-viewer-
controller architectures (MVC) within a
component-oriented framework, for
example, it can be very easy and efficient to
implement generic undo-redo-functions,
automatic garbage collection and
embedded media or compound documents
without any ballast and performance issues.

Another principle, which is also known as
‘Wirth's law’, states: “Software gets slower
faster than hardware gets faster!”
Component-based software engineering not
only has the potential to disprove this law,

but has already done so. A side-effect of the
new programming paradigm of component
orientation is improved security and better
portability, but it has to be implemented by
skilled and aware engineers and
programmers. We should not trust in
information and communication
technologies without checking whether the
development tools meet the requirements
of an economic and secure future. ENISA will
support us in our attempt to do this.

Markus Bautsch (M.Bautsch@stiftung-
warentest.de) has worked on developing
component-oriented software and has
lectured on programming languages at the
University of Applied Science for Technology
and Economy in Berlin; he is responsible for
international consumer testing of high-tech
products; he is also a member of the End
User Panel of MOBIUS and is the consumers’
stakeholder representative on the ENISA
Management Board.

This article provides a summary of best
practices for developing secure software.
Existing certification approaches, such as the
Common Criteria, have their drawbacks so
one should identify the techniques and
principles which are most useful and which
make most sense. This activity has been
driven by the software industry throughout
the last two years and thus, to some extent,
these findings represent the software
industry’s view of the problem. The result is:
we need to work together on best
practices and identify practical
implementation regimes.

Why a new approach?
There are basically two existing approaches:
either the certification of products or the
adoption of best practices limited to
implementation only.

The security certification – notably using the
Common Criteria framework – of a product
works perfectly well for products that are
built once and will not be changed during
their lifecycle, such as smart cards or
mission control software. It does not work
for common software, since changes,
improvements and customisation are the
norm rather than the exception, hence
innovation speed overrules the processes
needed for certification. Moreover, standard
software is often used in a context for which
it was not made, i.e., the certification cannot
take all possible usage scenarios into
account, including change/customisation of
the software for specific purposes. In
addition, for a significant part of the overall
software industry, such as custom solutions,
small independent European software
vendors, open source development etc., it is
not economically feasible as the certification
costs are very high. Therefore, the value of
the security certification of a software
product is questionable – by definition it will
lag behind the actual version of a product,
taking into consideration hot fixes, updates,
enhancements etc. Moreover, ‘static’
certifications do not allow for the potential
future risk which results from social
engineering, and the constantly changing
assumptions about people’s behaviour.

Instead we need another approach which
should be easy and flexible, so that
companies that strive for innovation have no
– or only minimal – difficulty in achieving the
goal of secure software. It should also be
process-oriented, so that it is applicable for

all ‘versions’ of a product, including patches
and customisations of user installations.

Limiting remedies to the development
phase only is often another mistake;
ensuring that security issues will not be
created during implementation does not
protect the software from potential security
risks. Often software or pieces of software
are used in contexts that the developer did
not anticipate. Thus looking only into the
development phase will not prevent
security issues from occurring, which
incidentally is often the reason for security
issues in open source software. Secure
software best practices should be applied to
all phases of the software lifecycle: from
requirements definition to maintenance.

5ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

The Whys and Hows of Assuring Secure Software
Sachar Paulus

6 ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

Therefore the approach to secure software
should be neutral in three dimensions:
• Technology neutral – independent

o f the deve lopment p rocess
• Business model neutral – independent of

the way that users use the software, for
example standard software, software
embedded in products, custom
developed software or online software
provisioning

• Size neutral – applicable by small as well
as large organisations.

How to reach the goal of secure software
As a first step, a best practices guide should
summarise the good experiences of
organisations in attempting to deliver
secure software. ‘Secure software’ means
that it is robust in the face of both
intentional and unintentional incidents. The
purpose is first and foremost to find a
unified approach based on best practices to
withstand intentional incidents, i.e.,
malicious attacks, but at the same time this
may also improve the reliability of software.

In addition, a baseline recommendation is
needed; it should be applicable for the
whole software industry, independent of the
development model, the business model or
the size of the company. During the whole
development cycle, high security
environments may need additional
safeguarding principles which go well
beyond the baseline recommendation; in
this case one may even require completely
different approaches. The baseline
recommendation should consist of principles
to be followed and should encompass
simple and easy-to-understand hints and
recommendations as to how to implement
the principles through all phases of the
software lifecycle:

• product definition/requirements
gathering

• design
• development
• testing
• roll-out
• documentation
• updates (product enhancements, product

fixes)
• emergency hot fixes.

The approach should be inclusive, not elitist.
Users often use a combination of
products/solutions from different suppliers,
affecting the overall security experience.
There are roughly 37.000 independent
software vendors in Europe and more than 3
million software developers, working in
large standard software/product companies,
system integrators, in-house development
departments and many single-person
companies. All these should be able to apply
the principles formulated in the best
practices guide. It should also contain a
timetable as to how and when to
communicate security issues to users. The
hints and recommendations should be
concrete and easily implemented,
repeatable and, ideally, comparable. They
should focus on process steps towards the
goal of secure software.

Some thoughts on relevant regulatory
policy
There is a lively ongoing discussion about
whether software security should be
regulated. Two prominent examples are
often cited: the pharmaceutical sector and
the automotive sector. Whereas the
pharmaceutical sector suffered heavy
regulation in its early days to ensure the
security of its products, the automotive
sector managed to make security a market

differentiator without regulation imposing
requirements on the products. There is one
major difference though in the software
environment: it suffers from attackers who
deliberately try and break software for
personal or organisational benefit. This is
simply a fact of life and must be addressed
with additional vigour by the software
industry.

It makes sense to ensure that the risk is
taken by those who have the capability to
deal with it. But this should not be imposed
by regulatory means; it could also be in the
form of ‘social capital’, i.e., trust by the user.
In this situation, self-regulation would work
just as well as regulation.

Since the policy bodies’ approaches to
making software more secure are perceived
by the industry as unrealistic and restrictive
in their application, the industry itself should
propose how it should deal with the issue:
industry should take responsibility for the
security of its software (during its whole
lifecycle) and drive general software
development methods by the dissemination
of best practices, to reach a security level
that is acceptable throughout the industry.

Regulatory processes are normally static
activities, and the adoption cycles for
modifications can be quite long – the field of
security understanding, the evolution of
software development, the evolution of
threats and attacks are a reality – so the
processes to address these issues need to
evolve. This is the primary benefit of an
industry-driven initiative. Regulation could
be outdated at its inception.

Following best practices could be marked by
issuing labels of trust, eventually perhaps
even by certification of the organisation that
delivers the software similar to ISO 9000,
but specifically targeted for secure software
practices.

Whether or not the policy-makers should
then decide to make such a certification
mandatory is a matter for future debate.
Hopefully the industry will have adopted the
best practices by then so that policy
intervention would be superfluous.

Non-goals
The best practices should be limited to the
process aspects of secure software
development. Goals that should not be
followed are:
• To try and describe all potential

vulnerabilities and remedies and request
proof against these vulnerabilities. This
could never be complete and up-to-date.
Moreover, this knowledge is already
available.

• To define the process steps in detail. The
implementation of the processes should
be left to each manufacturer; otherwise it
would put too much pressure on the
specific software producer. (Technology
neutrality)

• To set up an exchange forum to discuss
specific vulnerabilities. This might lead to
the infringement of IPR or confidentiality
agreements. (Business model neutrality)

• To enforce the use of specific security
technologies.

• To address compliance issues around
security such as, for example, export
issues, i.e., potential back doors that may
be necessary for shipping to specific
regions. It might be a goal though, to
ensure that such back doors can only be
used by authorised bodies.

• The creation of a vibrant academic
environment for the secure software
development process.

A first set of best practices: the ‘10
Principles’
The following is a first attempt to list the
principles that should be adhered to by the
software industry if it is to deliver secure
software. This should be an all inclusive
approach; it should apply to standard and
customised software manufacturers and IT
project consultants, as well as hosting
operators – named simply ‘supplier’ in the
following. The supplier may produce
standard software, project solutions or
hosted applications – named ‘product’ in the
following.

The principles listed right describe the
general characteristics of risk mitigating
activities; they do not explain how these
activities should actually be achieved, since
this might be very much subject to
individual organisations, processes and the
business models of individual IT companies.

The 10 Principles for Secure Software

1. During the requirements gathering
process, the supplier should define the
security assurance properties of the
product.
This is a way of improving the likelihood
that the product will incorporate the
features and software quality necessary to
block hostile attacks. The security assurance
properties of the product, as designed,
should ideally include resistance to potential
threats, assuming a well defined
environment. Checking the status of the
predefined properties in subsequent
development phases is a first indicator as to
whether the product will meet the user’s
security demands. It also makes sense to
check the planned features of the product
itself against user demand, to compare
historic attack vectors with earlier versions
of the product or similar products, and to
look for possible exploitations.

2. The design and implementation of the
product should be constantly reviewed to
check that it does not jeopardise the
security assurance properties.
It is very useful to constantly review the
design and the implementation of the
software product in source code to check
whether the promised/targeted security
properties are actually delivered. There are
different approaches to implementing this
rule. A relatively complex – but very
successful – one consists of using automated
‘static analysis’ tools to detect potential
vulnerabilities in source code. Design checks
can be made using so-called ‘threat
modelling’.

3. Software should be tested to check
whether the desired security assurance
properties are present, before shipping.
Testing the product is essential. This can be
performed in-house, by external specialists
or third-party companies. Tests can consist
of black-box testing, i.e., trying to break into

the software without any information,
white-box testing, i.e., with knowledge of
how the software works, or even with
careful code review. Tests can often be
performed in an automated way, especially
bad parameter mutation or ‘fuzzing’ tests,
but some tests may need manual
intervention. Tests must be flexible,
appropriate and economically feasible but
they can never be considered exhaustive.

4. The software should be able to run in
‘secure mode’ after installation.
Users expect to ‘install-and-run’ the given
software product and that it would then be
secure. Since this cannot be achieved in all
cases, it should at least be easy to achieve a
secure configuration status. Ideally,
deployment should be ‘secure by default’,
which means that capabilities that are not
required by the vast majority of users are
turned off by default, reducing the attack
surface. Users would then turn on the
capabilities they need, thereby controlling
the security level of the installed software.

5. The security administration interface of
the product should be easy to understand
and simple to use.
This is important because otherwise there is
a high risk that existing options for securing
the product would not be used due to their
complexity. The interface for users as well as
administrators must be as easy as possible –
not all users or organisations have security
specialists.

6. The required secure configuration of
the software environment of the product
should be documented and actively
communicated to users.
Not all security requirements can be fulfilled
by the product itself; additional conditions
may need to be fulfilled in the environment.
This should be documented in such a way
that the user is made aware of these
requirements.

7ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

8 ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

7. During the product enhancement
process, the supplier should check that
new requirements do not jeopardise the
existing security assurance properties of
the product.
This is especially important if products are
developed following an incremental
approach, such as, for example, in the case
of most standard software development. It
is an industry practice to roll out products in
versions; this principle should reflect that
requirement. It might be helpful to classify
code segments or libraries as ‘critical’ so
that, if the supplier changed these parts, he
would know to review any potential impact
of the change on the security assurance
properties.

8. Software updates should not
jeopardise the security properties of the
product.
The supplier should make sure that, when
updating a product, existing properties,
including security configurations that have
been made by the user, are not changed, or
that users are notified appropriately if they
need to change configuration to retain the
security properties.

9. The supplier should implement a
response process for effectively
addressing security issues.

In the case of a security issue becoming
known to the supplier, standard bug-fixing
processes might not be successful in
resolving the issue – not only in existing
software versions, but also in similar
products and future releases. Therefore, a
dedicated tracking process for success in
issue-fixing should be implemented.

10. Security issues detected in the
product should be communicated
responsibly to users.
‘Communicating responsibly’ means that
the supplier must decide how and when he
communicates about security issues. The
most important aspect of this is that the
user should be helped to maintain the
security of the product, despite the
discovery of the security issue. Other users
could include partners who modify the
product on behalf of the software owner.
Ideally, the communication should include
an easily understandable recommendation
as to how to minimise the risk. This could
consist of applying patches or describing
workarounds. For products that are used by
a wide variety of users or unsophisticated
users, the supplier should offer automated
mechanisms and processes that allow users
to preserve the security of the product
without undue analysis or effort.

The software industry should strive to
develop measurement techniques for the
principles mentioned above to continually
improve the security of their products.

To make them manageable during the
software lifecycle, it is important that the
security measures can be quantified. There
is ongoing research within the security
community to achieve easily usable results.
Eventually, it might be useful to use key
performance indicators for secure software
development that have been agreed on an
industry-wide basis.

Prof. Dr. Sachar Paulus (sachar.paulus@
sap.com) is SVP Product Security at SAP, he is
member of the board of ‘TeleTrusT’, a non-
profit organisation for promoting secure
electronic processes, a member of ENISA’s
Permanent Stakeholders’ Group, and a
founding member of the ‘Application
Security Industry Consortium’. He also
currently co-organises the curriculum for a
Masters degree on ‘Security Management’
at the Technical University of Brandenburg,
Germany.

ETSI Security Workshop
As innovation in information and communication becomes ever more essential for business,

public administration, public safety and commercial needs, a vast number of new technologies are
being developed. Nowadays security is taken into account right from the design phase, rather than being

introduced after the adoption of a technology. In fact, the correct use of security by providers and vendors of services and
products is proving to deliver a positive return on investment.

Security standards, sometimes in support of legislative actions, are essential to ensure interoperability between products using the
same security mechanisms, to provide globally acceptable security metrics and to ensure an adequate level of security for these

products.

ETSI is hosting the 3rd ETSI Security Workshop from 15-16 January 2008,
at its Headquarters in Sophia Antipolis, France.

The annual ETSI Security Workshop is rapidly becoming the greatest annual international security standardisation workshop, bringing
together international Standards Development Organisations (SDOs) and security experts to discuss recent developments, share

knowledge, identify gaps and co-ordinate future actions and work areas.

The workshop will include overviews of work being carried out in the area of security across standards and technical bodies, along
with presentations from major organisations involved in security initiatives.

Participation in the workshop is free of charge, and open to everyone. For more information please visit:
http://portal.etsi.org/securityworkshop/.

9

In October 2007, EMC Corporation, Juniper
Networks, Inc., Microsoft Corporation, SAP
AG and Symantec Corp. came together to
announce the formation of the Software
Assurance Forum for Excellence in Code
(SAFECode). SAFEcode is a non-profit
organisation dedicated exclusively to
increasing trust in information technology
(IT) products and services through the
advancement of proven software assurance
methods. The announcement was
particularly significant because SAFECode
represents the first global, industry-led
effort to identify and promote best practices
for developing and delivering more secure
and reliable software, hardware and
services.

Software assurance encompasses a
developing set of methods and processes for
ensuring that software functions as
intended without introducing vulnerabilities,
malicious code or defects that could harm
the end-user. Put into practice, software
assurance can reduce IT vulnerabilities,
improve resistance to attack and protect
supply chain integrity.

In fact, many individual companies,
including the founders of SAFECode, have
implemented effective methods for
developing and delivering more secure and
reliable software, hardware and services,
and have achieved significant and positive
results from their efforts. However, there
has been no co-ordinated, industry-led
initiative to build upon this positive work
and promote best practices to advance
software assurance more broadly – until
SAFECode.

SAFECode brings together experts in subject
matter to identify and share proven vendor
software assurance practices, promote
broader adoption of such practices into the
cyber ecosystem, and to work with
governments and critical infrastructure
providers to leverage vendor practices to
manage enterprise risks. Not surprisingly,
there is no single method for driving
security and integrity into and across the
globally distributed processes that yield the
products and services that we all rely upon.
Yet, despite the differences in approaches, a
productive software assurance dialogue
between and among vendors and
governments/critical infrastructure
providers can amplify the positive results
individual companies are achieving, thereby
improving the overall security and reliability
of the IT ecosystem.

SAFECode’s specific objectives are to:

• Increase understanding of the secure
development methods and integrity
controls used by vendors

• Promote proven software assurance
practices among vendors and customers
to foster a more trusted ecosystem

• Identify opportunities to leverage vendor
software assurance practices to better
manage enterprise risks

• Foster essential university curriculum
changes needed to support the cyber
ecosystem

• Catalyse action on key research and
development initiatives in the area of
software assurance

One question SAFECode members are often
asked is whether or not one of the goals of
the organisation is to impact government
regulations related to software security in
Europe and the US. As evidenced by its
objectives, SAFECode is not a lobbying
group, nor does it have political aspirations.
Rather, the organisation is one with a
technical and educational focus – it is a place
for IT and communications technology
providers to come together to tackle some
of the most challenging problems facing
developers of technology products and
services. In fact, SAFECode encourages the
participation of government and academic
organisations in its discussions.

Early in 2008 SAFECode will release its first
paper, outlining its members’ best practices
for developing, producing, testing and
maintaining secure software.

Membership in SAFECode is open to any
information and communications
technology company committed to
advancing the art of software assurance.
More information can be found at
www.safecode.org.

Paul Kurtz (paul@safecode.org) is the
Executive Director of SAFECode and a partner
in Good Harbor Consulting LLC. Previously he
was the founding Executive Director of the
Cyber Security Industry Alliance (CSIA) and,
prior to this, he served in senior positions on
the White House’s National Security and
Homeland Security Councils in the US under
Presidents Clinton and Bush.

ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

Technology Leaders Tackle Software Assurance
Paul Kurtz

The 10 Most Common Sins of Software Developers
Shay Zalalichin

We hear more and more nowadays about
Cross-Site Scripting (XSS) security
vulnerabilities being discovered in systems
and websites. This is just one common
example of vulnerabilities at the application
level – security problems caused by
development mistakes. These mistakes
create code which is not secure and which
can be exploited by malicious users. Many
surveys suggest that, during the last few
years, the trend in discovered security
incidents has moved from the infrastructure
to the application level.

The following are the top 10 most common
mistakes made by software developers that
result in dangerous code, as listed by the
Open Web Application Security Project
(OWASP) – http://www.owasp.org/.

1. Not Validated Input
There is a saying in the world of information
security that: “User input is the source of all
evil”. It is no secret that numerous security
vulnerabilities are caused by the fact that
many systems do not handle inputs received
from users properly.

10 ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

An intruder who tries to exploit a lack of
input inspection will insert malicious code
which will disrupt the system and even
utilise the trust relation with other internal
systems to receive unauthorised access to
the data.

2. Broken Access Control
Many information systems implement
different mechanisms to allow users to
access authorised information in an
appropriate way (access to read, write etc.).
These mechanisms are implemented in
different levels and usually include
examinations to enforce authorisation
policy. Statistically, it seems that enforcing
access control is a very complicated process,
and implementation mistakes can have very
significant implications. For example, a
mistake in implementing an access control
mechanism in Internet banking applications
could allow users to transfer money from
accounts that are not their own; the
consequence is obvious.

3. Broken Authentication and Session
Management
In a sensitive application system, strong and
unique authentication must be used in order
to provide users with information they are
authorised to access with maximum
security. The importance of this mechanism
is clear – a mistake in implementation could
allow external attackers to spoof other user
identities and receive access to unauthorised
information.

An authentication mechanism governs not
only the way an application receives a
username and password, but also the way a
user is identified throughout his/her use of
the system, using a mechanism called
‘Session Management’.

4. Cross-Site Scripting (XSS)
This kind of flaw is considered the most
complicated and difficult to understand,
sometimes even by technical individuals. It
exploits the fact that a system does not
validate the input received from a user and
uses it to create responses which are sent to
the user. This problem, which at first glance
seems to be innocent, supplies an
applicative platform to carry out ‘Site
Defacement’ and it is one of the popular
ways to perform phishing attacks. With XSS,
an application takes data supplied by the
user and sends it to a web browser without
first validating or encoding the content. XSS
allows attackers to execute script in the
victim’s browser which can hijack user
sessions, deface websites, possibly
introduce worms etc.

5. Buffer Overflows
In many cases where ‘low level’
development languages are used, such as C

and C++, input that is not validated could
lead to another set of security problems
called ‘Buffer Overflow’. This is usually
caused by a long user input which overruns
its allocated memory. At best, this memory
trampling will lead to memory leakage and
crashing of the system; in the worst case, it
can help an attacker to gain full control over
the system and allow malicious code to run.

There are a number of low level
programming functions which are
considered dangerous. In addition, many
systems that were not developed using low
level languages but use third party libraries
that were developed using these languages,
may also be vulnerable to the same or
similar problems.

6. Injection Flaws
Usually, information systems use different
services (such as operation system,
database etc.) to achieve their goals. The
injection flaws exploit the ‘Trust Relation’
between the components of the system in
order to change the way services are used to
allow the attacker access to unauthorised
information.

A simple example of this problem is ‘SQL
Injection’; systems which include web
servers, applications and database servers
could be vulnerable to this problem if they
are using dynamic SQL queries. By injecting
malicious input, the user could cause the
application to run different queries which
could change data or allow access to other
information in the database.

7. Improper Error Handling
‘Error Handling’ mechanisms allow systems
to handle extreme or unpredictable events
in order to provide the user with a friendlier
environment. From a security point of view,
the failure of such a mechanism could lead
to information leakage from the system or
uncontrolled system crash and, as a result,
endanger the information that system
stores.

Thus, it is important to understand that
attacking the system usually equates with
finding ways in which a system cannot
properly handle an attack and thus crashes
in such a manner that it is endangered. This
makes ‘Error Handling’ mechanisms a
favoured target for potential attackers.

8. Insecure Storage
This flaw is extremely comprehensive. It
involves the methods that a system uses to
secure sensitive information (credit card
details, passwords etc.) by encryption, key
management, saving the data in a secure
location etc. Failure of these mechanisms
could expose sensitive data managed by the
system to external factors or to internal

attackers who would receive unauthorised
access to sensitive information.

9. Denial of Service
Denial of Service is a well known attack in
the world of IT infrastructure and operation
systems security. In the context of
application security, it usually refers to the
source code which is written in an unsafe
way, allowing attackers to run the
application in a ‘greedy’ manner that would
consume system-critical resources to the
point where the availability of the system
would be affected.

An example of this problem is bringing the
system to a situation where it runs heavy
SQL queries against the database in order to
damage the response time of the entire
system.

10. Insecure Configuration Management
This flaw appears on the thin line between
the infrastructure and application level and
derives from the fact that application
systems are eventually integrated on
servers that run different infrastructure
services, such as operation systems,
application server, queue server etc., to
provide the application with an operating
environment. The problem is caused by the
fact that the application is based on
infrastructure services it receives but, in
many cases, these infrastructure services are
not hardened (or secured), or are hardened
in a way that does not match the security
level required by the application.

This failure could cause different security
problems, from information leakage (for
example, by simple directory browsing) to
completely gaining control of the system by
exploiting the non-secured administration
interfaces of one of the infrastructure
services.

To sum up…
This list is assumed to be the ‘Top 10’ of the
most ‘popular’ problems caused by a non-
secured development cycle. Application
design, development and testing for these
problems could significantly reduce the
possible damage caused by the exploitation
of the security weaknesses at the
application level. In addition, every
technology/development environment has
its own unique problems which need to be
solved as an integrated part of the
development process.

Shay Zalalichin (shayz@comsecglobal.com)
is Application Security Division Manager at
Comsec Consulting.

11ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

Security Skills of Software Developers
Johan Peeters, Ken van Wyk and Frank Piessens

Today’s business software is more capable,
powerful and vital to our businesses than
ever before. Despite this, however, we find
it often wilts under some of the most basic
security scrutiny – often succumbing to
decades-old security defects. At the same
time, attackers have grown more ruthless
and profit-motivated than ever before. This
confluence of extremes has resulted in
unprecedented losses due to security
breaches, and threatens to undermine
consumers’ confidence in business systems.

What are the underlying causes of this
dangerous situation? One factor is that
application developers tend to focus on
providing functionality, not on security. This
is in stark contrast to security personnel,
who are paid to stop bad things from
happening. That is, developers’ contribution
to the value chain is building enabling
technology. This is exactly as it should be in
a successful business, despite increasing
malicious targeting and the exploitation of
applications.

Nonetheless, these trends are forcing the
software industry to re-examine the way
software is built, shipped and deployed. The
traditional approach of securing the
perimeter and applications via security
product add-ons such as firewalls and
intrusion detection systems has proved to
be inadequate. It is therefore apparent that
developers will have to take their share of
the responsibility for improving application
security.

In this article we present a vision of how
developers can work towards meeting
security challenges without cutting
themselves loose from their economic basis.
This vision has inspired the curriculum
design of the secure application
development courses that we have been
running since 2005 (http://secappdev.org).
The course will be presented next in Leuven,
Belgium, in March 2008. It is organised by

secappdev.org, a non-profit organisation
which is dedicated to improving security
awareness and skills in the developer
community, in collaboration with K.U.
Leuven, Solvay Business School and L-SEC,
and is endorsed by ENISA.

Design and architecture
The challenge to the application
development community is to create the
conditions where a focus on functionality
does not imply insecure applications. The
key question is how far can a company be
reasonably confident that its applications
are secure if the developers are not security
experts. We illustrate below how some
architectural patterns separate security
concerns from functionality.

• Isolation of Critical Modules
If the security-critical portions of the code
can be isolated in a few discrete modules,
they can be assigned to senior developers
with good security skills and can undergo
rigorous review. At secappdev we therefore
examine architectural patterns that afford
such separation of security concerns. One

well-documented pattern is AOP (Aspect-
Oriented Programming). Its particular
attraction is related to the observation that
security is a cross-cutting concern: security
guarantees need to apply across large parts
of the code. Rather than tangling security
concerns with business logic, they are
separated into a distinct module that is
woven into the business logic. However, it
has transpired in some cases that AOP has
introduced new vulnerabilities and should
therefore be applied with the utmost
caution.

• The role of the platform
This duality present in AOP clearly illustrates
the role of the platform in application
security: it is both the developer’s friend and
foe. On the one hand, judicious use of the
infrastructure, especially of its security
features, can greatly alleviate the burden of
writing secure applications. On the other
hand, platform elements may themselves
be the source of vulnerabilities if used
carelessly. So at secappdev, we spend a
good deal of time studying the security
features of the environment in which

applications run. Using inherent security
services, whether of the OS, the language
environment, middleware or some
specialised bought-in components, is often
the right thing to do; it is likely that more
resources were available for their design
and implementation than a typical
application development project would
have at its disposal.

• Use of the classical methods
Although ideally security concerns should be
separate from business logic, sometimes
this is difficult to achieve and some security
requirements might need to be dealt with in
the application. In such circumstances,
pluggable service providers should be used
where possible. Notable areas for which the
developer can call on a service via an API
that is provider-agnostic are authentication
and cryptography. This isolates developers
from some of the more arcane details and
makes it easier to replace providers and
algorithms as their sell-by date lapses; in
the field of cryptography, for example, key
lengths will eventually be judged
inadequate and flaws will be found in
cryptographic libraries or even in algorithms.
DES and SHA-1 spring to mind.

Process
In the previous section we demonstrated
that good architecture allows the
development team to get on with the core
activity, which is implementing the
functionality. Nonetheless, security concerns
still need addressing. But before that, we
need to be sure that security concerns are
complete and well understood. Conversely,
we must avoid tilting at windmills and focus
on real risks.

We believe that cost-effectiveness is key. No
system is absolutely watertight and hence
resources need to be spent wisely.
Therefore, a good understanding of the
application’s security requirements is
paramount. Security requirements are
closely related to the attendant risks. These
derive partly from the value of the assets
the application should protect and partly
from the resources an adversary is willing to
commit to break through its defences.

Formal or informal approaches to the
engineering of security requirements may
be more appropriate depending on the
different situations. One informal approach
that has been widely adopted is based on
abuse cases, while goal-oriented methods
could bring more rigour and formalism to
the process. The two approaches can be
used in a complementary fashion, with the
former providing the large brush strokes of
the problem space and the latter drilling
down in particularly sensitive areas.

While, in principle, requirements
engineering precedes architectural notions,
threat modelling assesses risk with the
proposed architecture in mind. This may
lead to architectural revisions or to
additional requirements at a lower level of
abstraction.

Our discussion so far is in sharp contrast to
the commonly observed development
process that concentrates effort on security
assurance in the latter part of the cycle.
Relying solely on ‘Penetrate and Patch’ at
best delivers patchy security. Testing an
application does not add security that was
not already embedded by design.
Nonetheless, it would be foolhardy to take a
system into production without testing. Yet
testing should not be consigned to the last
phases of the development cycle nor should
it be the exclusive preserve of specialists
outside the project team. In the functional
sphere, test-driven development (TDD) has
resulted in quality improvements and

enhanced code maintainability. TDD is
enabled by toolsets that integrate well with
development environments and makes
testing easy and fun.

In the security sphere, progress has not
been so rapid, but tools are emerging that
enable a tighter integration of assurance
and development activities. An interesting
class of assurance tools that has seen
tremendous progress in the last couple of
years is static code analysers.

Secure coding
In recognition of the need to address the
software vulnerability problem, secure
coding practices have quickly gained
attention. As well as the many publications
and training courses that exist, certification
for secure programmers has also started to
gain a hold. The SANS GIAC Secure Software
Programmer examination, for example, was
launched in March and ran for the first time
in Washington DC in August 2007. The first
chance to take this examination in Europe
was in London, in December 2007. The
second opportunity for Europeans to sit for
the exam will be together with secappdev,
the course offered in Leuven in early March.
We encourage our students to take the
examination by offering favourable rates.

Rather than simply preparing students for
the examination, the secappdev course is
complementary to its concerns. Secure
coding has probably received more attention
than any other aspect of secure software
engineering so far. The secappdev course
reverses this focus, for two reasons. Firstly,
there is so much good material on secure
coding that there seems little point
duplicating it. Secondly, secure coding
practices are specific to their environment.
So, rather than, for example, dissecting the
intricacies of buffer overflows or SQL
injection and the specific APIs to avoid in a
given language, the course explores threats
of code injection or return-to-libc attacks
and mitigation strategies.

12 ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

13ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

A prime architectural concern is the choice of
the technology on which the application is
built and language is the most obvious
factor to consider. Programming languages
are not created equal and judicious choice is
an important success factor in delivering a
secure application. Thus it behoves
application architects to have a working
knowledge of the security characteristics of
programming environments. A good
understanding of underlying principles is
essential; detailed knowledge is not
required.

Security as a mindset
The focus should be on sound secure
software engineering principles, rather than
guidelines for use in particular technologies,
and should go a long way towards ensuring
that students acquire the appropriate
knowledge and skills. Above and beyond
the commitment to teaching principles
rather than how to survive the
vulnerabilities of the most recent
technological fad, one should also try to
instil a security mindset.

Developers’ usual mode of operation is to
make things work. Shifting attention to how
they might break, specifically how a
malicious agent might cause them to break,
initially seems unnatural and even perverse.
Yet the insight gained by studying failure
modes leads to a deeper understanding of
the technology and thus to improved
designs.

The security mindset challenges received
wisdom and explores what may happen
beyond the boundaries of expected use. It
encourages developers to exploit their
subversive streak and is crucially important
in the ongoing arms race between cyber-
attackers and -defenders. As defenders,
developers are on shifting sand, not only
because they have to contend with black
hats whose community has proved itself to
be tremendously resourceful and inventive,
but also because of the ever-quickening
pace in the adoption of new technologies
offering novel opportunities to shoot oneself
in the foot.

A security mindset is not the result of formal
study alone. Hence secappdev supplements

theory with practical examples and case
studies. It encourages active engagement
with security concerns through interactive
sessions in small groups. There are also
plenty of opportunities for informal
discussions with faculty and other
participants. The faculty is drawn from
leading practitioners in industry and
academia. The audience consists of
developers with several years’ experience.
Hence participants are mostly senior
developers from a wide range of
backgrounds. The variety of responsibilities
and industries represented on the course is
enriching, as each individual lends a unique
perspective to the security landscape.

Conclusions
We believe existing software development
teams can produce products that meet

rigorous security requirements, but doing
this requires more than just a passive desire
to do better. Exposing development teams
to the essential components of security is a
crucial step towards that end. It is also vital
to put that knowledge into practice, but
understanding software weaknesses,
attacks and mitigations is absolutely
essential. What is more, properly presenting
that knowledge must involve more than the
simple superficial reciting of facts. It must
include case studies, exercises and
laboratory time so that developers can
appropriately synthesise their new-found
knowledge in the form of actionable results.

We believe the examples such as the
curriculum at secappdev.org can be a
significant component in helping to create a
secure software community.

Johan Peeters (yo@johanpeeters.com) is an
independent software architect and
Program Director of secappdev.org.

Ken van Wyk is one of the founders of the
Carnegie Mellon CERT/CC, and a lecturer on
security technology. He is also a partner at
KRvW Associates.

Frank Piessens is a Professor in the
Department of Computer Science of the
Katholieke Universiteit Leuven.

ENISA is endorsing an intensive secure application
development course (secure software engineering principles

and techniques for countering threats and vulnerabilities)
for experienced software practitioners.

Organised by KKaatthhoolliieekkee UUnniivveerrssiitteeiitt LLeeuuvveenn in partnership
with SSoollvvaayy BBuussiinneessss SScchhooooll and LL--SSeecc (Leuven Security
Excellence Consortium), the course will take place from

3-7 March 2008 in Leuven, Belgium.

It is aimed at software architects, designers, developers,
testers and technical project managers. A limited number of

places is available.

Course on Secure
Application Development

3-7 March 2008, Leuven, Belgium

For more information, visit:
http://secappdev.org/2008/FrontPage.html

14 ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

Around the world, we have grown to
depend on the Internet, computers and
networks almost like a utility such as
electricity, water and the telephone.
Businesses routinely use the Internet to
conduct transactions with customers and
partners. Individuals use the Internet to
communicate and share information.
Governments and critical infrastructure
providers have improved their ability to
serve their citizens through the use of the
Internet and associated computing and
communications technologies.

However, the Internet is a hostile
environment where cyber attacks and
exploits on systems and networks are
commonplace. In the face of these threats,
customers are becoming increasingly
concerned about the integrity, security and
reliability of the software they use.

Software vendors recognise the need to
reduce software defects which lead to
exploitable vulnerabilities and to improve
resistance to an attack. Individual software
providers have implemented methods and
tools for developing and delivering more
secure and reliable software. Monitoring
statistics indicate that the efforts of software
providers to improve the security of their
software are working. However, the attacks
grow unremittingly in complexity and
sophistication, so constant improvement is
necessary. There are some fundamental best
practices that have been identified and
which could be adopted to improve the
security and integrity of software.

Security Training
Security awareness, education and training
are the first steps towards improving the

security of software products. Software
managers need to understand both the
costs and benefits of a secure development
programme. They must then allocate
appropriate resources to meet the needs of
their customers. Developers must learn and
exercise secure development and test
techniques.

One training resource Symantec has used
effectively comes from Purdue University’s
Center for Education and Research in
Information Assurance and Security (CERIAS)
(http://homes.cerias.purdue.edu/~pmeuni
er/secprog/sanitized/), where one can find
a series of secure programming training
modules that cover a wide range of topics.
This training material is constantly updated
to leverage the latest techniques for
mitigating risks and reducing defects.

Secure Development Processes
• Setting security requirements at the

beginning of a product release cycle sets
the tone and establishes the need to
address security concerns. These
requirements must be addressed by the
secure design of the product. Secure
coding practices should be exercised
during the implementation phase and
security testing should be performed at
the same time as the rest of the product
testing. Security reviews are an essential
part of the secure development process as
they help ensure consistency throughout
the process. With the ever-increasing
complexity of attacks, developers must
continuously augment and enhance their
techniques to address new threats.

• Penetration testing is performed by
security experts to try to ‘break into’
software by exploiting vulnerabilities
discovered in the code. These intensive
tests can help uncover vulnerabilities that
might not be discovered any other way.
Fuzz testing is also a technique that is
growing in popularity to combat issues
such as buffer overflow vulnerabilities.
Fuzz testing focuses on testing the
interfaces to the software by trying a wide
variety of inputs to exploit input handling
errors.

While we strive to develop and deploy
security defect-free code, vulnerabilities are
being discovered in released code and need
to be repaired in the field. Timely and
effective ppaattcchhiinngg pprroocceesssseess and
technologies play an important role in
protecting deployed software. Certainly as
we issue patches to repair security defects,
software providers are aware of the burden
this can place on customers, especially

those managing large, distributed
deployments. Making patching easy and
using automated tools helps to reduce this
burden while it provides the protection
customers need.

Development Security Tools
Within the software development
community, growing attention has been
drawn to the development and use of code
analysis tools. These tools scan source and
binary files for potential security defects.
This automation is proving to be valuable in
improving the reliability and efficiency of
secure software development. Today,
although considerable human intervention
is still required to make full use of static
code analysis tools, the tools are constantly
improving. The use of security testing tools
and standard testing tools to identify
security defects is also growing. There are
now fuzz testing tools available to improve
the speed and efficiency of these tests.

Promoting Best Practices
While individual companies have
implemented effective methods for
developing and delivering more secure and
reliable software, until now there has been
no co-ordinated effort to build upon this
work and promote best practices to advance
secure software development more broadly.
A group of leading information technology
companies has recently formed the
Software Assurance Forum for Excellence in
Code (SAFECode), a non-profit organisation
(www.safecode.org/) dedicated to
developing and promoting secure software
development practices. Promoting best
practices and developing new, effective
techniques collaboratively can be an
effective means to address new threats and
improve software security for all customers.

Leading software developers promote
secure software development practices to
demonstrate that the software industry
takes this issue seriously and is encouraging
all developers to employ best practices to
learn from each other and improve the
security of their software. Governments,
critical infrastructure providers, enterprises
and consumers will benefit from this effort
because sharing best practices will improve
the integrity, security and reliability of the
software that they depend on.

Wesley H. Higaki (whigaki@symantec.com)
is the Director of Product Certifications in the
Office of the CTO at the Symantec
Corporation.

Leading the Way to More Secure Software
Wesley Higaki

The Common Criteria for Information
Technology Security Evaluation (CC)
standard, version 3.1, adopted as ISO/IEC
15408, has succeeded the Information
Technology Security Evaluation Criteria
(ITSEC) as a means of providing independent
assurance that the security functionality of a
(software) product actually works. Although
there are a number of perceived limitations
to the Common Criteria approach, more
effective alternatives to evaluate and certify
security software are not readily available,
while some of the perceived limitations can
be addressed by embracing the CC in the
larger context of risk management. This
article will demonstrate how the CC can be
effectively used to provide assurance of a
product’s purported security functionality,
and describes a means of maintaining a
high-level view of the purpose of a security
evaluation.

At the time of writing, 13 of the 27
European Union (EU) Member States are also
members of the international Arrangement
on the Recognition of Common Criteria
Certificates (CCRA), which stipulates that its
signatories mutually recognise certificates
up to Evaluation Assurance Level 4 (EAL4)
that have been issued by each other, unless
a matter of national security prevails.
France, Germany, the Netherlands, Spain
and the UK actually operate schemes for the
issuance of certificates, Sweden is in the
process of joining them, and the other
nation members have agreed to simply
recognise the validity of certificates issued
by other nations. Non-EU members of the
arrangement include Australia, Canada,
Japan and the United States. Altogether
there are a total of 24 participating
countries. In addition, a Mutual Recognition
Agreement (the ‘SOGIS-MRA’) exists within
the EU whereby members recognise
certificates issued by other states at all
assurance levels.

The national schemes participating in the
CCRA are operated by institutions
representing the respective governments
(as opposed to private schemes, which are
not allowed to join the arrangement), such
as the Organismo de Certificacíon de la
Seguridad de las Tecnologías de la
Información of the Centro Criptológico
Nacional in Spain and the Bundesamt für
Sicherheit in der Informationstechnik (BSI)
in Germany. These agencies accredit and
license commercial Information Technology
Security Evaluation Facilities or, simply,
‘labs’, which perform the actual evaluation
of products against the Common Criteria.
While the labs charge the sponsor of an
evaluation – typically the product vendor –
for their services, they have to maintain

independence in their decisions. The
evaluation results are recorded in detailed
reports and are subject to scrutiny by the
government-run Certification Body of the
scheme, and only after an in-depth review
cycle will the Certification Body issue a
certificate for a product that has been
successfully evaluated.

The member states of the CCRA participate,
more or less actively, in the ongoing
interpretation, development and
improvement of the Common Criteria. The
standard itself consists of three volumes: an
introduction, a catalogue of Security
Functional Requirements and a catalogue of
Security Assurance Requirements. The
functional requirements comprise a toolkit

15ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

David Ochel

Providing Assurance for Security Software –
Insights into the Common Criteria

‘Certificate Authorising’ members

Australia and New Zealand
Canada
France
Germany
Japan
Republic of Korea
Netherlands
Norway
Spain
United Kingdom
United States

‘Certificate Consuming’ members

Austria
Czech Republic
Denmark
Finland
Greece
Hungary
India
Israel
Italy
Malaysia
Singapore
Sweden
Turkey

CCRA members as of 8 January 2008 Source: www.commoncriteriaportal.org

of sorts that allows product vendors to
select from templates in order to describe
the security functionality that their product
implements, thus providing for a certain
amount of comparability between evaluated
products (as described in the products’
Security Targets). These ‘templates’ also
allow for a common language that
consumers can use to describe their desired
security functionality to vendors in
Protection Profiles. Assurance requirements
formulate the required evaluation activities
that are performed to demonstrate a
product’s proper working. These assurance
requirements come in pre-packaged
Evaluation Assurance Levels (EALs) with
increasing levels of scrutiny applied (see
table above). For example, compared with
EAL3, an EAL4 evaluation mandates an
increased level of detail for the design
documentation that is provided for
evaluation requirement ADV_TDS.3, and
introduces the requirement ADV_IMP.1 for
inspection of source code samples to verify
the correct implementation.

To achieve 100% security assurance in a
software product is impossible.
Consequently, the goal of the Common
Criteria is to demonstrate, at a reasonable
(and comparable) level of effort and detail,
that measures have been undertaken to
decrease the likelihood of malfunctions in
security functionality and to diminish the
existence of vulnerabilities that would allow
the circumvention of this security
functionality. In order to achieve this,
evaluation efforts include the detailed
analysis of:

• Architecture, design and interface
specifications

• Source code (at EAL4 or higher)
• Product manuals that instruct

consumers on secure operation
• Func t i ona l tes t s pe r fo rmed by

the vendo r and the l ab
• Development life-cycle, physical and

logical development security, and secure
delivery of the product.

During all of these evaluation activities, the
lab will be on the lookout for potential
vulnerabilities in the product, and will
perform a Vulnerability Assessment that
seeks to verify the existence (or non-
existence) of hypothesised vulnerabilities in
the product. Evaluation work within the
CCRA is based on a harmonised Common
Evaluation Methodology (CEM) that provides
detailed work instructions for the labs.

CC Evaluation Limitations
Undergoing a Common Criteria evaluation
usually requires a significant commitment of
resources, both monetary and human,
especially for an initial evaluation. Design
and other documentation may have to be
created or augmented, tests may have to be
designed and performed etc. A typical first-
time evaluation of a product with medium
complexity may take between six and
twelve months of involvement, with
reduced time spans and efforts for
subsequent re-evaluations of new product
releases. The fact that a Common Criteria
certificate is only valid for a specific release
and patch level is considered an annoyance
by some, but therein lies the nature of the
beast. If changes to the product
implementation are made, the lab and the
Certification Body can no longer vouch for
the product behaving the same as originally
tested, inspected and validated.

Another purported limitation of the
Common Criteria is the usability of a product
while in its evaluated configuration. With
the increased complexity of a product and
its exposed interfaces, it becomes more
likely that an evaluation will be performed
with a limited scope, and that stipulations
will be made as to how the product may be
used. For example, consumers may be
instructed to disable a specific function or
interface when deploying the product. This
may have one of several justifications. The
vendor may have chosen to exclude it from
the evaluation because it is not a
‘mainstream’ function or interface, and
therefore the effort required to extend the
analysis to cover it might have been
uneconomical. Alternatively, enabling this
function or interface might allow
circumvention of a product’s security
functionality. While schemes usually require
that the typical security functionality for a
specific type of product has to be evaluated,
such restrictions are common for less-used
or non-essential parts of the product. For
example, a firewall product would hardly be
accepted for evaluation if its filtering
mechanism was excluded from evaluation.
But instructing users to only use the
command line interface and to disable the
graphical user interface for managing the
firewall’s configuration might be acceptable.

16 ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

CC 3.1

A ssurance Components by Evaluation
Assurance Level

A ssurance
class

A ssuranc e
Family

EAL1 EAL2 EAL3 EAL4 EAL5 EAL6 EAL7

ADV_ ARC 1 1 1 1 1 1
ADV_FSP 1 2 3 4 5 5 6
ADV_ IMP 1 1 2 2
ADV_ INT 2 3 3
ADV_SPM 1 1

Development

ADV_ T DS 1 2 3 4 5 6
AGD_OPE 1 1 1 1 1 1 1 Guidance

documents AGD_P RE 1 1 1 1 1 1 1
A LC_C MC 1 2 3 4 4 5 5
A LC_C MS 1 2 3 4 5 5 5
A LC_DEL 1 1 1 1 1 1
A LC_DVS 1 1 1 2 2

A LC_FLR (ALC _F LR subact ivit ies optional at all
E ALs)

A LC_LCD 1 1 1 1 2

Life - c ycle
s upport

A LC_ T AT 1 2 3 3
AS E_CCL 1 1 1 1 1 1 1
ASE_ECD 1 1 1 1 1 1 1
ASE_ INT 1 1 1 1 1 1 1
ASE_OBJ 1 2 2 2 2 2 2
ASE_REQ 1 2 2 2 2 2 2
ASE_SPD 1 1 1 1 1 1

Security
Target

evaluation

ASE_ T SS 1 1 1 1 1 1 1
A T E_COV 1 2 2 2 3 3
A T E_DPT 1 2 3 3 4
A T E_FUN 1 1 1 1 2 2

T ests

A T E_ IND 1 2 2 2 2 2 3
Vulnerability
assessment

AVA_V AN 1 2 2 3 4 5 5

Composition of EALs. Higher component numbers represent increased evaluation effort.

ENISA has recently published three Position
Papers representing expert opinion on
important emerging Network and
Information Security risks. Each paper has
been produced by independent expert
groups from industry, academia and
Member State governments who have been
selected for their expertise in the relevant
area. This article summarises the findings of
these groups. The full papers can be
downloaded from: www.enisa.europa.eu/
pages/position_papers.htm.

Security Issues and
Recommendations for Online
Social Networks
Social Networking Sites (SNSs) are
expanding at a dramatic rate. For example,
as of June 2007, MySpace was the most
visited website in the US with more than
114 million global visitors, representing a
72% increase on 2006. In this position
paper, we start from the idea of Social
Networking as a positive social
phenomenon. We look at the security
threats to Social Networking and make
recommendations on how to address these
to gain the full benefits offered by SNSs.

SNSs may be seen as informal but all-
embracing identity management tools,
defining access to user-created content via
social relationships. They provide:
• Tools for posting personal data into a

person’s ‘profile’ and user-created
content linked to a person’s interests and
personal life

• Tools for personalised, socially-focused
interactions, based around the profile
(e.g. recommendations, discussion,
blogging, games, events organisation)

• Tools for defining social relationships
which determine who has access to data

17ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

The role of Risk Management
Organisations using evaluated products have
the option of addressing these limitations as
part of their risk management programme.
After all, security products, such as a
firewall, or the security functionality in
general-purpose products, such as
discretionary access control mechanisms in
an operating system or database, provide
countermeasures to threats that have been
identified in an organisation’s operating
environment. Common Criteria certificates
for these products may be desirable because
they provide a defined level of independent
assurance that these countermeasures
actually work when employed correctly.

However, this does not relieve an
organisation from having to ensure that a
product will be properly integrated into their
larger systems.

Nor should it force the organisation into an
‘all or nothing’ approach, using only the
evaluated version of a product in its
evaluated configuration. The decision to
apply a security patch to a product, thereby
invalidating its Common Criteria certificate,
should be risk-based. Organisations should
ask: In our environment, is it more likely
that the patch compromises security
functionality that was determined to work
correctly in the evaluated version, or that an

attacker will exploit the unpatched
vulnerability in the certified version of the
product? A similar approach should be
considered for non-evaluated functionality
or interfaces – that is, is the risk of using
them (and by doing so, violating the
stipulations of the product’s evaluated
configuration) outweighed by their benefit
to the organisation?

Even if the answer to these questions is to
use a product outside of its certified scope, a
Common Criteria certification can still
provide benefits in that the overall product
architecture and a high percentage of the
functionality will have been assessed and
tested, and the product’s development
environment will have been scrutinised.
Therefore, certification still provides an
organisation with a jumpstart in terms of
establishing trust in the provided security
functionality. A Common Criteria evaluation
provides an assurance baseline, and then
only the delta not covered by the evaluation
will need to be scrutinised by the
organisation itself.

David Ochel (david@atsec.com) is a
Principal Consultant and Evaluator with atsec
information security.

From our own Experts
ENISA Position Papers: Social Networks, Reputation Systems, and Botnets
Giles Hogben

Scope of lab evaluation
CC analysis (red)

Integration (yellow) is still
consumer’s responsibility!

Consumer’s Information
Security Management
domain (green)

Integrating Common Criteria certified products into a system

www.enisa.europa.eu/pages/position_papers.htm

18 ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

There is even evidence that SNSs contribute
to increased self-esteem and satisfaction
with life (what social scientists call ‘Social
Capital’) and even that it can help to reduce
crime.

Threats

The commercial success of the multi-billion
Euro SNS industry depends heavily on the
number of users it attracts. Combined with
the strong human desire to connect, this
encourages design and online behaviour
where security and privacy are not always
the first priority: users are often not aware
of the size of the audience accessing their
content. The sense of intimacy created by
being among digital ‘friends’ often leads to
inappropriate or damaging disclosures.

Social Networking may be seen as a ‘digital
cocktail party’. In general, the more contacts
you have, the more popular you are, and the
more influence you have. However,
compared with a real-world cocktail party,
SNS members broadcast information much
more widely, either by choice or by mistake.
For example, a brief survey of popular SNSs
shows several people openly publishing
answers to ‘surveys’ with questions such as:
• Have you ever stolen money from a

friend?
• Have you ever been in a fist fight?
• Have you ever cheated on a boyfriend/

girlfriend?

Some of the main threats identified by
ENISA and the expert group are:

• DDiiggiittaall DDoossssiieerrss:: The network never
forgets – what happens when the huge
warehouses of seemingly transient
personal information provided by SNSs
fall into the hands of blackmailers and
spammers?

• FFaaccee RReeccooggnniittiioonn:: Images enable
unexpected linking to apparently
anonymous personal data, especially

when combined with uncontrolled
‘tagging’. Some SNSs even allow
members to tag faces in images with
another person’s e-mail address.

• SSoocciiaall EEnnggiinneeeerriinngg AAttttaacckkss oonn EEnntteerrpprriisseess
uussiinngg SSNNSS:: Some information is
necessary to enter an online community
but often the privacy settings are
neglected and therefore the threshold
for gaining information which could be
used in a social engineering attack is
very low. Several professional SNSs
publish information on lists of
employees. For example, one SNS search
results page lists employees currently or
previously working at Barclays Bank,
which could be very useful to someone
collecting information for a social
engineering attack on an enterprise.

Other SNS threats include Spear Phishing
using SNSs, Reputation damage through ID
theft, Stalking and Cyber-bullying. A
complete list can be found in the Position
Paper.

Recommendations
This paper makes 19 recommendations –
some of the most important ones are:

• Review and Reinterpret Regulatory
Framework: Social Networking did not
exist when current legislation (especially
data protection law) was created.
Clarification or even modification is
needed, in particular of the Directive
2002/58 on privacy and electronic
communications.

• Increase Transparency of Data
Handling Practices: Examples of areas
requiring greater transparency for SNSs
are:
• What is done with data on profile

visits?
• What data is transmitted to widget

providers?
• What are the secondary purposes of

the processing of profile data?
• A clear description of the difference

between the ‘deactivation’ and the
‘closure’ of an SNS profile.

• Awareness-raising & education:
Recommendations include the ‘real-time’
education of users, campaigns for
schools, security best practice training for
software developers and security-
conscious corporate policy for SNS usage.

• Discourage the banning of SNSs in
schools: Instead favouring co-ordinated
campaigns to educate children, teachers
and parents in the safe usage of SNSs.

• Promote Portable Networks: Allow
users to move, control and syndicate
their own data and privacy preferences
between SNSs.

The paper also identifies some important
emerging trends which deserve further
research:

• Convergence with virtual worlds and
3D representation: Given the similar
aspirations of many SNSs and virtual
world users and the extra functionality
offered by virtual worlds (e.g. Second
Life), a widespread convergence
between the two seems only a matter of
time. Such applications may introduce
new security threats such as those
related to virtual world economics.

• Misuse by criminal groups: While there
are many benefits to a tool which allows
like-minded individuals to discover and
interact with each other, this feature can
also have negative implications. We
recommend research into the extent and
nature of illegal activity on SNSs.

• Online presence: Increasing amounts of
information and tools are available
relating to online presence (whether
someone is currently online and logged
into a particular site), or even physical
location, which is typically revealed more
in mobile-based SNSs. More research is
needed into the privacy and security
implications of online presence.

19ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

Reputation-based Systems: a
Security Analysis
Electronic reputation is becoming as
valuable an asset as traditional offline
reputation. As new applications embrace
reputation-based systems, the value of
online reputation will continue to increase –
and online reputation will be the target of
attacks. Reputation allows users to form an
expectation of behaviour based on the
judgements of others, bringing the
significant economic and social benefits of

being able to trust people (or systems) not
directly known to the user. As well as
discouraging misbehaviour because of the
penalties implied by a bad reputation,
reputation can also encourage good
behaviour, as users seek to establish a good
reputation and to benefit from it.

We describe four use-cases for reputation:
online markets (such as eBay), peer-to-peer
networks (e.g., for bandwidth
management), anti-spam techniques and
public key authentication (web-of-trust).
From these, we have derived the main
threats and attacks against reputation
systems. This has led to a set of core
recommendations for best practice in the
use of reputation systems. The most
important threats described are:

• Whitewash attack: The attacker resets a
poor reputation by rejoining the system
with a new identity. Systems that allow
for the easy change of identity are most
vulnerable.

• Sybil attack (i.e., pseudospoofing): The
attacker creates multiple identities

(sybils) and exploits them in order to
manipulate a reputation score.

• Impersonation and reputation theft:
One entity acquires the identity of
another entity (masquerades) and
consequently steals his reputation.

• Denial-of-reputation: Attacks designed
to damage an entity’s reputation and
create an opportunity for blackmail in
order to have the reputation cleaned.

• Privacy threats for voters and for
reputation owners: Votes are more
likely to be accurate if voters are
anonymous. Lack of privacy for
reputation-owners tends to cause
whitewash attacks (resetting reputation)
and inaccurate reputation scores.

• Threats to ratings: There is a whole
range of threats which exploit the
features of metrics used by the system to
calculate reputation ratings from single
scores.

Recommendations
• Develop reputation systems which

respect privacy requirements: Using
reputation brokers, it is possible to offer
anonymity for reputation-owners. Privacy
for reputation voters also improves the
accuracy of scores.

• Provide open descriptions of metrics: A
reputation metric is the algorithm used to
calculate a reputation score from the
individual votes collected. They vary in
complexity, with some algorithms taking

into account so-called second-order
factors such as the reputation of the
voters themselves. As with most security
algorithms, security is increased if
reputation metrics are not kept secret but
are subject to scrutiny. This also helps
people to judge whether to trust the
results.

• Differentiation by attribute and
individualisation as to how the
reputation is presented: A given
reputation system should allow a user to
customise the reputation according to
different attributes (i.e. different
aspects/assertions about the reputation
subject), and to set a threshold for each of
them.

• Encourage research into:
a. Common solutions to threats against
reputation-based systems: Despite the
variety of use-cases for reputation-based
systems, they often show vulnerabilities
to similar threats and attacks – common
solutions to defeat these should be
investigated.

b. The management of global
reputation: How can a user gain control
and/or awareness of his overall electronic
reputation when it is composed of
fragments scattered across the Internet?

c. Use of weightings in reputation
metrics: Second-order reputation using
score weightings can improve the
resistance of the metric to attacks.

• Research into and standardisation of
portable reputation systems: One
possibility is to integrate reputation into
authentication transport standards, e.g.
OASIS Security Assertion Markup
Language (SAML) Authentication Context.

• The importance of automated
reputation systems for e-Government:
Reputation is informally already an
important component of several high-
assurance systems such as document
issuance and security clearance processes.
Automatic ad hoc reputation systems
provide scalability and flexibility which is
not present in existing systems (such as
Public Key Infrastructure (PKI) systems, for
example). Policy-makers are therefore
encouraged to investigate using state-of-
the-art reputation-based systems in
e-Government systems. Governments
should also start investigating the impact
of online reputation systems on existing
legislation such as the EU privacy
directives.

Botnets – the Silent Threat

Bots are lightweight programmes that are
installed silently without any user
intervention. A botnet is a network of
computers on which a bot has been
installed, and is usually managed remotely
from a Command & Control (C&C) server. The
main purpose of botnets is to use hijacked
computers for fraudulent online activity;
they are managed by a criminal, a group of
criminals or an organised crime syndicate.

Typically botnets are used for identity theft,
unsolicited commercial e-mail, scams,
Distributed Denial of Service (DDoS) attacks
and other fraud. It is estimated that more
than 6 million infected computers
worldwide are connected to a botnet, with
China, the US, Germany, Spain and France
the top five countries for the number of
infected computers. Most owners of infected
computers do not know that their machines
have been compromised.

The criminal organisations behind the
implementation of this new online threat
are well organised. They employ software
developers, they buy and sell infrastructure
for their criminal activities and they recruit
people (mules) for money laundering to
hide their identities. They have the technical
resources to continually improve their
attacks – conditions that make online fraud
more successful than offline fraud. Lack of
user security awareness combined with the
common habit of using old (sometimes
pirated) and unpatched operating systems
increase the success of criminal exploitation.

Botnets represent a steadily growing
problem threatening governments,
industries, companies and individual users
with devastating consequences that must be
avoided. Urgent preventive measures must
be given the highest priority if this criminal
activity is to be defeated. Otherwise the
effect on the basic worldwide network
infrastructures could be disastrous.

Recommendations
Non-technical recommendations
The solutions to the non-technical problems
can be divided into three different
initiatives, according to the actors:
Government, law enforcement agencies and
private companies, and the end-user.

• Involving the Government: Whether
botnet activity is punishable depends on
the precise activity and on the law that
can be applied. Agreement is needed
within the EU and beyond to prosecute
cyber crime in a consistent and
co-ordinated way (for example in line
with the European Convention on
Cybercrime which has still not been
ratified by all signing countries). Too few
decision-makers are sufficiently aware of
the extent of the botnet problem and the
consequences of inaction.

• Better co-operation between Law
Enforcement Agencies and private
companies: (ISPs, financial entities,
security companies etc.), working for a
better dialogue and helping each other to
detect, prevent and react to botnet
incidents.

• User awareness: Everyone who uses a
computer connected to the Internet
should know and understand the threats
that could affect him/her. Proper
education and awareness about security
measures should be included in school
curricula, in public service announcements
on television and the Internet and other
awareness-raising initiatives.

Technical recommendations
Technical solutions to the problem of
botnets include:

• Secure operating systems and software
applications: Vendors should make
strenuous efforts to increase the security
of their products and, for example,
improve the update and patch
management process. Investment should

be encouraged with public and private
funding for secure software development.

•• IISSPP ccoo--ooppeerraattiioonn:: ISPs are key to the
solution, since they can detect and block
botnet communication. Of course they
would need to inspect the user’s traffic,
which could lead to privacy issues.
Guidance on this from a privacy authority
would be welcome, similar to the Article
29 Working Party’s opinion 118 on e-mail
filtering.

•• GGiivvee llaaww eennffoorrcceemmeenntt aaggeenncciieess tthhee
ccaappaabbiilliittyy ttoo cclleeaann bboottnneettss:: Almost any
botnet can upload and force all its zombie
computers to execute a specific
programme. This programme could be a
malicious code removal tool that uses the
same technology for good purposes.
However, given the privacy implications
and potential side-effects, this should not
be considered an option at this time.

The detection of Botnets:

• At ISP level: Some products analyse DNS
queries to detect whether a computer has
been infected by malicious code. Then, in
order to detect botnet traffic, ISP
administrators need to combine a
signature-based method (e.g., based on
DNS or HTTP) with a heuristic one, for
instance a flow-based method (analysing
where the user is connecting), which
looks for anomalous connections.

• At LAN level: As many worms try to infect
nearby computers, a local honeypot (a
computer system set up as a trap for
attackers) could help with the early
detection of any malicious software that is
trying to infect all the computers in an
organisation. Local administrators play a
key role since they can detect any
infection and take appropriate action.

• At computer level: There are some hints
as to whether malicious code is running
on a computer, for example, strange
process names and slow connection to the
Internet, which might mean that the
computer is sending spam or participating
in a DDoS attack.

All the hints explained both here and in the
paper are only valid if the computer has not
installed a rootkit, because a rootkit would
hide all such indicators to enable it to
survive in the system without being
detected. There are, however, special
software tools (rootkit detectors) that help
to uncover the existence of rootkits on
infected machines.

Giles Hogben (giles.hogben@enisa.europa.eu)
is an expert in the Network and Information
Security Policy unit of ENISA.

20 ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

Several publications point out that, for
various reasons, the computers of home-
users and Small and Medium Enterprises
(SMEs) are the most popular victims of
targeted attacks. It is comparatively easy to
incorporate these users’ computers into
botnets, use them as obfuscated paths for
launching attacks by hackers, as proxies to
send spam or to enrol them as repositories
for spreading viruses and worms. At the
same time, SMEs are important to Europe’s
economic growth. However, due to their
size, SMEs rarely employ dedicated security
personnel, so the protection of their
information assets is often left to non-
security experts.

In its Communication to the Council,
Parliament, Economic and Social Committee
and the Committee of the Regions
(COM(2006) 251), the European Commission
emphasises that public authorities in
Member States and at EU-level have a key
role to play in properly informing home-
users so that they can contribute to their
own safety and security. The Communication
points out that “individual users need to
understand that their home systems are
critical for the overall ‘security chain’”. The
Commission also recognised that the
possibility of facilitating “effective
responses to existing and emerging threats
to electronic networks” should be explored.
Acknowledgement of these needs prompted
the Commission’s request to ENISA to
“examine the feasibility of a European
information sharing and alert system
(EISAS)”, highlighting the role of ENISA in
fostering a culture of Network and
Information Security (NIS) in Europe. ENISA
accepted this request and embarked on this
study.

EISAS at a glance
In the context of this study an information
sharing system is a mechanism that shares
information about good practice in NIS, and
potentially also about more recent threats
and attacks (alerts & warnings), with home-
users and SMEs. It was already known that
some EU Member States have such
mechanisms in place and that other
activities exist. However, it was also known
that not all EU citizens are covered, and the
main purpose of the feasibility study was to
identify the gaps and to define the role the
European Union might play in that field.

Setting the scene
In order to provide thorough and responsible
advice to the European Commission, ENISA
first conducted an analysis of the current
state of play in both the public and private
sectors in all EU Member States, and
identified possible sources of security
information which could potentially
contribute to a Europe-wide Information
Sharing and Alert System. The findings of
this analysis led to the development of a
scenario to both address the lack of
available NIS information in some Member
States and provide a (yet-to-be determined)
added value to existing information sharing
systems in other Member States. Ideally
such an EISAS would also build on these
existing systems, firstly to avoid the
duplication of effort and competition, and
secondly, to benefit from the lessons

learned and the good practices that these
(national) systems can provide. ENISA
therefore produced two inventories. The first
lists existing information sharing systems in
Europe (with a special emphasis on home-
users and SMEs as a target group); the
second lists publicly available sources of NIS
information. This latter inventory was
prepared by the ENISA Ad hoc Working
Group “CERT Services” in 2006.

In addition, existing material was reviewed
that could potentially contribute to the
study, including the final reports of the EWIS
(European Warning & Information System)
project that was carried out by the European
Commission in 2001/2002, and ENISA’s own
study into “CERT co-operation and its further
facilitation by relevant stakeholders” in
2006.

21ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

Towards a European Information Sharing and Alerting System
Marco Thorbruegge

Motivation: where are the gaps in the coverage of European citizens with adequate NIS
information?

NIS information for citizens and SMEs is
important

There is already a lot going on in the Member
States, but ...

22 ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

The three aspects of feasibility
As well as examining the technical
feasibility of an EISAS, a broader approach
was necessary to ensure the acceptance of
such a system by EU Member States and,
last but not least, the target audiences.
Thus, the study examined the question of
feasibility from three angles:

• Technical/organisational aspect: the
technical/organisational feasibility of an
EISAS, such as components and workflows
etc.

• Political aspect: the political feasibility
of an EISAS. This can be reduced to the
question: will Member States accept and
support the proposed solution?

• Social/Cultural aspect: the feasibility of
achieving real impact by successfully,
effectively and sustainably raising NIS
awareness among home-users and SMEs.
This angle is the most crucial, as the
target groups have specific perceptions
and needs (for example, language), not
least the fact that they are, in most cases,
non-security experts.

In order to analyse the current state of play,
the two inventories produced were
examined by asking eight questions, for
example, “What activities exist in the
Member States that explicitly target citizens
and SMEs?”, “What type of information is
shared among citizens and SMEs?” and
“How is the information distributed”. The
answers were used to derive the most
feasible role the European Union could play
in this field.

ENISA was supported by an Expert Group
comprising members from national and
other information sharing activities
nominated by EU Member States and
ENISA’s Permanent Stakeholders’ Group
(PSG). The group’s main tasks included the
provision of information about the
information sharing activities for which they
are responsible (thereby making the vision
of an EISAS more concrete), assessment of
the two inventories prepared by ENISA, and
the provision of advice both during the
study and about the methodology. The
group worked mainly via email; one face-to-
face meeting was held in Brussels in April
2007.

Problem: how to reach out to the end-
user?
The analysis and discussions with the Expert
Group offered interesting insight into the
difficulties in adequately addressing home-
users to achieve real impact. These
problems have not yet been completely
solved.

Conclusions
The findings of the study do not suggest that
a centralised Europe-wide information
sharing system is the most feasible scenario.
Instead the European Union should build on

existing resources to foster the
establishment of information sharing
systems at the national level in Member
States. The study concludes by making four
recommendations for a potential role for the
European Union:

• Act as clearing house for good practice for
national Information Sharing and Alert
Systems (ISASs)

• Support new national ISASs
• Foster dialogue among existing national

ISASs
• Analyse and review practice, components

and processes to optimise information
sharing for existing ISASs

Next steps
In order to demonstrate the feasibility of the
proposed EISAS scenario, the study report
encourages a ‘proof of concept’. This means
that a small group of experts, drawn from
existing national information sharing
activities, should be assembled and work in
a number of meetings facilitated by the
European Union to produce a set of
deliverables, taking into account as much
existing material and expertise as possible.
The proof of concept should both prove that
co-operation among existing activities
produces comprehensive results and lay the
base for future work in the area. Once
assembled, the group should work
independently and be responsible only to
itself; however, to assist the process, the
study report offers suggestions as to how it
might proceed.

The full report about the feasibility study for
a Europe-wide information sharing and
alerting system can be found on the ENISA
website.

Marco Thorbruegge (marco.thorbruegge@
enisa.europa.eu) is a Senior Expert in
ENISA’s Computer Incident and Response
Handling unit.

19%
48%

MS w. dedicated ISAS MS with non-dedicated ISAS MS without ISAS

33%

MS w. dedicated ISAS MS with non-dedicated ISAS MS without ISAS

33%

MS w. dedicated ISAS MS with non-dedicated ISAS MS without ISAS

33%

48% of the EU Member States do not have
any information sharing activity for home-
users and SMEs.

Some of the findings of the study are
listed below:
• end-users and SMEs should be

addressed in their nnaattiivvee llaanngguuaaggee.
• messages (warnings, good practice

documents etc.) should be phrased
semantically in an uunnddeerrssttaannddaabbllee
wwaayy (addressing the non-expert).

• the method of information
dissemination should be thoroughly
planned, i.e., in addition to web pages
and mailing-lists, other
communication channels should be
examined such as podcasts,
RSS-feeds, traditional media etc. to
make it as ccoonnvveenniieenntt as possible for
the end-user/SME to obtain
information.

• information oovveerrffllooww sshhoouulldd bbee
aavvooiiddeedd and it should be thoroughly
planed what and when to publish.

• information disseminated to end-
users/SMEs must be ttrruusstteedd by the
recipients if it is to be accepted (on
average, national governments are
already trusted by end-users/SMEs).

• information should be disseminated
as cclloossee to end-users/SMEs as
possible.

• the information sharing system should
be aaddvveerrttiisseedd, as systems will only be
used when people know they exist.

Act as clearing-house of
good practice and support
information sharing in the
Member States.

Why is it that everyone persists in using the
analogy with car safety or traffic regulation
when they want to make comparisons with
information security? Cars and computers
actually have very little in common.

Not only would it be difficult to re-start a car
after a crash by closing all the windows and
then rebooting it, but the numerous ways of
using information technology (IT), as well as
the speed of its development, make for big
differences.

While roads are used fundamentally in the
same way as they were when they were
first constructed, today the way we use
computers and electronic communications
has very little in common with how we used
the technology 20 years ago.

Just imagine how small and fast today’s cars
would be if automotive technology
improved with the same speed as that of
micro-processors! While we can expect
roads and the cars travelling on them to
work the same way in 15 years’ time as
they do now, we have very little idea about
how we will be using IT and electronic
communications in the 2020s.

The speed of development of computing
also creates completely different problems
when planning for information security.
Where does the concept of peer-to-peer
sharing fit in the car analogy? This is another

good reason to stop using the traffic analogy
and to find more appropriate analogies for
information security in today’s world.

One idea would be to look at information
security as a sort of health care system for IT
– a system that addresses society at many
different layers, is prepared to handle
ageing infrastructures as well as new ones,
and to treat all kinds of diseases and
injuries, a health care system which requires
public and private sectors to come together
with citizens and which includes all of these
stakeholders in planning for protection and
cure.

To protect our health we are taught to wash
our hands to avoid the spreading of germs
(also known as peer-to-peer sharing), to eat
a variety of food and to avoid smoking in
order to keep well.

At the same time we have hospitals and
professional help for those who do
nevertheless fall ill, and there are incentives
for industry and academia to develop new
drugs and eradicate disease (which parallels
antivirus companies).

All stakeholders are encouraged to fulfil
their own responsibilities within the health
care system while at the same time there
are also control functions to test new
products and ensure that professional care is
up to standard.

Certainly health care is not the only possible
new analogy for IT security but it might
stimulate a more relevant discussion than
thinking of driving licences, road works and
airbags!

We hereby invite all contributors and
readers of EQ to challenge us with new and
thought-provoking analogies in the future!

Pernilla Skantze (pernilla.skantze@
enterprise.ministry.se) is a lawyer
specialising in IT-related issues, working for
the Swedish Ministry of Enterprise, Energy
and Communications, and a member of the
ENISA Management Board.

Nick Coleman (nick@n-coleman.com) is the
former Head of Security Services for IBM
across Europe, the Middle East and Africa. He
is currently the Independent Reviewer of
information assurance and security to the UK
Government. He is also a member of ENISA’s
Permanent Stakeholders’ Group.

23ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

Food for Thought
Stop using the Traffic Analogy!
Pernilla Skantze and Nick Coleman

ENISA invites all stakeholders to a
meeting to discuss how to optimise
the Agency’s impact in the Member

States. Under contract to ENISA,
GNKS Consult has conducted a
“Survey to assess the practical

usability of ENISA’s deliverables”
over the last few weeks, by

questioning various stakeholders.
GNKS will present the first findings
of their survey in Athens, and the

results will be discussed.

This meeting will be an opportunity
for our stakeholders to offer ENISA

immediate and direct input,
suggestions and recommendations,
based on the results of the survey.
The Agency is looking forward to

learning from the findings as well as
from stakeholders’ feedback, and

will use the information acquired to
help create a more secure
e-environment for Europe.

In order to increase networking
opportunities, ENISA will organise a
social programme for all participants
on the Tuesday, followed by a dinner

at the conference venue.

Funds are available to reimburse a
limited number of participants.

Enhancing
ENISA’s
Impact

Hotel Sofitel Athens,

Athens International

Airport, Greece

22-23 January 2008

For more information, visit:
www.enisa.europa.eu/pages/04_01

_ws_athens_20080122.htm

www.enisa.europa.eu/pages/04_01_ws_athens_20080122.htm
pernilla.skantze@enterprise.ministry.se

ENISA wishes to thank all the contributors to the publication. Please remember that all contributions reflect the views of their authors
only, and are not in any way endorsed by the European Network and Information Security Agency. ENISA assumes no responsibility for
any damages that may result from use of the publication contents or from errors therein.

The ENISA Quarterly is published once each quarter. You can find information about ENISA Quarterly, including back issues and
subscription information, on the EQ pages on the ENISA website: www.enisa.europa.eu/enisa-quarterly/

Editor-in-Chief, Panagiotis Trimintzios: eq-editor@enisa.europa.eu

More about ENISA For the latest information about ENISA, check out our website at www.enisa.europa.eu

European Communities, 2008 Reproduction is authorised provided the source is acknowledged.

24

ENISA Short News – Fourth Quarter 2007

ENISA Quarterly Vol. 3, No. 4, Oct-Dec 2007

Barriers and Incentives for Network and Information Security
(NIS) in the Internal Market for e-Communication
ENISA held a half-day workshop on 10 December 2007 in Brussels
on “Barriers and Incentives for Network and Information Security
(NIS) in the Internal Market for e-Communication”, launching a
discussion among relevant stakeholders ensuring their input to a
study which ENISA is commissioning. The event brought together
representatives from all relevant stakeholder groups, i.e., EU and
national decision-makers, industry and consumer and user
representatives, as well as academia. The presentations are
available online.
(www.enisa.europa.eu/pages/04_01_ws_brussels_20071210.htm)

3rd European Network and Information Security Conference,
Vilnius, 20-22 November 2007
ENISA supported the Communications Regulatory Authority of the
Republic of Lithuania in organising the third European NIS
Conference, in co-operation with the Ministry of the Interior of the
Republic of Lithuania.
(www.securityconference.rrt.lt)

Workshop on creating a partnership for collecting data on
security incidents and consumer confidence, Berlin,
13-14 November 2007
ENISA has examined the feasibility of a data collection framework
for security incidents and consumer confidence, and organised a
workshop to discuss the results and to decide on the type of
partnership for data collection which might be established.
(www.enisa.europa.eu/pages/04_01_dcws_wrsp.htm)

eChallenges 2007: The Hague, 24-26 October 2007
ENISA was heavily involved in the 17th eChallenges Conference
and Exhibition, and organised a number of special tracks and
sessions.
(www.echallenges.org/e2007/default.asp?page=home)

RSA Conference Europe 2007: Excel London, 22-24 October 2007
ENISA organised a special track, “A dialogue with ENISA”, during
the RSA Europe Conference at ExCel London, United Kingdom.
(www.rsaconference.com/2007/europe/about/)

High Level Dialogue, Porto, 11 October 2007
The summary of the high level dialogue that took place on
11 October in Portugal, gives a brief overview of the discussions
on Synergies between ENISA and Member States, and ENISA and
other institutional stakeholders, in particular the European
Commission and the private sector.
(www.enisa.europa.eu/doc/pdf/news/minutes_hld_10112007.pdf)

ENISA and INTECO co-organised an event on Risk
Management, 8-9 November 2007
The event took place in Barcelona and was broadcast online
through video streaming on the event’s web portal. This unique
event shed light on how to make SMEs safer and less liable to
technological incidents.
(http://enisa.inteco.es/)

11th ENISA Management Board Meeting – Porto, Portugal,
10 October 2007
The main focus of the agenda was ENISA’s Work Programme 2008.
(www.enisa.europa.eu/pages/02_03_news_2007_10_04_mgm
nt_board.html)

ENISA Work Programme for 2008 adopted: ENISA driving for
impact
The ENISA Work Programme 2008, “Build on Synergies – Achieve
Impact”, focuses on increasing the Agency’s impact in Network
and Information Security (NIS) based on co-operation with
relevant stakeholders.
(www.enisa.europa.eu/pages/02_01_press_2007_11_21_wp_2
008.html)

Social Networking – How to avoid a digital hangover?
ENISA has launched its first Position Paper: 15 key threats and 19
recommendations for safer Social Networking.
(www.enisa.europa.eu/pages/02_01_press_2007_10_25_social
_netw.html)

Botnets – The Silent Threat on the Internet
ENISA has published a Position Paper on Botnets, calling for
stronger prosecution of cyber criminals to combat the threat
caused by 6 million computers, which have been silently hijacked
for online fraud.
(www.enisa.europa.eu/pages/02_01_press_2007_11_27_botne
ts.html)

Panagiotis Trimintzios

