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Abstract

As the performance of passive atomic frequency standards improves, a
new limitation is encountered due to frequency fluctuations in an ancillary
local oscillator (L.O.). The effect is due to time variation in the gain of
the feedback which compensates L.O. frequency fluctuations. The high
performance promised by new microwave and optical trapped ion standards
may be severely compromised by this effect.

We present an analysis of this performance limitation for the case of
sequentially interrogated standards. The time dependence of the sensitiv-
ity of the interrogation process to L.O. frequency fluctuations is evaluated
for single–pulse and double–pulse “Ramsey” RF interrogation and also for
amplitude modulated pulses. The effect of these various time dependencies
on performance of the standard is calculated for an L.O. with frequency
fluctuations showing a typical 1/f spectral density. A limiting 1/

√
τ depen-

dent deviation of frequency fluctuations is calculated as a function of pulse
lengths, dead time, and pulse overlap.

We also present conceptual and hardware–oriented solutions to this
problem which achieve a much more nearly constant sensitivity to L.O.
fluctuations. Solutions involve: use of double–pulse interrogation; alter-
nate interrogation of multiple traps so that the “dead time” of one trap
can be covered by operation of the other; and the use of double–pulse in-
terrogation for two traps, so that during the time of the RF pulses, the
increasing sensitivity of one trap tends to compensate for the decreasing
sensitivity of the other. A solution making use of amplitude–modulated
pulses is also presented which shows nominally zero time variation.

∗This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.



INTRODUCTION

As the performance of passive atomic frequency standards improves, a new limitation is
encountered due to frequency fluctuations in the local oscillator (L.O.) from which RF in-
terrogation signals are derived[1−3]. This limitation continues to the longest times, giving
frequency deviations which show the same 1/

√
τ dependence on measuring time τ as the

inherent performance of the standard itself. It is due to periodic time variation of the gain
in the feedback which keeps the L.O. frequency locked to the atomic line. The varying gain
aliases higher frequency L.O. fluctuations to frequencies near zero frequency, and these low
frequency detected signals are improperly compensated by the feedback process.

Practical atomic interrogation processes show a sensitivity to L.O. frequency which is not
constant with time. This arises because e.g. the high and low frequency sides of the atomic
absorption line are alternately interrogated to compensate for signal strength variability.
Furthermore, a “dead time” with consequent zero sensitivity is characteristic of newly de-
veloped standards using sequential interrogation. These include both microwave and optical
frequency versions of the trapped–ion standard. The higher performance promised by these
new standards is severely compromised by presently available L.O. capability.

In the following sections we examine the time dependence of the sensitivity to L.O. fre-
quency which is inherent in single– and double–pulse (Ramsey) sequential RF interrogation
processes. Details of the electromagnetic transition are calculated using a conventional spin–
flip analogue. This treatment allows the effect of time–varying phase or amplitude of the
exciting RF signal to be calculated by means of appropriate solid–body rotations of an initial
state vector.

We propose the use of several alternately–interrogated collections of atoms or ions (several
“traps”) to allow a net sensitivity which is much more nearly constant in time. Detailed
strategies are developed, including one which uses amplitude modulated RF pulses with a
particular form which can give a net sensitivity for the two traps which shows nominally
zero time variation.

The effect of any given time varying sensitivity on performance of the atomic standard
depends on the spectrum of frequency fluctuations for the L.O. We present the results of
numerical and analytical calculations for the effect of an L.O. with flicker frequency noise
and consequent flat Allan deviation as a function of measuring time τ .

Finally, block diagrams are shown for implementations of a trapped mercury ion fre-
quency standard with two ion collections, including one with two ion collections in a single
linear trapping structure. Various systematics are addressed, including sensitivities to signal
strengths and RF phase shift values.

BACKGROUND

Passive atomic and ionic frequency standards presently provide greater long–term stability
than any other frequency sources. They include the new Trapped Mercury Ion standards[4−6],
more conventional Rubidium[7] and Cesium standards[8,9], and the optical standards[10] which
are proposed for even higher stability. These standards have an inherent advantage for long



term stability which derives from the energy gain which is available from atomic transitions
which can be linked in a causal way. Thus, a low energy microwave photon may be absorbed
in an ultra–stable atomic transition process that then makes possible the scattering of optical
photons with energy increased by more than 104. This makes possible a tremendous increase
in sensitivity and allows passive standards to operate with very small numbers of atoms or
ions. By the use of electromagnetic traps, these few atoms or ions can be isolated from
each other and from their environment much more effectively than can the many atoms or
ions required by active standards. This isolation reduces the effects of time–varying external
variables on the operating frequency, and allows the frequency of the standard to more closely
approximate the inherent unvarying atomic transition frequency of a single isolated atom or
ion.

However, by the nature of this process, passive frequency sources do not themselves emit
a signal at their operational frequency as do active sources. Instead, they require a secondary
frequency source to interrogate the very narrow absorption line in the isolated atoms or ions.
This interrogation process necessarily takes a certain amount of time, during which time
the secondary local oscillator (L.O.) acts alone to provide frequency stability. Information
obtained in the interrogation processes is then used to adjust the frequency of the L.O. by
feedback and to stabilize it over long periods of time with great precision.

The consequence of this is most easily understood with respect to a portion of the in-
terrogation cycle called “dead time”. During this time the local oscillator’s frequency is
not sensed by the atomic interrogation process and so local oscillator frequency fluctuations
during those times are not corrected by the feedback process. The cumulative effect of os-
cillator phase wander during the dead time for each cycle reduces the long term stability
obtainable with the atomic standard. If the dead time could be reduced to zero, the long
term instability induced by the L.O. could also be reduced.

The dead time cannot be eliminated, however, because interrogation of the atoms or ions
necessarily involves processes which degrade the Q and shift the frequency of the atomic line.
The strategy which allows the highest ultimate stability is to perform these processes during
dead times to minimize their interference with operation of the standard. The processes
include; illumination with an intense optical beam which prepares the quantum state of
the atoms or ions and which induces light scattering, the intensity of which is analyzed to
determine frequency errors in the local oscillator and to correct them; adding more ions
to the trap to make up for those that have been lost; and other similar processes such as
vibrating the ion cloud to measure the number of ions in order to hold the number very
nearly constant in time.

TIME DEPENDENCE OF FREQUENCY SENSITIVITY

Definition of a Time–Dependent Frequency Sensitivity

The lineshape, bandwidth, and resolving power for an atomic transition induced by means
of electromagnetic (RF) pulses are well known[11]. Of importance to frequency standard
applications is the frequency resolving power which can be written in terms of a dimensionless



frequency sensitivity parameter g as

dp

dν
= π g ti, (1)

where p is the probability for the transition, ti is the time for the RF interrogation process,
and ν is the applied RF frequency. For the case of single π–pulse interrogation and for
atoms initially in the ground state, the conventional lineshape[11] gives p = 1 at the resonant
frequency, and a resolving power described by

gπ ≈ 0.60386 (2)

at the half–bandwidth points (p = 0.5). Double pulse (Ramsey) interrogation using two
π/2–pulses shows a narrower bandwidth and increased resolving power compared to single
pulse excitation[12]. In the limit of very short excitation pulses at the beginning and end of
the interrogation period, the frequency sensitivity approaches a limit of

gmax = 1. (3)

The conventional treatment, however, does not allow a study of the effect of a frequency
which varies during the excitation process. In order to accomplish this task, we generalize
the frequency sensitivity g to allow time variation during the interrogation process. If the
phase fluctuations involved in the frequency variation are small (δφ << 1), we can assume
that fluctuations at all points in the process combine linearly. For this case we can generalize
Eq. 1 to describe the variation in transition probability δp due a time–varying frequency error
δν(t) in terms of an integral over the RF interrogation time

δp = π
∫

RF
δν(t) g(t) dt. (4)

Application of a non–varying δν to Eq. 4 recovers Eq. 1 by relating the constant g to an
integral over g(t) as

g ti =
∫

RF
g(t) dt. (5)

Eq. 1 may be rewritten

g = 2
dp

d(∆φ)
(6)

where ∆φ ≡ 2π ν ti is the phase progression during the course of the interrogation. In order
to evaluate the time–dependent g(t) for Eq. 4, let δν(t) be zero except for a phase step of
size ε at time t′ given by φ = ε σ(t − t′), where σ(x) = 1 for x ≥ 0 and is zero otherwise.
Since 2 π δν = dφ/dt, this corresponds to a frequency variation δν(t) = (ε/2π)δ(t− t′), where
δ(t − t′) is the Kronecker delta function. Eq. 4 gives the response

δp(t′, ε) = π
∫

RF

ε

2π
δ(t − t′) g(t) dt (7)

=
ε

2
g(t′), (8)



so that g(t′) can be written in terms of the effect of a small phase step at time t′

g(t′) = 2
δp(t′, ε)

ε
. (9)

That is, g(t) describes the sensitivity of the final atomic state to a small phase step in the
interrogating field at the time t. This dependence may be calculated directly by means of a
detailed look at the quantum–mechanical transition process.

Analysis of L.O. Phase Step in Rotating System

The processes which determine the rate of excitation of atoms or ions from one energy state
to another are explicitly quantum–mechanical. Following Kusch and Hughes[11] we find the
time dependence of the phase and amplitude for the excited state by a magnetic spin–flip
analogue. For the case where the two–level system consists of a particle with spin 1/2 in a
magnetic field, there exists a one–to–one correspondence between the expectation values of
quantum–mechanical picture and the classical picture of a magnetic moment precessing in
its applied field. Only the absolute phase, a physically meaningless quantity, is missing from
the classical picture. Since all weakly–coupled two–level quantum mechanical systems may
be treated with identical formalism, the magnetic–moment precession analogue is generally
applicable to calculate the details of transition amplitudes and phase in quantum–mechanical
two level systems.

In this analogue as depicted in Fig. 1a), a vertical magnetic field Ho = ωo/γ generates
an energy difference between “down” and “up” states of a moment with magnitude γ and
direction I. A transverse microwave field H1 at frequency ωrf is approximately tuned to the
precession rate of the moment in the presence of the field Ho. Transformation to a reference
frame rotating at ωrf removes the rapid time variation due to spin precession in the large
field Ho, leaving only a slow precession in the rotating frame. The transition problem can
thus be treated entirely by the use of solid–body rotations.

In this context, detuning of the microwave frequency results in incomplete cancellation
of the vertical dc field. The remaining, uncompensated, part of the vertical field combines
with the transverse rf field H1 to give an effective field in the rotating frame Heff . The time
dependent solutions are (slow) precessions of the magnetic moment I about this effective
field at an angular rate ωeff which is proportional to the magnitude of that field. Phase
deviations due to the L.O. give rise to rotations about the z–axis.

All starting vectors lie in the plane, including the starting position of the unit vector
Iinitial, a fact which makes the algebraic relationships between the various frequencies appar-
ent. The quantum–mechanical correspondence for the precession of I about ωeff , identifies

a correspondence between the vertical component of a unit vector Îfinal with the transi-
tion probability; more specifically, it is equal to the fractional occupation difference between
upper and lower states at the end of the transition.

Figure 1b) shows the precession of I for the case of a π pulse on resonance. Figure 2
shows a three dimensional view of the effect of this same pulse when detuned to the half–
signal point. Vertical lines are drawn from z = 0 plane to the arc which describes the time
evolution of the atomic state. This arc is traversed by I at a uniform angular velocity during
the interrogation process.



Figures 3 and 4 describe the processes used to calculate g(t) for single π pulse excitation
via Eq. 9. Here, I precesses about Heff for a fraction of the interrogation process (until
time t), a small phase step is introduced in the RF field (rotation about the z axis), and
then the precession about Heff is completed. The phase steps give rise to variation in the z
component of the Ifinal which depends on where the step takes place; and this dependence
defines g(t).

Solutions

Details of the calculations for g(t) based on the rotation transformations just described have
been previously presented[1]. Figure 5 shows the results for three different interrogation
processes. The cycle time tc, interrogation time ti, and dead time td are identified.

The functional form for the sensitivity g(t) for the case of a single π–pulse at the half–
bandwidth point as indicated in Figs. 2, 3, and 4 and as shown in Fig. 5a) is given by

g(t) =
∆

(1 + ∆2)3/2
[sin(Ω1(t)) (1 − cos(Ω2(t)) + sin(Ω2(t)) (1 − cos(Ω1(t))] (10)

where Ω1(t) = Ω ·
(

t
ti

)
,

Ω2(t) = Ω ·
(
1 −

(
t
ti

))
,

(11)

Ω = Ω(∆) = π
√

1 + ∆2, (12)

and where ∆ ≡ 2 δν ti is detuned to the half signal point ∆ = ∆half ≈ 0.798685. For this
case the angle of Heff from the z axis (Figure 1a)) is given by

θ = θ(∆) = π/2 + arctan ∆. (13)

It is worthy of note that integration of g(t) as given by Eq. 10 returns the value given by
Eq. 2 for this same interrogation process, i.e.

∫ ti

0
g(t) dt = 0.60386 ti. (14)

The case of double π/2–pulse RF excitation at the resonant frequency and with a π/2
phase shift between pulses gives maximum sensitivity of the resulting measurement to fre-
quency deviations of the L.O., and shows a particularly simple form for the time dependence
of the sensitivity. As shown in Fig. 5b) its form is given by

g(t) = sin(πt/2 tp) 0 < t < tp,
= 1 tp < t < ti − tp,
= sin(π ti−t

2tp
) ti − tp < t < ti,

(15)

where tp is the short pulse time, and ti the interrogation time as before.
Figure 5c) shows the time dependence for double–pulse interrogation with very narrow

RF pulses to be essentially constant except for the dead time.



Use of Two Traps for More Nearly Constant Sensitivity

While a substantial “dead time” is required for a single trap, use of several, separately
interrogated, sets of atoms or ions (several traps) would allow interrogation of one trap during
the other’s dead time. In this way the interrogation process could be almost seamless, thus
apparently approaching the goal of continuous interrogation. Two traps are usually sufficient
since a duty factor of ∆d >≈ 50% can be obtained for each trap. If it cannot, more traps
could be used.

The duty cycles shown in Figure 5 point the way to interrogation strategies for two traps.
Single–pulse interrogation as shown in 5a) shows large variability, even without the effect of
dead time. In contrast, the two pulse example shown in 5c) represents some kind of ideal.
Here the infinitesimally short RF pulses give an unvarying sensitivity except for the dead
time. However, RF pulse lengths cannot be shortened arbitrarily due to the increasing RF
power required and the necessity to average out effects of the thermal motion of the atoms or
ions[4]. Thus Fig. 5b), with functional form as given in Eq. 15 and with explicit consideration
of turn–on and turn–off effects for double–pulse interrogation allows us to examine the effects
of RF pulse length and of various strategies of pulse timing. It seems clear that the starting
pulse for one trap should more or less coincide with the ending pulse for the other.

Figure 6 shows the sensitivity variation for several interrogation strategies using two
traps. Parts b), c), and d) show examples of the way double–pulse interrogation could
be used. A comparison of parts b) and c) shows that overlapping the pulses for the two
traps gives a somewhat more constant sensitivity. In addition, we can calculate an optimum
overlap by equating the areas above and below the line given by g(t) = 1. This condition
minimizes the effect of the lowest frequency L.O. fluctuations and results in a sequence where
the starting pulse for one trap begins slightly later than the ending pulse for the other, for
a total combined pulse time 4/π times longer than a single pulse. Fig. 6d) shows that the
deviation of the sensitivity from unity has been substantially reduced.

A strategy using amplitude modulated RF pulses

As a final enhancement, the use of amplitude–modulated pulses with particular shapes would
allow a sensitivity with no deviation from unity, even during the time of the overlapping
pulses. The requirement is, of course, that the two sensitivities not vary. One approach is to
have the pulses overlap completely, and to adjust the RF amplitudes in the two traps A1(t)
and A2(t) so that the sensitivities for the two traps obey

g1(t) + g2(t) = 1 (16)

during the time of the overlap. During other times one trap would have the constant sen-
sitivity required while the other would experiencing its dead time. Without derivation, we
present the results of a generalization of the calculation in [1] which gave rise to Eq. 15. This
more general calculation shows that Eq. 15 can be rewritten for amplitude–modulated RF
pulses over the time interval 0 ≤ t ≤ tp as;

g1(t) = sin

(
π

2 tp

∫ t

0
A1(t) dt

)
(17)



for the trap which is just beginning its interrogation, and

g2(t) = cos

(
π

2 tp

∫ t

0
A2(t) dt

)
(18)

for the second trap which is ending its interrogation and which will now begin housekeeping
tasks. Here, A1(t) = A2(t) = 1 recovers the solutions given by Eq. 15. Solutions of Eqs. 17
and 18 which also satisfy Eq. 16 are not unique. However, analytical solutions can be found
for a particularly symmetric form for the two contributions which satisfy Eq. 16 and which
have the sine–squared and cosine–squared dependencies

g1(t) = sin2

(
πt

2 tp

)
=

1

2

[
1 − cos

(
πt

tp

)]
(19)

for the starting pulse of trap 1 and

g2(t) = cos2

(
πt

2 tp

)
=

1

2

[
1 + cos

(
πt

tp

)]
(20)

for the ending pulse of trap 2 for times 0 ≤ t ≤ tp. Solution of the integral equations 17 and
18 for these examples yields

A1(t) =
2√

1 +
(
sin πt

2 tp

)−2
(21)

for the beginning pulse and

A2(t) =
2√

1 +
(
cos πt

2 tp

)−2
(22)

for the ending pulse.
Details of pulse timing for this example of amplitude modulated RF excitation are shown

in Fig. 7b).

L.O.–INDUCED PERFORMANCE LIMITATION

Phase Noise Downconversion

A simplified block diagram of the frequency–locked loop is shown in Figure 8. Here the time
dependence of the sensitivity of the measured atomic transition rate is combined with the
microwave duty cycle to give an effective time dependent modulation g(t) of the loop gain as
shown. In this model, frequency noise SLO

y (f) in the Local Oscillator as partially compen-
sated by feedback from the Integrator results in Signal Output from the locked local oscillator
with frequency fluctuations SLLO

y (f). Compensation to achieve high long term stability is
accomplished by a feedback circuit in which the Signal Output frequency fluctuations are
first converted into voltage fluctuations Sd

v (f) by the action of a high Q Discriminator and
then to Sm

v (f) by the action of the Modulator. This voltage is then integrated to provide a
correction to the frequency of the Local Oscillator.



We identify a loop time constant t` for the integrator; assuming that for high frequencies
f À 1/(2πt`) the loop gain is approximately zero, while for low frequencies f ¿ 1/(2πt`) the
loop gain is much greater than unity. Thus, high frequency fluctuations will be uncompen-
sated by the action of the loop, so that SLLO

y (f) = SLO
y (f) for f À 1/(2πt`). However, low

frequency fluctuations, as detected, are nearly completely compensated. Thus any down–
conversion of high frequency components of Sd

v (f) to low frequency components in Sm
v (f) will

result in an identical transformation in the locked loop from high frequency components of
SLO

y (f) to low frequency components of SLLO
y (f) subject to a requirement of “low” frequency

as given above.
Depending on the harmonic content of g(t), the modulator will introduce such down–

conversion for “high” frequencies very near integral multiples of fc = 1/tc to frequencies
near f = 0. We assume tc ¿ t` ¿ τ , where τ is the time over which the stability of the
Signal Output is measured. The down–converted signals must be compared to the average
value of g(t), the which characterizes the strength with which the modulator passes signals
near f = 0. For g(t) symmetric about t = 0, coefficients gn for frequency down–conversion
of noise amplitudes near the nth harmonic of fc can be written:

gn =
1

tc

∫ tc

0
g(t) cos

(
2π n t

tc

)
dt, (23)

with the average value given by

g0 =
1

tc

∫ tc

0
g(t)dt. (24)

The coefficients gn depend on the nature of the RF excitation used and can be calculated
from forms for g(t) given by Eqs. 10 or 15.

Assuming complete compensation by the loop for the down–converted fluctuations, “white”
noise in the narrow range about each harmonic, (and taking into account fluctuations at fre-
quencies both above and below harmonics nfc,) the low frequency contribution to SLLO

y (f)
is given by

g2
0S

LLO
y (0) = 2 ·

∞∑
n=1

g2
nS

LO
y (nfc). (25)

The consequences of this relation depend in detail on the nature of the noise which
characterizes the local oscillator and on the time dependence of the duty factor. If, for
example, L.O. noise increases rapidly with frequency, the sum may not converge.

Modeling Quartz oscillator performance by a flat Allan Deviation σq over the time range
of interest allows its flicker frequency noise to be calculated as[13−15]

SLO
y (f) =

1

2 ln(2)

σ2
q

f
. (26)

Correspondingly, the limiting Ion Standard variance as measured at cycle time tc can be
related to the white noise of the locked loop SLLO

y (0) by

σ2
c =

SLLO
y (0)

2tc
. (27)



Combining Equations 25–27 allows us to calculate a performance ratio R between the
limiting frequency standard performance at the cycle time tc and the (constant) Quartz
oscillator performance given by

R2 ≡ σ2
c

σ2
q

=
1

2 ln(2)

1

g2
0

∞∑
n=1

g2
n

n
. (28)

Performance Degradation due to Quartz L.O.

Figure 9 shows the limitations to medium term performance for a trapped mercury ion
standard presently under development[5] in terms of the dimensionless parameter R. The
effect of conventional feedback limitations due to feedback attack time are also indicated[16,17].
For this L.O. performance[18,19] the value of R would need to be reduced to R = 0.02 for this
example in order to achieve the stability which is inherent in the standard.

Figure 10 shows the results of numerical calculations of the dependence of R on dead time
and pulse time based on Eq. 28 for waveforms shown in Figures 5 and 6. They show that
relatively small reduction in R is possible for single pulse RF interrogation, with R ≥ 0.305
for all values of the dead time. The situation is improved by the use of two (very narrow)
pulses where R approaches zero as the dead time is reduced. However, even in that case the
requirement of R ≤ 0.02 to match available quartz L.O.’s to the trapped mercury ion source
(from Fig. 9) requires an impractically low dead time of ∆d ≈ 0.01. At present, a minimum
value for the trapped mercury ion standard is ∆d ≈ 0.1–0.3.

Cryogenic (superconducting) oscillators[20] are presently available with performance which
would match and complement that of the new trapped mercury ion standard. These sources
show performance of σy(τ)|L.O. ≤ 10−14 for measuring times 1 second < τ < 1000 seconds.
While they are presently relatively complex and expensive, this may improve; furthermore,
if trapped ion performance continues to improve, cryogenic oscillator performance may be
required.

The performance improvement made possible by the use of two traps is even greater than
may first be apparent. This is because the length of the RF pulse sequence for two traps
may be reduced simply by applying more RF power (typically microwatts) and properly
synchronizing pulses for the two traps (typically milliseconds). A pulse length of 0.1 second,
can be combined with an overall interrogation time of 10 seconds to give a RF pulse time
fraction of ∆rf = 0.01. In contrast, reduction of the dead time much below 1 second in a
single trap may prove very difficult on account of the various tasks that must be accomplished
during that time. For example, in present versions of the trapped ion standard, a discharge
lamp requires approximately 1.0–1.5 seconds for optical interrogation and state preparation
during each cycle.

TWO–TRAP CONFIGURATIONS AND SCENARIOS

General Considerations

For two traps in separate and isolated RF environments, Fig. 10 shows that the optimally
overlapping strategy described in Figs. 6d) and 7a) offers a great advantage, with reduction



of L.O. influence on the long–term standard performance by almost 100 times compared to
straightforward double–pulse interrogation. Amplitude modulated pulses might also be used,
for nominally zero effect of the L.O. on medium–term performance.

However, many economies are brought about by combining the vacuum and trapping
elements of the two traps. Because trap elements and spacings may be approximately the
same size as the wavelength of the exciting radiation, RF isolation between the two traps is
likely to be poor. This would require the 100% overlap strategy described by Fig. 6c), with
simultaneous excitation of both traps. As shown in Fig. 10, an RF pulse time of ∆rf = 0.01
would make possible L.O. coupling as low as R = 0.005.

Isolated Traps

Figure 11 shows a hardware configuration using two completely independent traps. This
design features high RF isolation between traps and great flexibility of operation, so that
almost any interrogation scenario could be supported. While this configuration is designed
for use with trapped mercury ions in which the RF hyperfine transition at 40.5 GHz is
interrogated, similar configurations are applicable to other cases using, e.g. interrogation
of optical transitions, state preparation, and/or cooling by the use of lasers at one or more
wavelengths. Only those aspects relating to the interrogation process itself are presented:
not shown are trapping electrodes and voltage sources, ion sources, etc.

Figure 12 shows a state diagram representing the details of an interrogation scenario
using amplitude modulated pulses, for the hardware configuration shown in Fig. 11. A similar
scenario could be used for any of the other pulse strategies.

Four cycles with length tc make up this scenario as opposed to two cycles for previously
published single trap cases[4−6]. Two cycles are needed for each trap so that a reversal of
the RF phase progression can be used to cancel dependence of the frequency on the absolute
intensity of signals in the optical system. Thus, for trap #1, the 90◦ phase advance between
RF pulses in cycles 1 and 2 gives rise to a negative dependence of the reading of the counter
in cycle 2 (C2) on the L.O. frequency, while the opposite variation between cycles 3 and 4
gives rise to a corresponding positive dependence of the counter reading in cycle 4.

In this commonly used technique, frequency error is then inferred by the difference be-
tween the values of the counts obtained in cycles 2 and 4, or C4 −C2. Combining the values
for the two traps gives an inferred frequency error for the L.O. ∆fL.O. ∝ C1 −C2 −C3 + C4.
With appropriate weighting and filtering, this value is used by the Control element of Fig. 11
to adjust the frequency of the Local Oscillator, and so compensate and correct its deviations.

Combined Traps in a Linear Structure

Figure 13 shows a configuration that combines two ion collections in linear trapping structure
so that a single optical system (lamp and detector) can be used. This configuration is shown
in somewhat more detail than the previous one, and the traps share the same RF environment
to some extent, so that RF fields must be simultaneously applied to the two traps. Here,
electrostatic fields are used to separate and manipulate a linear ion cloud in such a way
that its two halves can alternately extend into a central region where optical pumping and



detection take place. Electrostatic elements are placed as shown at nodes (zeros) of the RF
trapping fields generated by the four circular rods.

Completely overlapping pulses are implemented by the state diagram shown in Fig. 14
with the beginning RF pulse for one trap being one and the same as the ending pulse of
the other. Here the phase progression of the RF pulses must extend to 180◦ in order to
provide insensitivity of the frequency to the absolute value of optical signals. This example
again gives frequency error in terms of fluorescent light counts in the various cycles as
∆fL.O. ∝ C1 − C2 − C3 + C4.

In the previous configuration, matching values of forward and reverse phase progression
(± ≈ 90◦) in each trap give a first order cancellation of sensitivity to the actual value of the
progression. A similar cancellation here requires that the phase steps at the ends of cycles
1 and 3 match, and also those at the ends of cycles 2 and 4. This could be accomplished by
use of two separate 90◦ phase shifters in series, actuated in an appropriate sequence.

The state diagram for this configuration includes electrostatic potentials for the electrodes
which move the ions into and out of the central region for optical illumination. No electrodes
are placed in this region because the light they would scatter would degrade performance of
the frequency standard. Instead, main electrodes 1 and 4 attract and repel the ions from
storage regions at either end where they are subject to RF pulses to begin and end their
respective clock cycles. “Cap” electrodes 2 and 3 contain and separate the ion clouds and
prevent either ion cloud from mixing with the other. Not shown are electrodes at the trap
ends which prevent escape of the ions. Critical aspects of this scenario include stability of
the trapping configuration during the clock time “b–e” of either ion cloud as indicated in
Fig. 14 while the other cloud is being moved. This is because of a configuration–dependent
frequency shift due to second–order Doppler effects[4].

Economies of this configuration include use of one component rather than two for many
functions. These components include most of the expensive and performance–sensitive parts
of the trap; and include vacuum housing, trap structure, trap excitation electronics, am-
plitude (pulse) modulator, state pumping lamp and excitation electronics, scattered light
detector, and photon counter. The added electrodes complicate the trap structure, but their
control with DC potentials is not difficult.

CONCLUSIONS

Improved performance of trapped–ion frequency standards is jeopardized by medium–term
instabilities generated by down–conversion of local oscillator frequency fluctuations. These
instabilities show a 1/

√
τ dependence on measuring time τ , and are due to periodic time–

variation of the frequency sensitivity of the RF interrogation process.
We have presented an analysis of the time–variation of this sensitivity for both single–

and double–pulse sequential RF interrogation processes based on a spin–flip analogue of the
electromagnetic transition process. The consequence of this variation was then numerically
calculated for a quartz–crystal type local oscillator with flicker–frequency noise characteris-
tics.

Results of these calculations show that for interrogation processes with large sensitivity
variations, e.g. single pulse interrogation with a 50% dead time, the 1/

√
τ performance of



the standard is degraded to a value approximately equal to that of the L.O. when measured
at the cycle time for the interrogation process.

Performance can be improved in several ways: (1) Use of an L.O. with ultra–stable short
term performance such as the cryogenic SCMO gives a good match to projected Trapped
mercury Ion standard performance for almost any interrogation process. (2) Double pulse
interrogation with short pulses and with a relatively short dead time (10% or less) can reduce
the effect substantially, so that the best Quartz crystal oscillators may not greatly degrade
presently observed Trapped Ion performance. (3) Use of several traps with overlapping
double–pulse interrogations could greatly reduce, and possibly eliminate, this effect.

Available performance improvement is limited by the inherent stability of the standard,
which shows this same time 1/

√
τ dependence, and by an L.O.–induced “feedback limitation”

which decreases more rapidly (as 1/τ) with increasing measuring time. Thus the greatest
impact on performance takes place at medium and long measuring times (τ ≥ 1000 seconds).
However, a strength of the trapped ion technology is at these longer times where the great
stability achievable with relatively few (isolated) ions can be expressed. Considerations dis-
cussed here may also be applicable to future optical trapped ion standards where sequential
interrogation is likely to be used, and where L.O. phase noise is also a major concern.
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FIGURE CAPTIONS

Figure 1 Field and frequency diagrams for a spin with moment I in the rotating reference system.
The general case is shown in a) where the applied frequency ωrf does not match
the internal transition frequency ωo = γHo, giving rise to an effective field in the
rotating frame Heff which differs from the applied RF field H1. Time evolution of
the electromagnetic transition corresponds to a three–dimensional rotation of I about
Heff . b) shows evolution during a π pulse at the resonant frequency ωo.

Figure 2 Three dimensional view of time evolution of I during single–pulse interrogation at a
half–bandwidth frequency offset, i.e. final excitation probability is 50%.

Figure 3 Phase variations in the Local Oscillator correspond to rotations about the z axis.
Here, an L.O. phase step half–way through the interrogation process causes Ifinal to
deviate from the mid–plane (50% excitation probability). L.O. frequency noise can be
mathematically represented by a series of such (infinitesimal) phase steps.

Figure 4 Changing the time of the phase step gives differing deviations of the final state from
the midplane. Shown are phase steps at 10%, 20%, 40% 60%, 80%, and 90% of the
RF pulse time. Phase steps near the middle of the interrogation have a greater effect
on excitation probability as represented by the z component of Ifinal.

Figure 5 Time dependence of the sensitivity g(t) of the final state to L.O. frequency variations
for several interrogation types. Here, a) corresponds to a sequential application of
single–pulse interrogation as described in detail by Figs. 2, 3, and 4; and b) and c) to
double–pulse (Ramsey) interrogation with pulse widths of 20% and 0%, respectively.
RF pulses beginning and ending the interrogations are labeled ‘b’ and ‘e’.

Figure 6 Time variability of g(t) may be reduced by the use of alternatively interrogated traps.
Here a) shows alternate single–pulse interrogations as Fig. 5a); and b), c), and d) show
double–pulse strategies as Fig. 5b) with varying overlap between the beginning pulse
for one trap and the ending pulse for the other.

Figure 7 Details of RF pulse sequences for optimally overlapping pulses a) and amplitude–
modulated pulses b). Optimally overlapping pulses have a short delay between the
ending pulse for one trap and the beginning pulse of the other. Coincident amplitude–
modulated pulses with proper waveform give unvarying g(t).

Figure 8 Simplified block diagram of frequency feedback in sequentially interrogated atomic
standard. Frequencies near harmonics of t−1

c are aliased to near zero frequency by
action of the modulator. High loop gain at long integration times improperly ‘corrects’
for these perceived low frequency fluctuations.

Figure 9 The effect of aliased (white) low frequency noise can be described in terms of a dimen-
sionless parameter R which describes consequent 1/

√
τ dependent frequency deviation

in relation to L.O. stability and the cycle time tc. For this example, a value of R ≤ 0.02
is required to prevent degradation of inherent performance of the source.



Figure 10 Numerical calculations of R for L.O. with flat deviation as shown in Fig. 9 (flicker
frequency noise). R is plotted as a function of the fractional dead time ∆d for one–trap
scenarios shown in Figs. 5a) and c); and as a function of fractional RF pulse time ∆rf

for two–trap scenarios described in Figs. 6b), c), and d). Two–trap scenarios show
advantage of low–lying curves in addition to ability to reduce ∆rf < 0.1.

Figure 11 Block diagram of a trapped ion frequency standard using two completely independent
traps, each including its own phase and amplitude control, state pumping lamp and
scattered light detector for maximum flexibility. Excellent RF isolation allows use of
complex interrogation scenarios.

Figure 12 State diagram showing a time sequence for the frequency standard as shown above
which uses amplitude modulated pulses for nominally zero sensitivity of medium term
performance of the standard to L.O. fluctuations. Four cycle scenario allows insensi-
tivity of operating frequency to signal intensity, phase shift error.

Figure 13 Block diagram of a trapped ion frequency standard with two ion collections combined
in a single linear quadrupole trapping structure. Added electrostatic elements 1–4
separate the ions into two collections and alternately allow each collection to extend
into a central region where a state–pumping lamp and scattered light detector are
located. Poor RF isolation indicates use of common constant–amplitude RF pulses.

Figure 14 State diagram showing a time sequence for the frequency standard shown above. 180◦

phase shift range is necessary for insensitivity to signal intensity for both ion collections.
Two 90◦ phase shifters in series can also give independence to phase shift error. V1–V4
show potentials applied to electrostatic electrodes 1–4.
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