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Spectral Ambiguity of Allan Variance

Charles A. Greenhallvember, IEEE

Abstract—The phase-noise spectrum determines the Allan 40
variance by a well-known integral formula. It is shown here that M S,(f) (approx.)
unique inversion of this formula is not possible in general because N\ - /
the mapping from spectrum to Allan variance is not one-to-one. A 20 N 1 S,(f)
necessary and sufficient condition for two distinct phase spectra Y 1
to have the same Allan variance is given. 0 (@
Index Terms—Covariance functions, finite difference methods,
Fourier transforms, frequency stability, integral equations, phase &
noise, spectral analysis, time domain analysis. o -20 1
b
B
|. INTRODUCTION & 40
) D 40
HIS paper addresses the question “To what extent does &
the Allan variance of a noise process determine its power é
spectrum?” Devised to satisfy a need for characterizing nonsta- @

N
o

tionary phase and frequency noise in clocks and oscillators [1],

[2], conventional Allan variance is the most often-used method

for reducing a clock-noise time series to a statistical summary 0
of frequency stability; its use has also spread to other fields of
science as a tool for studying low-frequency spectral behavior

of physical processes. Because Allan variamﬁer) acts as an
approximate highpass spectral analyzer on phase modulation

(PM) noise and an approximate octave bandpass analyzer logy f

on frequency modulation (FM) noise, linear regions in the

log-log “sigma-tau” plot,o, (7) versus averaging time, are Fig. 1. Examples of spectra with the same Allan variance. (a) Examples
associated with regions of power-law beha\/ﬁﬂ' in the PM for Theorem 1: three spectra with the same constant Allan variance. The
spectrumSm(f), which maps th(T) by the straightforward straight line isf —3. The rectangles approximate a delta-function spectrum.

(b) Examples for Theorem 2: two spectra with the same nonconstant Allan
formula variance.

=5 [ miEmsmd o | | |
T Jo present paper is that Allan variance does not always determine

[3]. The identification of power-law components 6% (f) a unigue PM speptrum. Moreover, th(_a ambiguity i_s centered at
from those ofo2(r) is an example of parametricinversion th_engSt interesting case, namely, flicker-FM noisg(f) o
of (1) from Allan variance to spectrum. There is no problerd » Whose Allan variance is constant. It is shown that
with this practice if the actual spectrum is known to have iHallan variance is totally insensitive to a certain class of log-
desired parametric form. periodic modulations of the spectrum by octaves (see Fig. 1
On the other hand, claims ofionparametricinversion for €xamples). Consequently, an inversion algorithm for (1)
formulas have been published. Lindsey and Chie [4] gi\;@ust.be one-sided: starting from a given Allan variance the
formulas for S,(f) or its generalized Fourier transform inalgorithm does not necessarily arrive at the correct spectrum,
terms ofo2(r) or other finite-difference variances. Van Vlietout only atsomespectrum that has the same Allan variance.
and Handel [5], regarding (1) as an integral transform that This paper has two main results. The crux of the matter is
generalizes the Fourier transform, assert étr) uniquely contained in Theorem 1, which characterizes the infinite set
determinesS,(f) and give an inversion formula involving Of _PM spectra Whos_e AIIan_ variance equals a give_n constant.
Laplace and Mellin transforms. The principal claim of thd his theorem leads immediately to Theorem 2, which gives a
_ _ _ necessary and sufficient condition for any two spectra to have
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[I. NOTATION AND TERMINOLOGY where¢(2f) = ¢(f) for all f, and+(x) is a function
Allan variance is defined for a PM (or time deviation) ~ With period on, integrable over a period. Then (6)
processz(t) with stationary second differences by becomes
1 1
o) = 5 varle(t) = 2e(t = ) +a(t = 20)]  (2) Vi = 872 In 2 / () da. (8)
0

(where var= variance). The one-sided power spectral density
Sz(f) of the process:(t) maps directly tar>(7) according to ; ) . X
(1). In this exposition, which deals mainly with spectra, not ~ @</ <2a. Thatis so because the interval of integration
with the processes themselves, a “PM spectrum” is defined to_ N (8) can be replaced by any interval of length one.

be a nonnegative measurable funcligh.(f) for f> 0 that 3) Any locally integrable functior®( f) that satisfies (5) is
satisfies a signed PM spectrum of degree two, or is identically

o L zero a.e. This can be shown by expressing the integrals
/ S (f) df<oo,/ Sa ()2 df < oo (3) of S.(f) = |®(f)| in (3) as sums of integrals over
1 0 octaves[2", 2" *1] for integersn.
for some nonnegative integef. These spectra have finite Examples of PM spectra with the same constant Allan
power at high frequencies and diverge in a controlled wasariance &2 In 2 are shown in Fig. 1(a). The straight line
at low frequencies. The smallest su¢is called thedegreeof is just f=2. The PM spectrun;(f) is given by
Sz, written deg S,.. The degree is also the smallest number of
difference operations that have to be applied to the PM process S1(f) = f7*[1 — 0.9cos(2r log, f)]. 9)
x(t) to produce a stationary process. A PM spectrum’s Allan
variance is finite if and only if the spectrum has degre@. The series of rectangles is an approximation to the pure delta-
It is convenient to embed the set of PM spectra in a vectfimnction spectrum
space of real-valued functions. gigned PM spectrun®( f)

) The range of integration in (6) can be any octave

is defined to be a measurable function such tldgtf)| is a . = —n n
PM spectrum. Its degree is defined to be tha;gﬁf))". Let So(f) =In 2 _z: A7 =2, (10)
us extend the notion of Allan variance to a linear mapping on R
the subspace of signed PM spectra of degre2 by which lies slightly outside the mathematical framework given
8 [ ., here. The approximating rectangles have height proportional
Va(ri @)= — /0 sin® (7 fr)@(f) df (4)  to 8 but area proportional to4*. Among PM spectra with

) o ) ) constant Allan variance, this one is the most extréinghat
which will still be called Allan “variance” even though it cang| the power in each octave is concentrated at one frequency.
assume any real value, including zero. The proof thatSy(f) has the same constant Allan variance

as f~3 is short and instructive. By (4)

lll. RESULTS
_The first result says t.hat th_e most general PM spectrum VA(£§SO) — 32 Iy 2 i 51114(2;%)' (11)
with a constant Allan variance is obtained from a log-periodic 7r = A
modulation of anf—3 spectrum by octaves. The result is
established here for signed PM spectra so that it can eagligcause of the critical identity
be applied to the proof of Theorem 2.
Theorem 1: A signed PM spectrum®(f) has a constant sin*z = sin” z — 1 sin” 2z (12)
Allan varianceVy if and only if
o(f) the summation in (11) equals
O(2f) = 5 a.e. (5)
-2 (ok s 2 (ok41
) . sin” (2%z sin” (2T 'z
In this case lim Zl 4k(x2 ) _ 4k(+1x2 ) - (13
2 k=n
va=set [ Pat) ©) . |
L For eachn, the series in (13) telescopes to the single term

. o=  270m P .
(a.e.= almost everywhere with respect to Lebesgue measuré.)"< ?sin®(2"x), whose limit asn — —oo is one. Hence

Some remarks and examples follow. Va(r; So) = 8 1.n 2. o
1) The condition (5) ond(f) is equivalent to the repre- The s_,econd main res_ult, the_chara_cterlzatlon of the spectral
sentations ambiguity of Allan variance, is an immediate corollary of
o(f)  w(log, f) Theorem 1. Two PM spectra have the same Allan variance
O(f)=—5 = g;)? a.e. (7) if and only if their difference is a signed PM spectrum with
f f zero Allan variance; thus Theorem 1 applies with = 0.

1This theory can also be carried out in the context of general spectral
measures, which include delta functions and other singular measures. IndeeéBut canonical in the sense that it generates all others by a logarithmic
one of the examples below consists entirely of delta functions. convolution operation
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Theorem 2: Two PM spectraS;(f) and Sz(f) of degree (wherew = 2 f) that represents the general solution of the
<2 have the same Allan variance if and only if the signed Pklomogeneous equation, i.e., the spectral ambiguity. H&re,
spectrum®(f) = S1(f) — S2(f) satisfies®(2f) = ®(f)/8 is a contour andF'(p) some analytic function in the strip
a.e. and 1<Re p<5. Because the integrand has a simple pole at

2 p, = 3+ 1427n/Iln 2 for each nonzero integet, the sum
/ F2e(f) df =0. (14) of the residues takes the form
1

—Pn 73 - .
Remarks 1) and 2) above hold here also; in particular, the Z Cpw P = w Z cn exp(—i27mn log, w) (19)
integral of f2®(f) over any octave is zero. n#0 n#0

If f2S.(f) > a>0forall £, then one can obtain other PMwhich is of form f=3v(log, f) with ¥ (z) of period one and
spectra with the same Allan variance 8s(f) by adding a integral zero over a period, as specified in Theorem 2.
variety of log-periodic “modulations” of forny—2¢(log, f)
with (+ 1) = ¢(«) andfy 9 (x) dz = 0. Thisis illustrated ¢ stationary FM

in Fig. 1(b), which shows the two PM spectra , .
g- 1(b) P From the results already given, one can deduce that unique

Si(fy=f2+f" (15) inversion of the Allan variance formula (1) is indeed possible
Sy(f) = S1(f) — 2f 2 cos(2m log, f) (16) ifthe FM noise is stationary. Suppose tisat f) andS»(f) are
distinct nonnegative PM spectra of degre® with the same
both of which have Allan varianc@r?/T + 8r*r/3. Just Allan variance. Then both their degrees must be two. Proof:
enough of the modulation has been added to m#Ke) =0 according to Theorem B1(f) = So(f) + ®(f), whered(f)
while keepingSx(f) > 0. Suitably scaled in amplitude andsatisfies the conditions given there. Sirfté f) > 0, So(f) >
frequency, the PM spectrursi; (f), which is just white FM ¢, it follows that
plus random-walk FM, is often used as a noise model for

rubidium or cesium-beam frequency standards. S1(f) = 24(f) (20)
) where® () = max(®(f),0). Since f2®(f) is not a.e. zero
A. The Octave Variance on an octave but integrates to zero there, the PM spectrum
This name is given here to the expression &, (f) cannot be a.e. zero. By remark 3) following Theorem
1/(27) 1,deg®, = 2. By (20),deg 51 = '2. By a similar argument,
Vo(r; ®) = 87r2/ F2o(f) df (17) degS> =2. One concludes thatnique inversion of the Allan
1/(47) variance formula (1) is possible for PM spectra of degree

; 5 .
which was introduced by Percival [6] as an ideal version of 3 1- Examples include power lawg”, -3 </ < 0 (with a

bandpass variance of Rutman [7]. Again, this “variance” cdlgh-frequency rolloff if 3 > —1) and integrated Lorentzians

-2 2 2 \—1 .
assume any real value on signed PM spectra. It leads td a /1 fo) - These processes are already characterized

reformulation of Theorems 1 and 2. Since the derivative & thefirst-differenpe Var_iancé)l(v) = var[a:(t) —xz(t—17)],

f2a F28(f) df with respect tos equalssa®®(2a) — a®(a) for which unique inversion to spectrum is known. Even so,
YL i : ; the inversion problem is ill-posed: for example?(r) and
a.e., it follows thatV,(r; ®) is constant if and only if>(f) (PTRLIE - 9

satisfies the condition (5) of Theorem 1. Thus, Theorem Z1(7) both distinguish the flicker PM spe(c):trugfr (rolled
says that a signed PM spectruii(f) has a constant Allan Off above f,) from the white PM spectrunf® by a factor of
variance if and only®(f) has a constant octave Variancegrderln(fhr), which is hard to see in practice. This was the
i.e., the corresponding signed FM spectrun? #2&( f) gives main reason for introducing the modified Allan variance [8].
equal (signed) power to every octawes f < 2a for a > 0; in

this case, the two variancdg, andV, are equal. Theorem 2 IV. DOES IT MATTER?

says that two PM spectra of degre@ have the same Allan  These spectral nonuniqueness results have been given here,
variance if and only if their difference has octave varianogot to discourage the conventional use of Allan variance
zero, i.e., the corresponding FM spectra give the same povi§r analyzing time series, but simply to expose a previously
to every octave. The nullspaces of thg and V,, operators unknown limitation of the technique. One can object that these

turn out to be the same. results are irrelevant because the log-periodic spectral modula-
tions that constitute the ambiguity do not arise from any known
B. Another Derivation of the Ambiguity physical theory; consequently, any spectral disturbances lying

Although Van Vliet and Handel [5] claim unique inversiodn the nullspace of the integral operator given by (4) can
of Allan variance to spectrum, their method actually leads R €xcluded on physical grounds. Naturally, if one of the
another derivation of the nonunigueness condition of Theoret€ctra belonging to a spectrally ambiguous Allan variance
2. After taking the Laplace transform of both sides of (4)}as @ simple parametric form, as in the examples of Fig. 1,
they solve the resulting integral equation by complex Mellifhen it is reasonable to exclude the other spectra; the example

transforms. The solution fob(f) contains an additive term ©Of Fig. 1(b) is intended only to show how the ambiguity
works. In the general nonparametric case, unless one has

j{ F@)M dp (18) an objective criterion for a physically relevent spectrum, it
c 1—2pr=8 wp is hard to choose which spectrum is the right one or to
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decide whether a proposed inversion algorithm introducedfad = 0, then the sum in (25) is omitted, anl(t; ®) is

physically objectionable spectral disturbance. just the cosine transform @b(f). The integral in (24) exists
Even if the previous objection is granted, one can argadsolutely because of (3) and (31) below.

that users of Allan variance still ought to be aware of the Some facts about the gacv will be developed in a sequence

facts that are proved here. First, since other researchers haivegropositions, the first of which deals with scaling and

asserted unique invertibility, the record needs to be set straightearity.

The operation (4) ought not to be regarded as an integralProposition 1: Let ®,®;,®, be signed PM spectra,

transform that extends the Fourier transform. Second, thgu,ao real numbersg > 0. The expressions

outputs of artificiall/f noise generators built from ladders ) )

of first-order analog or digital filters [9], [10] have just this alilt; ®(a)] — R(t/a; 2) (26)

kind of modulated spectrum, although the frequency ratio of R(t;a1Q1 + a2®2) — an R(t; @1) — a2 R(t; ©2)  (27)

the ladder is not usuall_y deagned to be two, anq .there AR polynomials, whereb(a-) denotes the functiory —

only a few filter stages in practice. Nevertheless, it is unsa&;*(af)

to use flatness of Allan variance of the integrated output aSThis can be shown by straightforward manipulations of

a test of the spectral accuracy of such generators. Fina 24) It is necessary to observe thatdiéz & — d; < d, then
these results put a fundamental limitation on what can b, .right side of (24) differs fromi(#; ®) by a Solyn’omial

learned about a noise process from examination of its All erefore, when evaluating the members of (27), one can take
variance, which, in general, does not completely charactericzge_ max(deg ®1, deg ®2) in (24)
—_— te P .

the covariance properties of the noise. Although the Allan- . .« \ow to be shown thaik and ® form a generalized

variance statistic rgmains useful for reyealing brpad Spem%urier-transform pair with respect to a certain space of test

tr_e Uds* t_he ex_tractlon_ of spectral details by this means flihctions. For this purpose, a “test function” is defined to be a

difficult, if not impossible. complex-valued functiow(¢), defined for all reat, such that

v(t) is the inverse Fourier transform of a functiéff) that

is infinitely differentiable and vanishes outside some closed,

bounded subinterval of the positive real line. k€t) be a test
The “if” part of Theorem 1 and the formula (6) fdfy can function. Thenw(¢) is bounded ang>?_ w(¢) dt = £(0) = 0.

be proved by generalizing the derivation of the Allan variandategrating the inverse Fourier relationship repeatedly by parts,

of the delta-function spectrum (10). Assume merely thaf) one finds that™(¢) is also a test function for any positive

is a locally integrable function satisfying (5). By Remark 3jnteger n. Therefore, for any polynomiap(t),p(t)v(t) is

following Theorem 1&(f) is a signed PM spectrum of degreentegrable and/~7_ p(t)v(t) dt = 0, i.e, test functions “kill

two (or vanishes a.e.). Then, for amy> 0,sin*(7 f7)®(f) is  polynomials”.

APPENDIX
PROOF OF THEOREM 1

integrable, and/; (7; ®) = 872 lim,,—,_~ I.(7), where Proposition 2: If ®(f) is a signed PM spectrum, then
I(m) = / sin(n fr)@(f) df (21) / V(t)R(t; @) dt = 1 / ) df  (28)
n —00 0

Use the trigonometric identity (12) to expre$s(r) as the for all test functions(#).

difference of two integrals, in the second of which make the  proof: Let deg® = d. By (24), the left side of (28)
change of variablg” = 2f and apply (5). The two integrals,equa|s

now having the same integrand, recombine to give

gntt / dt ;/(t)/ df O(£)Cy(2r f,t). (29)
L= [ swernec) d 22) e 0

2 Writing

which, via another change of variable and (5) again, gives
5 2 sin(2"7rTf) 2 ) C’d(w t) — # cos wt — dz_:l M
In(r) =7"7 /1 [W} e (f) df. (23) 1+ w2 = (@)

As n — —oo, the sinc function tends uniformly to one, and 1 coswt w2 (30)
I,(7) therefore tends ta72 [2 f2®(f) df. 1+ w2d

The proof of the “only if* part of Theorem 1 depends omyne sees from Taylor's formula with remainder that
properties of thegeneralized autocovarianc@acv) function

2d 2d
[11], defined for signed PM spectra of degrédy P G
- |Ca(w,t)| < T+ o (2d)!+1 . (31)
R(t; @) :/0 Ca(2mf, )2(f) df (24) Consequently, the iterated integral (29), with the integrands

where replaced by their absolute values, is bounded by

oo

d—1 j ; 24 * dw w w24
Cy(w,t) = cos(wt) — 1 +1w2d Z (_1()25,;)!02 . (25 /_Oo () <® + 1) /0 g‘é(%)‘ 1+ de( |
=0 : 32
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which is finite. By Fubini’'s theorem (the integrand being The proof of Theorem 1 can now be completed. Assume
jointly measurable), the integral (29) exists and the order tfat Vy(7; ®) is constant. Thenrleg ® < 2. Let its gacv be

integration can be interchanged, giving

oo

dt v(t)Cy (27 f,1).

R(t). From (36) one sees th&t(2¢) — 4R(¢) is a polynomial.
By Proposition 1, the gacv @ (f/2)—8®(f) equal2R(2¢)—
8R(t) plus a polynomial, and is therefore also a polynomial.

| vorewi= [ daem [

Becausev(t) kills polynomials

(33)

v(t)cos(2n ft) dt (34)

for f>0. [ |

Proposition 3: If ®(f) is a signed PM spectrum for which
R(t;®) is a polynomial, then®(f) 0 a.e. (and hence [1]
R(t; ®) is actually zero).

Proof: If R(t;®) is a polynomial, then it is killed by
all test functions/(¢). By Proposition 2,&(f) is orthogonal
to all the test-function transform¥ ). Because the indicator
function of any open intervala, b[, where0 <a <b < oo, is
the limit of an increasing sequence of such transforms, i
follows that ®(f) integrates to zero over all such intervals,
and therefore vanishes a.e. ]

The last proposition gives a formula for Allan variance in
terms of gacv.

Proposition 4: If ®(f) is a signed PM spectrum of degree
<2 with gacv R(t), then

(2]
(3]

(6]

(7]

72Va(7;®) = 3R(0) — 4R(7) + R(27). (36)

Proof: Let A2 be the backward second-difference operal®]
tor: A2z(t) = z(t)—2x(t—7)+x(t—27) for any functionz(¢).
This operator kills polynomials of degre€l and reduces the [9]
degree of other polynomials by two; thus, the product operatBB]
A = A2A? _ kills polynomials of degree<3. Applying A to
both sides of (25) as functions offor fixed w = 2xf and
d < 2 gives

ACy(27 f,t) = 16sin* (7 f7) cos(2n ft).

[11]

37)

Finally, applyingA to both sides of (24) and setting= 0
gives [in view of (4)]

R(—27)— 4R(—7)+ 6R(0) — 4R(7)+ R(21) = 272Va(7; D)
(38)

which is the same as (36) becauBé&; @) is even. ]

Although the formula (36) is easy to derive from (2) for ¢
stationary process with autocovariari®& ), the present theory
applies to a process with stationary second differences a&
gacv R(t).

By Proposition 3,®(f/2) — 8®(f) = 0 a.e.
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