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Spectral Ambiguity of Allan Variance
Charles A. Greenhall,Member, IEEE

Abstract— The phase-noise spectrum determines the Allan
variance by a well-known integral formula. It is shown here that
unique inversion of this formula is not possible in general because
the mapping from spectrum to Allan variance is not one-to-one. A
necessary and sufficient condition for two distinct phase spectra
to have the same Allan variance is given.

Index Terms—Covariance functions, finite difference methods,
Fourier transforms, frequency stability, integral equations, phase
noise, spectral analysis, time domain analysis.

I. INTRODUCTION

T HIS paper addresses the question “To what extent does
the Allan variance of a noise process determine its power

spectrum?” Devised to satisfy a need for characterizing nonsta-
tionary phase and frequency noise in clocks and oscillators [1],
[2], conventional Allan variance is the most often-used method
for reducing a clock-noise time series to a statistical summary
of frequency stability; its use has also spread to other fields of
science as a tool for studying low-frequency spectral behavior
of physical processes. Because Allan variance acts as an
approximate highpass spectral analyzer on phase modulation
(PM) noise and an approximate octave bandpass analyzer
on frequency modulation (FM) noise, linear regions in the
log-log “sigma-tau” plot, versus averaging time, are
associated with regions of power-law behavior in the PM
spectrum , which maps to by the straightforward
formula

(1)

[3]. The identification of power-law components of
from those of is an example of aparametric inversion
of (1) from Allan variance to spectrum. There is no problem
with this practice if the actual spectrum is known to have the
desired parametric form.

On the other hand, claims ofnonparametric inversion
formulas have been published. Lindsey and Chie [4] give
formulas for or its generalized Fourier transform in
terms of or other finite-difference variances. Van Vliet
and Handel [5], regarding (1) as an integral transform that
generalizes the Fourier transform, assert that uniquely
determines and give an inversion formula involving
Laplace and Mellin transforms. The principal claim of the
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Fig. 1. Examples of spectra with the same Allan variance. (a) Examples
for Theorem 1: three spectra with the same constant Allan variance. The
straight line isf�3: The rectangles approximate a delta-function spectrum.
(b) Examples for Theorem 2: two spectra with the same nonconstant Allan
variance.

present paper is that Allan variance does not always determine
a unique PM spectrum. Moreover, the ambiguity is centered at
the most interesting case, namely, flicker-FM noise,

, whose Allan variance is constant. It is shown that
Allan variance is totally insensitive to a certain class of log-
periodic modulations of the spectrum by octaves (see Fig. 1
for examples). Consequently, an inversion algorithm for (1)
must be one-sided: starting from a given Allan variance the
algorithm does not necessarily arrive at the correct spectrum,
but only atsomespectrum that has the same Allan variance.

This paper has two main results. The crux of the matter is
contained in Theorem 1, which characterizes the infinite set
of PM spectra whose Allan variance equals a given constant.
This theorem leads immediately to Theorem 2, which gives a
necessary and sufficient condition for any two spectra to have
the same Allan variance. An alternate derivation of this result
is carried out from the formalism of Van Vliet and Handel.
Some additional argument yields a class of spectra that does
enjoy unique inversion of (1). The Appendix gives a proof of
Theorem 1.
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II. NOTATION AND TERMINOLOGY

Allan variance is defined for a PM (or time deviation)
process with stationary second differences by

(2)

(where var variance). The one-sided power spectral density
of the process maps directly to according to

(1). In this exposition, which deals mainly with spectra, not
with the processes themselves, a “PM spectrum” is defined to
be a nonnegative measurable function1 for that
satisfies

(3)

for some nonnegative integer These spectra have finite
power at high frequencies and diverge in a controlled way
at low frequencies. The smallest suchis called thedegreeof

, written The degree is also the smallest number of
difference operations that have to be applied to the PM process

to produce a stationary process. A PM spectrum’s Allan
variance is finite if and only if the spectrum has degree2.

It is convenient to embed the set of PM spectra in a vector
space of real-valued functions. Asigned PM spectrum
is defined to be a measurable function such that is a
PM spectrum. Its degree is defined to be that of Let
us extend the notion of Allan variance to a linear mapping on
the subspace of signed PM spectra of degree by

(4)

which will still be called Allan “variance” even though it can
assume any real value, including zero.

III. RESULTS

The first result says that the most general PM spectrum
with a constant Allan variance is obtained from a log-periodic
modulation of an spectrum by octaves. The result is
established here for signed PM spectra so that it can easily
be applied to the proof of Theorem 2.

Theorem 1: A signed PM spectrum has a constant
Allan variance if and only if

a.e. (5)

In this case

(6)

(a.e. almost everywhere with respect to Lebesgue measure.)
Some remarks and examples follow.

1) The condition (5) on is equivalent to the repre-
sentations

a.e. (7)

1This theory can also be carried out in the context of general spectral
measures, which include delta functions and other singular measures. Indeed,
one of the examples below consists entirely of delta functions.

where for all , and is a function
with period on, integrable over a period. Then (6)
becomes

(8)

2) The range of integration in (6) can be any octave
That is so because the interval of integration

in (8) can be replaced by any interval of length one.
3) Any locally integrable function that satisfies (5) is

a signed PM spectrum of degree two, or is identically
zero a.e. This can be shown by expressing the integrals
of in (3) as sums of integrals over
octaves for integers

Examples of PM spectra with the same constant Allan
variance 8 2 are shown in Fig. 1(a). The straight line
is just The PM spectrum is given by

(9)

The series of rectangles is an approximation to the pure delta-
function spectrum

(10)

which lies slightly outside the mathematical framework given
here. The approximating rectangles have height proportional
to 8 but area proportional to 4 Among PM spectra with
constant Allan variance, this one is the most extreme2 in that
all the power in each octave is concentrated at one frequency.

The proof that has the same constant Allan variance
as is short and instructive. By (4)

(11)

Because of the critical identity

(12)

the summation in (11) equals

(13)

For each , the series in (13) telescopes to the single term
, whose limit as is one. Hence

The second main result, the characterization of the spectral
ambiguity of Allan variance, is an immediate corollary of
Theorem 1. Two PM spectra have the same Allan variance
if and only if their difference is a signed PM spectrum with
zero Allan variance; thus Theorem 1 applies with

2But canonical in the sense that it generates all others by a logarithmic
convolution operation
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Theorem 2: Two PM spectra and of degree
2 have the same Allan variance if and only if the signed PM

spectrum satisfies
a.e. and

(14)

Remarks 1) and 2) above hold here also; in particular, the
integral of over any octave is zero.

If for all then one can obtain other PM
spectra with the same Allan variance as by adding a
variety of log-periodic “modulations” of form
with and This is illustrated
in Fig. 1(b), which shows the two PM spectra

(15)

(16)

both of which have Allan variance Just
enough of the modulation has been added to make
while keeping Suitably scaled in amplitude and
frequency, the PM spectrum , which is just white FM
plus random-walk FM, is often used as a noise model for
rubidium or cesium-beam frequency standards.

A. The Octave Variance

This name is given here to the expression

(17)

which was introduced by Percival [6] as an ideal version of a
bandpass variance of Rutman [7]. Again, this “variance” can
assume any real value on signed PM spectra. It leads to a
reformulation of Theorems 1 and 2. Since the derivative of

with respect to equals
a.e., it follows that is constant if and only if
satisfies the condition (5) of Theorem 1. Thus, Theorem 1
says that a signed PM spectrum has a constant Allan
variance if and only has a constant octave variance,
i.e., the corresponding signed FM spectrum 4 gives
equal (signed) power to every octave for ; in
this case, the two variances and are equal. Theorem 2
says that two PM spectra of degree2 have the same Allan
variance if and only if their difference has octave variance
zero, i.e., the corresponding FM spectra give the same power
to every octave. The nullspaces of the and operators
turn out to be the same.

B. Another Derivation of the Ambiguity

Although Van Vliet and Handel [5] claim unique inversion
of Allan variance to spectrum, their method actually leads to
another derivation of the nonuniqueness condition of Theorem
2. After taking the Laplace transform of both sides of (4),
they solve the resulting integral equation by complex Mellin
transforms. The solution for contains an additive term

(18)

(where that represents the general solution of the
homogeneous equation, i.e., the spectral ambiguity. Here,
is a contour and some analytic function in the strip

Because the integrand has a simple pole at
for each nonzero integer, the sum

of the residues takes the form

(19)

which is of form with of period one and
integral zero over a period, as specified in Theorem 2.

C. Stationary FM

From the results already given, one can deduce that unique
inversion of the Allan variance formula (1) is indeed possible
if the FM noise is stationary. Suppose that and are
distinct nonnegative PM spectra of degree2 with the same
Allan variance. Then both their degrees must be two. Proof:
according to Theorem 2, , where
satisfies the conditions given there. Since
, it follows that

(20)

where Since is not a.e. zero
on an octave but integrates to zero there, the PM spectrum

cannot be a.e. zero. By remark 3) following Theorem
1, By (20), By a similar argument,

One concludes thatunique inversion of the Allan
variance formula (1) is possible for PM spectra of degree

Examples include power laws (with a
high-frequency rolloff if and integrated Lorentzians

These processes are already characterized
by thefirst-difference variance ,
for which unique inversion to spectrum is known. Even so,
the inversion problem is ill-posed: for example, and

both distinguish the flicker PM spectrum (rolled
off above from the white PM spectrum by a factor of
order , which is hard to see in practice. This was the
main reason for introducing the modified Allan variance [8].

IV. DOES IT MATTER?

These spectral nonuniqueness results have been given here,
not to discourage the conventional use of Allan variance
for analyzing time series, but simply to expose a previously
unknown limitation of the technique. One can object that these
results are irrelevant because the log-periodic spectral modula-
tions that constitute the ambiguity do not arise from any known
physical theory; consequently, any spectral disturbances lying
in the nullspace of the integral operator given by (4) can
be excluded on physical grounds. Naturally, if one of the
spectra belonging to a spectrally ambiguous Allan variance
has a simple parametric form, as in the examples of Fig. 1,
then it is reasonable to exclude the other spectra; the example
of Fig. 1(b) is intended only to show how the ambiguity
works. In the general nonparametric case, unless one has
an objective criterion for a physically relevent spectrum, it
is hard to choose which spectrum is the right one or to
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decide whether a proposed inversion algorithm introduces a
physically objectionable spectral disturbance.

Even if the previous objection is granted, one can argue
that users of Allan variance still ought to be aware of the
facts that are proved here. First, since other researchers have
asserted unique invertibility, the record needs to be set straight.
The operation (4) ought not to be regarded as an integral
transform that extends the Fourier transform. Second, the
outputs of artificial noise generators built from ladders
of first-order analog or digital filters [9], [10] have just this
kind of modulated spectrum, although the frequency ratio of
the ladder is not usually designed to be two, and there are
only a few filter stages in practice. Nevertheless, it is unsafe
to use flatness of Allan variance of the integrated output as
a test of the spectral accuracy of such generators. Finally,
these results put a fundamental limitation on what can be
learned about a noise process from examination of its Allan
variance, which, in general, does not completely characterize
the covariance properties of the noise. Although the Allan-
variance statistic remains useful for revealing broad spectral
trends, the extraction of spectral details by this means is
difficult, if not impossible.

APPENDIX

PROOF OF THEOREM 1

The “if” part of Theorem 1 and the formula (6) for can
be proved by generalizing the derivation of the Allan variance
of the delta-function spectrum (10). Assume merely that
is a locally integrable function satisfying (5). By Remark 3)
following Theorem 1, is a signed PM spectrum of degree
two (or vanishes a.e.). Then, for any is
integrable, and , where

(21)

Use the trigonometric identity (12) to express as the
difference of two integrals, in the second of which make the
change of variable and apply (5). The two integrals,
now having the same integrand, recombine to give

(22)

which, via another change of variable and (5) again, gives

(23)

As , the sinc function tends uniformly to one, and
therefore tends to

The proof of the “only if” part of Theorem 1 depends on
properties of thegeneralized autocovariance(gacv) function
[11], defined for signed PM spectra of degreeby

(24)

where

(25)

If , then the sum in (25) is omitted, and is
just the cosine transform of The integral in (24) exists
absolutely because of (3) and (31) below.

Some facts about the gacv will be developed in a sequence
of propositions, the first of which deals with scaling and
linearity.

Proposition 1: Let be signed PM spectra,
real numbers, The expressions

(26)

(27)

are polynomials, where denotes the function

This can be shown by straightforward manipulations of
(24). It is necessary to observe that if then
the right side of (24) differs from by a polynomial.
Therefore, when evaluating the members of (27), one can take

in (24).
It is now to be shown that and form a generalized

Fourier-transform pair with respect to a certain space of test
functions. For this purpose, a “test function” is defined to be a
complex-valued function , defined for all real , such that

is the inverse Fourier transform of a function that
is infinitely differentiable and vanishes outside some closed,
bounded subinterval of the positive real line. Let be a test
function. Then is bounded and
Integrating the inverse Fourier relationship repeatedly by parts,
one finds that is also a test function for any positive
integer Therefore, for any polynomial is
integrable and i.e, test functions “kill
polynomials”.

Proposition 2: If is a signed PM spectrum, then

(28)

for all test functions
Proof: Let By (24), the left side of (28)

equals

(29)

Writing

(30)

one sees from Taylor’s formula with remainder that

(31)

Consequently, the iterated integral (29), with the integrands
replaced by their absolute values, is bounded by

(32)
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which is finite. By Fubini’s theorem (the integrand being
jointly measurable), the integral (29) exists and the order of
integration can be interchanged, giving

(33)

Because kills polynomials

(34)

(35)

for
Proposition 3: If is a signed PM spectrum for which

is a polynomial, then a.e. (and hence
is actually zero).

Proof: If is a polynomial, then it is killed by
all test functions By Proposition 2, is orthogonal
to all the test-function transforms Because the indicator
function of any open interval , where , is
the limit of an increasing sequence of such transforms, it
follows that integrates to zero over all such intervals,
and therefore vanishes a.e.

The last proposition gives a formula for Allan variance in
terms of gacv.

Proposition 4: If is a signed PM spectrum of degree
2 with gacv , then

(36)

Proof: Let be the backward second-difference opera-
tor: for any function
This operator kills polynomials of degree1 and reduces the
degree of other polynomials by two; thus, the product operator

kills polynomials of degree 3. Applying to
both sides of (25) as functions offor fixed and

gives

(37)

Finally, applying to both sides of (24) and setting
gives [in view of (4)]

(38)

which is the same as (36) because is even.
Although the formula (36) is easy to derive from (2) for a

stationary process with autocovariance , the present theory
applies to a process with stationary second differences and
gacv

The proof of Theorem 1 can now be completed. Assume
that is constant. Then Let its gacv be

From (36) one sees that is a polynomial.
By Proposition 1, the gacv of equals

plus a polynomial, and is therefore also a polynomial.
By Proposition 3, a.e.
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