Attachment B

Presentation of Question 2; Jeff Williams, USGS

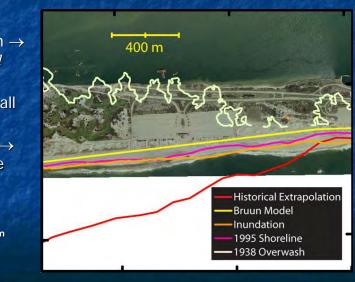
CCSP SAP 4.1 Question 2

How does sea-level rise change the coastline? Among those lands with sufficient elevation to avoid inundation, which land could potentially erode in the next century? Which lands could be transformed by related coastal processes?

> S. Jeffress Williams USGS/WHSC E. Robert Thieler USGS/WHSC Benjamin Gutierrez USGS/WHSC Eric Anderson USGS/CSC

Question 2 focused on open-ocean coasts

- Present shoreline physical setting: national, NY to NC
- Current understanding of important geologic factors and oceanographic processes
- Potential impacts and responses to SLR
- Review and test current models for predicting shoreline and coastal change
- Methodologies reviewed
 - Shore-line change/historic erosion-rate extrapolation
 - Bruun Rule
 - Inundation
 - Index-ranking based on physical criteria
- Review is guiding research plan development


E-rate, Bruun Rule, and Inundation Predictions for 2100

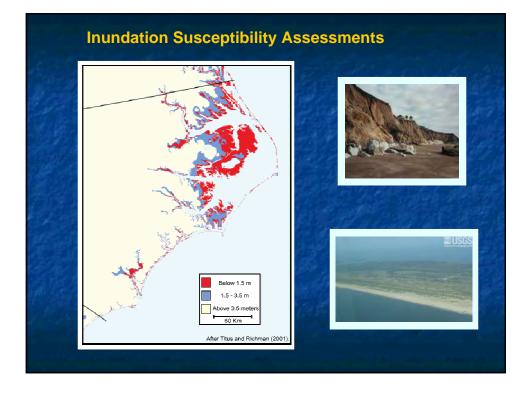
- Erosion-rate extrapolation → large change
- Bruun → small change
- Inundation → small seaward change
- Western Fire Island, NY (near Saltaire)
- SLR = 59 cm = 48 cm IPCC + 11 cm local subsidence
- E-rate = long-term rate * 105 yr

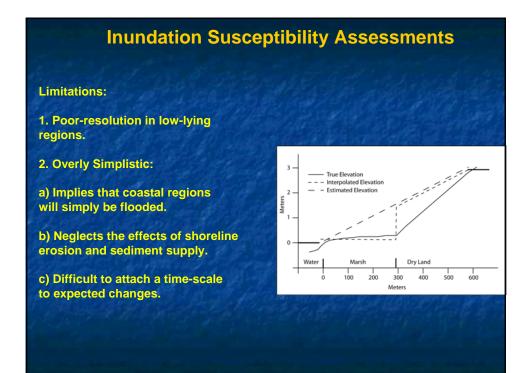
E-rate, Bruun Rule, and Inundation Predictions for 2100

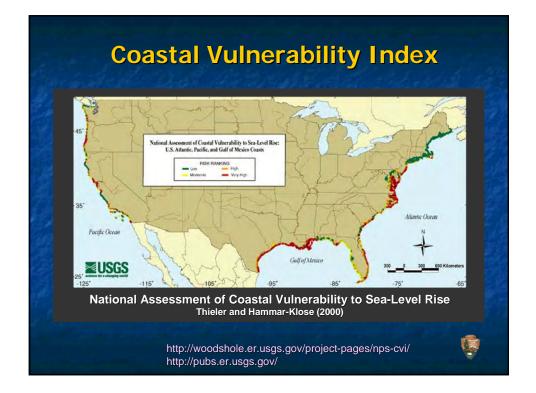
- Erosion-rate extrapolation → large seaward change
- Bruun → small change
- Inundation → small change
- Western Fire Island, NY (near Democrat Point)
 SLR = 59 cm = 48 cn
- SLR = 59 cm = 48 cm IPCC + 11 cm local subsidence
- E-rate = long-term rate * 105 vr

Bruun Model Assumptions:

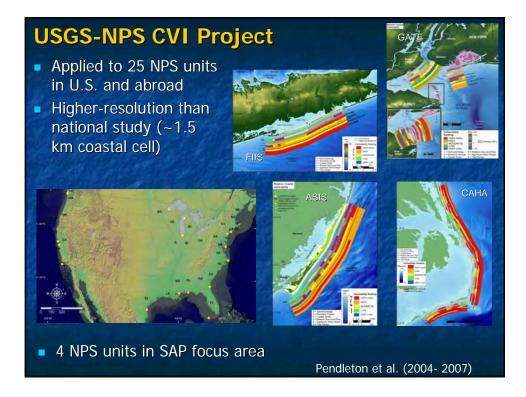
×


1) the beach is eroded due to landward translation of the profile


2) material eroded from the beach is transported offshore and deposited so that the volume eroded from the beach equals the volume deposited seaward of the shoreline


3) the rise in the nearshore seabed as a result of deposition is equal to the rise in sea level, maintaining a constant water depth

4) gradients in alongshore sediment transport are negligible


5) cross-shore sediment transport is negligible

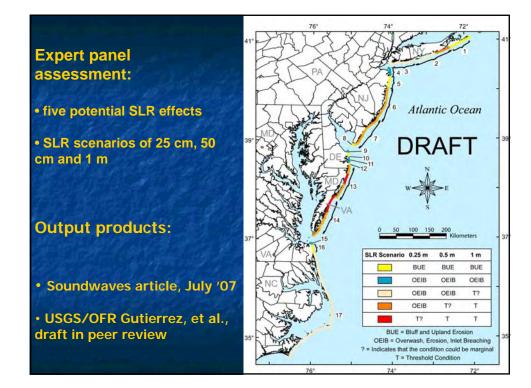
CVI Methodology							
VARIABLES	SOURCE						Utilize existing data for six
GEOMORPHOLOGY	Aerial Photography from MassGis and USGS http://www.state.ma.us/mgis/					1	geological and physical process variables:
SHORELINE EROSION/ACCRETION (m/yr)	USGS Administrative Report: The Massachusetts Shoreline Change Project: 1000: 1994 (Theler et al., 2001)					BUSHIC SUBJECT OF STATES	
COASTAL SLOPE (%)	NGDC Coastal Relief Model NGDC Coastal Relief NGDC Coastal Relief Model NGDC Coastal Relief NGDC						 a) Geomorphology b) Historic shoreline change c) Coastal Slope d) Relative sea-level rise rate e) Mean sig. wave height f) Mean tidal range
RELATIVE SEA-LEVEL CHANGE (mm/yr)	NOAA Technical Report NOS CO OPS 36 SEA LEVEL VARIATIONS OF THE UNITED STATES 1854-1999 (Zarvas, 1907, noz. noz. noz. apolyubilications/technp186doc.pdf						
MEAN SIGNIFICANT WAVE HEIGHT (m)	North Attartic Region WIS Data (Phase II) and NOAA National Data Buoy Center http://biglood.wes.amy.ml/u003.html http://biglood.wes.amy.ml/u003.html						
MEAN TIDE RANGE (m)	NCAANOS CO OPS Historical Water Level Station Index http://www.co-ops.nces.ncea.gov/station_index.shtm??state						
	182	18 K	printing of the	ornoun-gos station			Data are scored using a simple
VARIABLES	VERY LOW	LOW 2	MODERATE	HIGH 4	VERY HIGH		ranking system, so that the variables
GEOMORPHOLOGY	Rocky, cliffed coasts Fjords	Medium cliffs Indented coasts	J Low cliffs Glacial drift Alluvial plains	4 Cobble Beaches Estuary Lagoon	5 Barrier beaches, Sand beaches, Salt marsh, Mud flats, Deltas, Mangroves,		can be expressed in a quantifiable manner.
SHORELINE EROSION/ACCRETION	> 2.0	1.0 - 2.0	-1.0 - 1.0	-2.01.0	Coral reefs		Once the data are complete in a
(mlyr) COASTAL SLOPE (%)	> 1.20 >1.90	1.20 - 0.90 1.90 -1.30	0.90 - 0.60	0.60 - 0.30	< 0.30 <0.60		GIS, an equation can be applied to calculate the CVI.
RELATIVE SEA-LEVEL CHANGE (mm/yr)	< 1.8	1.8 - 2.5	2.5 - 3.0	3.0 - 3.4	> 3.4		
MEAN WAVE HEIGHT (m)	< 0.55 < 1.10	0.55 - 0.85 1.1 - 2.0	0.85 - 1.05 2.0 -2.25	1.05 - 1.25 2.25 - 2.60	> 1.25 > 2.60		$CVI = \sqrt{\frac{(a \times b \times c \times d \times e \times f)}{6}}$
MEAN TIDE RANGE (m)	> 6.0	4.0 - 6.0	2.0 - 4.0	1.0 - 2.0	< 1.0		V 6

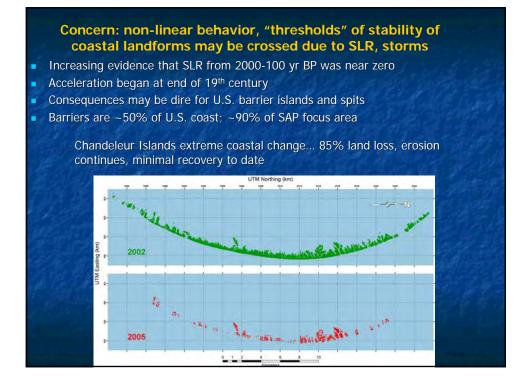
Expert Panel on Sea-level Rise and Shoreline Change in the Mid-Atlantic Region April 12-13, 2007

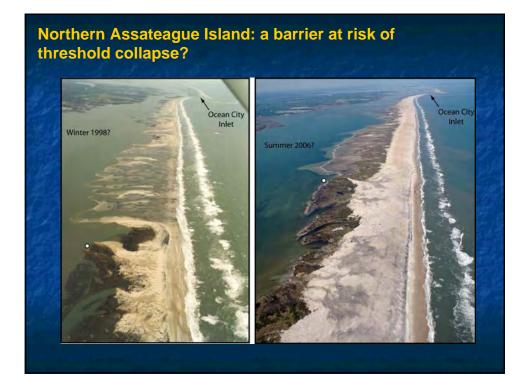
Context

The U.S. Climate Change Science Program is undertaking an effort to conduct a synthesis and assessment of the state-of-science regarding sea-level rise and the potential effects on coastal regions. The USGS, EPA, and NOAA are lead agencies preparing the report and are coordinating input and review from the scientific community. The USGS authors have been asked to address the following question:

How does sea-level rise change the coastline? Among those lands with sufficient elevation to avoid inundation, which land could potentially erode in the next century? Which lands could be transformed by related coastal processes? (Key Question 2, page 5 of SAP 4.1)


To address this question, a small panel of experts in coastal geology and marine processes was convened to discuss the best approaches to describing, ranking, and visualizing how future sea-level rise (SLR) might affect coastal regions. The focus is on the Mid-Atlantic region from Long Island, New York to Cape Lookout, North Carolina.


<section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item>


SAP 4.1 Q2 WORKSHOP ATTENDEES and PARTICIPANTS*

- 1) Fred Anders* New York Department of State
- 2) Eric Anderson U.S. Geological Survey, CSC
- 3) Mark Byrnes Applied Coastal Research and Engineering
- 4) Stewart Farrell Coastal Research Center, Richard Stockton College
- 5) Paul Gayes Center for Marine and Wetland Studies, Coastal Carolina University
- 6) Duncan FitzGerald* Boston University
- 7) Benjamin Gutierrez U.S. Geological Survey
- 8) Carl Hobbs Virginia Institute of Marine Science
- Randy McBride Geology & Earth Science Program, George Mason University
- 10) Jesse McNinch Virginia Institute of Marine Science
- 10) Stan Riggs* East Carolina Institute of Marine Science
 11) Stan Riggs* East Carolina State University
 12) Antonio Rodriguez Institute of Marine Sciences, University of North Carolina
- 13) Jay Tanski New York Sea Grant
- 14) E. Robert Thieler U.S. Geological Survey
- 15) Art Trembanis College of Marine and Earth Studies, University of DL
- 16) S. Jeffress Williams U.S. Geological Survey

