
9739 9740	Appendix A. Long Island
9741	Authors: Dan Hudgens, Industrial Economics Inc.; A. Schellenbarger-Jones, Industrial
9742	Economics Inc.
9743	
9744	Contributing Authors: E. M. Strange, Stratus Consulting Inc.; J. Tanski, New York Sea
9745	Grant; G. Sinha, Industrial Economics Inc.
9746	
9747	Long Island has almost 1,350 miles of coastline along Long Island Sound, the Peconic
9748	bays, the south shore bays, and the Atlantic Ocean. Its northern coast is characterized by
9749	high bluffs, while the south coast includes low-lying inner bays and a long stretch of
9750	barrier islands that provide recreational beach access for many New Yorkers (such as
9751	Jones Beach State Park). Long Island consists of Nassau County, Suffolk County, and the
9752	New York City boroughs of Brooklyn and Queens (discussed in Appendix B). Nassau
9753	County is primarily suburban and very densely developed, with less than 2% of the land
9754	area vacant. Suffolk County to the east is comparatively less developed. Although not
9755	part of Long Island, this chapter includes some discussion of the areas of Westchester
9756	County, NY, and the Bronx, which have shorelines on the Long Island Sound.
9757	
9758	A.1 LANDS VULNERABLE TO INUNDATION
9759	The north shore of Long Island is generally characterized by high bluffs of glacial origin,
9760	making this area less susceptible to problems associated with increased sea level. This
9761	can be observed in Figure A.1. The south shore has comparatively much more land under
9762	3 meters. Almost all areas in the barrier islands along the south shore of Long Island and

478 of 800

- the tidal wetlands south of Nassau County in Great South Bay are low-lying. Between 81
- and 193 square kilometers of lands are within 1 meter above the tides (see Table A.1); as
- 9765 the map shows, almost all of this land lies along the south shore of Long Island. As a
- 9766 result, there are already enormous planning efforts under way in the region to preserve
- 9767 the dry lands under threat of inundation. A brief discussion of these efforts, especially on
- 9768 the south shore, is provided in the policy discussion at the end of this chapter.
- 9769

479 of 800

February 12, 2008

9770 9771 9772

Do Not Cite or Quote

481 of 800

9773

Table A.1 Low and high estimates for the area of dry and wet land close to sea level.

		50	cm	1 m	eter	2 m	eters	3 m	eters	5 m	eters
	Tidal	Low	High	Low	High	Low	High	Low	High	Low	High
Locality		Cumulative (total) amount of dry land below a given elevation									
Westchester		0.2	1.5	1.1	3.0	2.8	5.8	5.1	8.6	10.0	12.
Bronx		0.4	2.6	1.8	5.1	4.8	9.8	8.7	14.6	16.9	19.
Queens		6.2	17.0	14.6	28.1	31.7	48.6	50.7	66.6	76.5	80.
Brooklyn		3.1	9.1	8.0	15.6	18.8	30.5	34.0	47.4	58.9	62.
Nassau		2.2	19.2	12.9	44.5	50.9	85.4	85.4	104.1	119.3	132.
Suffolk		13.7	51.5	43.1	96.8	114.9	181.3	188.6	251.3	318.8	371.4
Total		25.8	100.9	81.4	193.1	223.9	361.4	372.4	492.6	600.4	679.
		Cu	mulativ	ve (total) amoui	nt of we	tlands b	elow a g	given ele	evation	
Westchester	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
Bronx	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
Queens	11.9	0.0	0.2	0.1	0.3	0.4	0.5	0.5	0.6	0.7	0.7
Brooklyn	10.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2
Nassau	43.7	0.1	0.4	0.3	0.7	0.8	1.5	1.4	2.1	2.6	3.2
Suffolk	72.1	1.5	5.7	4.9	9.8	10.8	15.2	15.1	18.3	20.8	23.8
Total	140.0	1.7	6.4	5.4	11.0	12.1	17.4	17.2	21.3	24.3	28.1
Dry and nontidal wetland		27	107	87	204	236	379	390	514	625	707
All land	140	167	247	227	344	376	519	530	654	765	847

Close to Sea Level. Section 1.3 in: Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level Rise, J.G. Titus and E.M. Strange (eds.). EPA 430R07004. U.S. EPA, Washington, DC. The low and high estimates are based on the contour interval and/or stated root mean square error (RMSE) of the data used to calculate elevations and an assumed standard error of 30 cm in the estimation of spring high water.

9774

9775 A.2 ENVIRONMENTAL IMPACTS

- 9776 North Shore and Peconic Bay. Sea-level rise may threaten habitats along the Long Island
- 9777 Sound including the North Shore, Westchester, and the Bronx, as well as the Peconic
- 9778 Estuary at the far eastern end of Long Island. Habitats of interest include tidal marsh,

Do Not Cite or Quote

482 of 800

	<u>CCSP 4.1</u> February 12, 2008
9779	estuarine beaches, tidal flats, nearshore shallows, sea-level fens, and marsh and bay
9780	islands.
9781	
9782	Of the 8,425.6 hectares (20,820 acres) of tidal wetlands in the Sound, about 15% are
9783	found in New York, primarily along the shores of Westchester and Bronx counties
9784	(Holst, 2003). There are some notable areas of marsh in and around Stony Brook Harbor
9785	and West Meadow, bordering the Nissequogue River and along the Peconic Estuary
9786	(NYS DOS, 2004), In general, tidal wetlands along the north shore are limited due to the
9787	steep uplands and bluffs ⁴⁶ . Wetland loss may be expected if the shorelines of Long Island
9788	Sound are structurally protected (see Chapter 5) ⁴⁷ . Indeed, there has already been a
9789	significant loss of the historical area of vegetated tidal wetlands in Long Island Sound
9790	(Holst, 2003; Hartig and Gornitz, 2004), which some scientists partially attribute to sea-
9791	level rise (Mushacke, 2003).
9792	
9793	The loss of vegetated low marsh reduces habitat for several rare bird species that nest
	49

9794 only or primarily in low marsh $(e.g., \text{ seaside sparrow})^{48}$. Low marsh also provides safe

9795 foraging areas for small resident and transient fishes (e.g., weakfish, winter flounder).

9796 Diamondback terrapin live in the creeks of the low marsh, where they feed on plants,

- 9797 molluscs, and crustaceans (LISF, 2008).
- 9798

- 48 See section on marshes, and references therein, in Chapter 4.
- Do Not Cite or Quote

483 of 800

Public Review Draft

⁴⁶ Ron Rosza, coastal ecologist with the Connecticut Office of the Long Island Sound Program, written communication to EPA, 5/14/07.

⁴⁷ Map 1, "Study Results for Coastal Region of New York State," in Tanski, J. In review. Assessment of Sea Level Rise Response Scenarios in New York. U.S. Environmental Protection Agency, Washington, DC.

<u>CCSP 4.1</u>		February 12, 20
Some wetlands along Long Island	Sound may be allowed to re	spond naturally to sea-
level rise, including some in the F	econic Estuary. Where migra	ation is possible,
preservation of local biodiversity	as well as some regionally ra	re species is possible.
Several rare bird species are foun	d in the Flanders Bay wetland	ds, including least tern,
common tern, piping plover, blac	k skimmer, osprey, and comm	non loon (NYS DOS,
2004) (see text box on piping plo	ver). Waterfowl also feed in a	and around the wetlands.
Beaches are far more common	than tidal wetlands in the Lo	ong Island Sound study
area. Several notable barrier b	eaches exist. For example, th	e sandy barrier-beach
system fronting Hempstead H	arbor supports a typical com	munity progression from
the foreshore to the bay side,	or backshore (LISHRI, 2003)	. The abundant
invertebrate fauna provide for	age for sanderling, semipalm	ated plovers, and other
migrating shorebirds (LISHR)	(, 2003). The maritime beach	community between the
mean high tide and the prima	y dune provides nesting sites	for several rare bird
species, including piping plov	er, American oystercatcher, b	olack skimmer, least tern
common tern, roseate tern, the	e Northeastern beach tiger be	etle, and horseshoe crab
(LISHRI, 2003). Diamondbac	k terrapin use dunes and the	upper limit of the
backshore beach for nesting (LISHRI, 2003).	
Since nearly all of the Long Is	sland shoreline of the Sound i	is densely populated and
highly developed, the land ma	y be armored in response to s	sea-level rise, raising the
potential for beach loss. The I	ong Island Sound Habitat Re	estoration Initiative
cautions, "Attempts to alter th	e natural cycle of deposition	and erosion of sand by
Do Not Cite or Quote	484 of 800	Public Review Dr

	<u>CCSP 4.1 February 12, 2008</u>
9822	construction of bulkheads, sea walls, groins, and jetties interrupt the formation of new
9823	beaches" (LISHRI, 2003).
9824	
9825	Shallow water habitats are a major ecological feature in and around the Peconic Estuary.
9826	Here eelgrass beds provide food, shelter, and nursery habitats to diverse species,
9827	including worms, shrimp, scallops and other bivalves, crabs, and fish (PEP, 2001).
9828	Horseshoe crabs reportedly forage in the eelgrass beds of Cedar Point/Hedges Bank,
9829	where they are prey for loggerhead turtles (federally listed as threatened), crabs, whelks,
9830	and sharks (NYS DOS, 2004). Atlantic silverside spawn here; silverside eggs provide an
9831	important food source for seabirds, waterfowl, and blue crab, while adults are prey for
9832	bluefish, summer flounder, rainbow smelt, white perch, Atlantic bonito, and striped bass
9833	(NYS DOS, 2004). The Cedar Point/Hedges Bank Shallows eelgrass beds are known for
9834	supporting a bay scallop fishery of statewide importance (NYS DOS, 2004). The
9835	consequences of sea-level rise for submerged aquatic vegetation (SAV) are unknown,
9836	although studies suggest that deepening water, which may limit sunlight penetration,
9837	could reduce eelgrass growth and undermine the productivity and services the beds
9838	provide (Short, 1999). Increased salinity from sea-level rise may also negatively impact
9839	SAV. Furthermore, shoreward movement of eelgrass beds could be impeded by steep
9840	shores or water turbidity in front of shoreline protection structures.
9841	

9842 Other noteworthy habitats that could be affected by sea-level rise include the following:

Do Not Cite or Quote

485 of 800

	CCSP 4.1 February 12, 2008
9843	• A sea-level fen vegetation community grows along Flanders Bay (NYS DOS, 2004).
9844	Because sea-level fen vegetation needs nutrient-poor waters, the Flanders Bay fen
9845	may not survive inundation by sea-level rise.
9846	• On Long Island's north shore, longshore drift carries material that erodes from
9847	bluffs and later deposits it to form tidal flats and barrier spits or shoals (LISHRI,
9848	2003). For instance, one of the largest areas of tidal mudflats on the north shore is
9849	near Conscience Bay, Little Bay, and Setaucket Harbor west of Port Jefferson (NYS
9850	DOS, 2004). Large beds of hard clams, soft clams, American oysters, and ribbed
9851	mussels are found in this area (NYS DOS, 2004). As seas continue to rise and the
9852	flats become inundated, the invertebrates of tidal flats could become less accessible
9853	for feeding by the many wading birds, dabbling ducks, and shorebirds whose growth
9854	and survival depend on such invertebrate food supplies (Erwin, 2006).
9855	
9856	South Shore. Species and habitats along the south shore of Long Island are also
9857	potentially at risk because of sea-level rise. Key habitats include back-barrier salt
9858	marshes, back-barrier beaches, tidal flats, marsh and bay islands, and shallow nearshore
9859	environments.
9860	
9861	Extensive back-barrier salt marshes exist to the west of Great South Bay in southern
9862	Nassau County (USFWS, 1997). These marshes are particularly notable given
9863	widespread marsh loss on the mainland shoreline of southern Nassau County (NYS DOS
9864	and USFWS, 1998; USFWS, 1997). Accretion experts indicate that most back-barrier
9865	marshes adjacent to Jones Inlet may survive modest sea-level rise rate increases, but that

486 of 800

	<u>CCSP 4.1</u> February 12, 2008
9866	they will be lost under higher sea-level rise scenarios (Reed, 2008). To the east of Jones
9867	Inlet, the extensive back-barrier and fringing salt marshes are keeping pace with current
9868	rates of sea-level rise, but experts predict that the marshes' ability to keep pace will be
9869	marginal if the rate of sea-level rise increases moderately, and that the marshes would be
9870	lost under higher sea-level rise scenarios (Reed, 2008). Furthermore, opportunities for
9871	marsh migration along Long Island's south shore will be limited. Much of the mainland
9872	shoreline in southern Nassau County is already bulkheaded. Outside of New York City,
9873	the state requires a minimum 75-foot buffer around tidal wetlands to allow marsh
9874	migration, but outside of this buffer, additional development and shoreline protection are
9875	permitted ⁴⁹ . Numerous wildlife species could be affected by salt marsh loss:
9876	
9877	• Under higher sea-level rise scenarios, many commercially and recreationally
9878	important fish species may move elsewhere in search of suitable nursery and
9879	foraging areas.
9880	• The recovery of a number of at-risk bird species could be impeded if additional
9881	marsh loss occurs. For example, the Dune Road Marsh west of Shinnecock Inlet
9882	provides nesting sites for several species that are already showing significant
9883	declines, including clapper rail, sharp-tailed sparrow, seaside sparrow, willet, and
9884	marsh wren (USFWS, 1997). The salt marshes of Gilgo State Park provide nesting
9885	sites for northern harrier, a species listed by the state as threatened (NYS DOS,
9886	2004).

⁴⁹ The state has jurisdiction up to 300 feet beyond the tidal wetland boundary (150 feet in NYC). See NYDEC, Undated.

487 of 800

	CCSP 4.1 February 12, 2008
9887	• The northern diamondback terrapin, a federal species of concern, feeds and grows
9888	along marsh edges and the nearshore bays of the south shore. A local terrapin expert
9889	believes that additional marsh loss could lead to a "very serious reduction" in the
9890	terrapin's already low abundance (Feinberg and Burke, 2003) ⁵⁰ .
9891	
9892	Of the extensive tidal flats along Long Island's southern shoreline, most are found west
9893	of Great South Bay and east of Fire Island Inlet, along the bay side of the barrier islands,
9894	(USFWS, 1997) in the Hempstead Bay–South Oyster Bay complex, (USFWS, 1997) and
9895	around the Moriches and Shinnecock inlets (USFWS, 1997; NYS DOS and USFWS,
9896	1998). These flats provide habitat for several edible shellfish species, including soft clam,
9897	northern quahog (hard clam), bay scallop, and blue mussel. Tidal flats and shallow water
9898	habitats are heavily used by shorebirds, raptors, and colonial waterbirds in spring and
9899	summer and by waterfowl during fall and winter (Erwin, 1996). The tidal flats around
9900	Moriches and Shinnecock inlets are particularly important foraging areas for migrating
9901	shorebirds. If shoreline waters become too deep for foraging on these flats, migrating
9902	shorebirds may lack forage for their long-distance migrations. Scientists writing on behalf
9903	of the South Shore Estuary Reserve program have asserted that "because shorebirds
9904	concentrate in just a few areas during migration, loss or degradation of key sites could
9905	devastate these populations" (NYS DOS and USFWS, 1998).
9906	

⁵⁰ Written communication from Dr. Russell Burke, Department of Biology, Hofstra University, as cited in Section 3.4 of Background Documents Supporting Climate Change Science Program Synthesis and Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level Rise, J.G. Titus and E.M Strange (eds.), EPA430R07004, Washington, DC: U.S. EPA. Russell Burke has operated an annual diamondback terrapin conservation project at the Jamaica Bay Wildlife Refuge in the Gateway National Recreational Area since 1998.

⁴⁸⁸ of 800

	CCSP 4.1 February 12, 2008
9907	Several other habitat types merit consideration when characterizing sea-level rise impacts
9908	on Long Island's south shore:
9909	• As sea levels rise, back-barrier beaches will erode in front of shoreline protection
9910	structures, and will be lost without continual beach nourishment. The back-barrier
9911	beaches of the south shore provide nesting sites for the northern diamondback
9912	terrapin, the endangered roseate tern, and horseshoe crabs (NYS DOS, 2004;
9913	USFWS, 1997; USFWS, 1998). Shorebirds (e.g., red knot) feed preferentially on
9914	horseshoe crab eggs during their spring migrations.
9915	
9916	Increased flooding and erosion of marsh and dredge spoil islands will reduce habitat for
9917	many bird species that forage and nest there, including breeding colonial waterbirds,
9918	migratory shorebirds, and wintering waterfowl. For example, erosion on Warner Island is
9919	reducing nesting habitat for the federally endangered roseate tern and increasing flooding
9920	risk during nesting (NYS DOS and USFWS, 1998). The Hempstead Bay-South Oyster
9921	Bay complex includes a network of salt marsh and dredge spoil islands that are important
9922	for nesting by herons, egrets, and ibises. Likewise, Lanes Island and Warner Island in
9923	Shinnecock Bay support colonies of the state-listed common tern and the roseate tern
9924	(USFWS, 1997).
9925	

- Seagrass beds occur along much of the southern shoreline of Long Island⁵¹. 9926
- 9927

⁵¹ See SAV mapping information available at: http://www.csc.noaa.gov/benthic/data/northeast/longisl.htm. Accessed 1/11/08. SW: NOAA Coastal Services Center, Northeast Region. Long Island South Shore SAV Data Set 2002 489 of 800 Public Review Draft

CCSP 4.1

- The consequences of sea-level rise for SAV are unknown, although studies suggest
- 9929 that deepening water could reduce eelgrass growth and undermine the productivity
- and services the beds provide (Short, 1999).
- 9931 BOX A.1: Effects on the Piping Plover
- 9932 **Piping Plover** Charadrius melodus

Adult and juvenile piping plover foraging 0 9944 a sandy beach near the water's edge. 9945 9946 **Habitat:** The piping plover, federally listed as threatened, is a small migratory shorebird that primarily inhabits open sandy barrier island beaches on Atlantic coasts (USFWS, 1996). Major contributing factors to the plover's status as threatened are beach recreation by pedestrians and vehicles that disturb or destroy plover nests and habitat, as well as shoreline development that inhibits the natural renewal of barrier beach and overwash habitats (USFWS, 1996). In some locations, dune maintenance for protection of access roads associated with development appears to be correlated with absence of piping plover nests from former nesting sites (USFWS, 1996).

Locations: Piping plovers winter on beaches from the

- 9947 Yucatan Peninsula to North Carolina. In the summer, they migrate
- 9948 north, and breed on beaches from North Carolina to 9949 Newfoundland.⁵² In the mid-Atlantic region, breeding pairs of
- 9950 plovers have been observed at numerous coastal beaches and
- barrier islands, although suitable habitat is limited in some areas.
- 9952 For example, Virginia and Delaware have one site each where
- 9953 piping plovers breed.⁵³ (USFWS, 2000) In contrast, piping plovers
- 9954 breed more frequently on Long Island's sandy beaches, from
- 9955 Queens to the Hamptons, in the eastern bays and in the harbors of 9956 northern Suffolk County. New York's Breezy Point barrier beach,
- at the mouth of Jamaica Bay, consistently supports one of the
- 9958 largest piping plover nesting sites in the entire New York Bight

Piping plover nest

- coastal region (USFWS, 1997). New York has seen an increase inpiping plover breeding pairs in the last decade from less than 200 in 1989 to
- piping plover breeding pairs in the last decade from less than 200 in 1989 to near 375 in recent years (2003-2005), representing nearly a quarter of the Atlantic coast's total breeding population (USFWS, 2004).
- 9962 Despite this improvement, piping plovers are still state listed as endangered in New York (TNC, No Date). 9963

9964 Impact of Sea-Level Rise: Where beaches are prevented from migrating inland by shoreline armoring, 9965 sea-level rise will negatively impact Atlantic coast piping plover populations. As described, continuous 9966 linear dunes, hardened shorelines, and established vegetation are all avoided by plovers for breeding, 9967 indicating that any armoring or stabilizing structures such as jetties and groins already in place, or built in 9968 response to sea-level rise, will have a negative impact on their reproduction and populations.

- response to sea-level rise, will have a negative impact on their reproduction and populations.
- 9970 To the degree that developed shorelines result in erosion of ocean beaches, and to the degree that
- stabilization is undertaken as a response to sea-level rise, piping plover habitat will be lost. In contrast,
- 9972 where beaches are able to migrate landward, plovers may find newly available habitat. For example, on
- 9973 Assateague Island, piping plover populations increased after a storm event that created an overwash area on
 - 52 Cornell Lab of Ornithology Piping Plover bird guide available online here: <u>http://www.birds.cornell.edu/AllAboutBirds/BirdGuide/Piping_Plover.html</u>. Access September 28, 2007.
 53 Audubon IBA Barrier Island/Lagoon System IBA Northampton and Accomack Counties.

Do Not Cite or Quote

490 of 800

	CCSP 4.1 February 12, 2008
9974 9975	the north of the island. ⁵⁴ This suggests that if barrier beaches are allowed to migrate in response to sea-level rise, piping plovers might adapt to occupy new inlets and beaches created by overwash events.
9976	
9977	Beach nourishment, the anticipated protection response for much of New York's barrier beaches such as
9978	Breezy Point, can benefit piping plovers and other shorebirds by increasing available nesting habitat in the
9979 9980	short-term, offsetting losses at eroded beaches, but may also be detrimental depending on timing and
9980 9981	implementation (USFWS, 1996). For instance, a study in Massachusetts found that plovers foraged on sandflats created by beach nourishment. ⁵⁵ However, once a beach is built and people spread out to enjoy it,
9982	many areas become restricted during nesting season. Overall, throughout the Mid-Atlantic, coastal
9983	development and shoreline stabilization projects constitute the most serious threats to the continuing
9984	viability of storm-maintained beach habitats and their dependent species, including the piping plover
9985	(USFWS, 1996).
9986 9987	Distance in the DEFINE New Lower Field OPPer (Cons. Niemieur 2006, Accord of
9987	Photograph credit: USFWS, New Jersey Field Office /Gene Nieminen 2006. Accessed at http://www.fws.gov/northeast/njfieldoffice/Endangered/Plover_public_domain/P_P_index.html on
9989	March 1, 2007.
9990	
9991	END TEXT BOX
9992	

491 of 800

9993 A.3 POPULATION OF LANDS CLOSE TO SEA LEVEL

- Based upon a spatial analysis of elevation data and U.S. Census data on the number of
- residents, Table A.4 shows that more than 300,000 Long Island residents live within 2
- 9996 meters of spring high water. Nassau County has the larger population within the low
- 9997 lands, up to 223,000 people.
- 9998

Table A.2 Long Island block level population of the lands close to sea level by various scenarios of sea-level rise — low and high estimates.

	Population (count)							
	50 cent	imeters	1 m	eter	2 m	eters		
County	Low	High	Low	High	Low	High		
Nassau County	2,863	146,134	2,863	174,237	97,208	223,039		
Suffolk County	25	41,210	25	52,618	37,587	95,577		

9999

10000 A.4 EXISTING SHORE PROTECTION AND POLICY CONTEXT

10001 For information on New York's statewide policies relevant to coastal management and

10002 sea-level rise, readers should refer to Appendix B. Similar to the New York metropolitan

10003 area, the relevant policies for Long Island reflect the fact that the region is intensely

10004 developed in the west and developing fast in the east. Much of south shore, particularly

10005 within Nassau County, is already developed and has already been protected, primarily by

10006 bulkheads. For example, the Nassau County GIS database shows 528 miles of

10007 bulkheads⁵⁶.

10008

10009 Some of the south shore's densely developed communities facing flooding problems,

- 10010 such as Freeport and Hempstead, have already implemented programs calling for
- 10011 elevating buildings and infrastructure in place and installing bulkheads for flood
- 10012 protection. The Town of Hempstead has adopted the provisions of the state's Coastal

56Based upon an analysis by Jay Tanski of GIS data provided by Nassau County (Nassau County, 2002).

10013	Erosion Hazards Area Act, described in Appendix B, because erosion and flooding along
10014	Nassau County's ocean coast have been a major concern. The Town of Hempstead has
10015	also been actively working with the U.S. Army Corps of Engineers to develop a long-
10016	term storm damage reduction plan for the heavily developed Long Beach barrier island
10017	(USACE, 2003).
10018	
10019	Suffolk County has an aggressive open space preservation and land acquisition effort.
10020	Several programs focus on acquiring or preserving the open space remaining in the
10021	county, and hundreds of millions of dollars are spent to acquire lands that are open but
10022	still developable. In general, Suffolk County is interested in acquiring lands that are in
10023	floodplains, near streams, or near creeks because they do not want development in these
10024	areas. In the Shirley/Mastic area, Suffolk County initiated a land exchange program in
10025	which owners can exchange property in the floodplain for county-owned land outside of
10026	the floodplain, and 30 to 40 owners are participating in the program(Gaffney, 1996).
10027	Similar efforts by state, county, and local governments to buy development rights to
10028	agricultural lands would prevent them from being developed in the future.
10029	
10030	Beach nourishment and the construction of flood and erosion protection structures are
10031	also common on the island. For example, in the early 1990s the U.S. Army Corps of
10032	Engineers constructed a substantial revetment around the Montauk Lighthouse at the
10033	eastern tip of Long Island and after a new feasibility study has proposed construction of a
10034	larger revetment (Bleyer, 2007). The Corps is also reformulating a plan for the
10035	development of long-term storm damage prevention projects along the 83 mile portion of

Public Comment Draft

10036 the south shore of Suffolk County. As part of this effort, the Corps is assessing at-risk

10037 properties within the 71 square mile floodplain, present and future sea-level rise,

restoration and preservation of important coastal landforms and processes, and importantpublic uses of the area (USACE, undated).

10040

10041	Existing regulations do not prevent shoreline property owners from attempting to protect
10042	their land against flooding or erosion as long as they apply for the permits at the right
10043	time (i.e., before the land becomes wetlands). However, state policy requires individual
10044	property owners first evaluate non-structural approaches and only if such methods can be
10045	shown to be ineffective can they graduate to armoring strategies (New York State, 2002).
10046	Because emergency permits may be issued in extreme cases, in some cases, individuals
10047	will wait until their house is in imminent danger before applying for a permit, which will
10048	almost always be granted in emergency cases. In extreme cases, individuals may even
10049	wait for damage to occur, at which time the federal government may step in to relieve the
10050	burden of reconstruction in severely damaged areas. After major disasters, emergency
10051	permits may be issued, allowing applicants to receive approvals without going through a
10052	long and often costly permit process.
10053	
10054	According to state policy, non-structural methods of shore protection are preferred
10055	whenever possible. Local governments try to discourage using bulkheads and other
10056	shore-hardening structures. Shoreline structure, which by definition includes beach
10057	nourishment in New York State, are permitted only when it can be shown that the
10058	structure can prevent erosion for at least thirty years and will not cause an increase in

10059	erosion or flooding at the local site or nearby locations (New York State, 2002).
10060	Setbacks, relocation, and elevated walkways are also encouraged before hardening.
10061	
10062	The Comprehensive Coastal Management Plan (CCMP) of the Peconic Bay National
10063	Estuary Program Management Plan calls for "no net increase of hardened shoreline in the
10064	Peconic Estuary." The intent of this recommendation is to discourage individuals from
10065	armoring their coastline, but this document is only a management plan and does not have
10066	any legal authority. However, towns such as East Hampton are trying to incorporate the
10067	plan into their own programs. In 2006, the town of East Hampton has adopted and now
10068	enforcing a zoning overlay district that prevents shore armoring along much of the town's
10069	coastline (Town of East Hampton, 2006). Despite such regulations, authorities in East
10070	Hampton and elsewhere recognize that there are some areas where structures will have to
10071	be allowed to protect existing development.
10072	
10073	The NY Department of State (DOS) is also examining options for managing erosion and
10074	flood risks through only land use measures, such as further land exchanges. For example,
10075	there is currently an attempt to revise the proposed Fire Island to Montauk Point Storm
10076	Damage Reduction project to in favor of combination of nourishment and land use
10077	measures. The intent is to then phase out the use of beach nourishment over the 50-year
10078	period. Over the 50-year project life, DOS staff would seek to promote measures to
10079	relocate out of hazardous locations ⁵⁷ . Non-conforming development will eventually be

Public Comment Draft

⁵⁷ Comment from Fred Anders, New York State Department of State, Division of Coastal Resources and Waterfront Revitalization, in response to expert review draft of this appendix.

- 10080 brought into conformance as it is reconstructed, moved, damaged by storms or flooding
- 10081 or other land use management plans are brought into $effect^{58}$.

10082

10083 APPENDIX A REFERENCES

Bleyer, B., 2007: Erosion protection for Montauk lighthouse creates waves. *Lighthouse Digest*. Available at

10086 <u>http://www.lighthousedigest.com/Digest/StoryPage.cfm?StoryKey=2636</u>.

10087 Accessed January 31, 2008.

- Erwin, M.R., 1996: Dependence of waterbirds and shorebirds on shallow water habitats
 in the Mid-Atlantic coastal region: An ecological profile and management
 recommendations. *Estuaries*, 19, 213–219.
- Erwin, R.M., D.R. Cahoon, D.J. Prosser, G.M. Sanders, and P. Hensel, 2006: Surface
 elevation dynamics in vegetated *Spartina* marshes versus unvegetated tidal ponds
 along the mid-Atlantic coast, USA, with implications to waterbirds. *Estuaries and Coasts*, 29, 96–106.
- 10095 **Feinberg**, J.A. and R.L. Burke, 2003: Nesting ecology and predation of diamondback
- 10096 terrapins, *Malaclemys terrapin*, at Gateway National Recreation Area, New York.
 10097 *Journal of Herpetology*, **37**, 517–526.
- Gaffney, R., 1996: Annual State of the County Address. Available at
 <u>http://co.suffolk.ny.us/legis/clerk/Proceedings/1996/02-28-96.htm</u>. Accessed on
 January 31, 2008.
- 10101 Hartig, E.K. and V. Gornitz, 2004: Salt marsh change, 1926-2003 at Marshlands
- 10102 Conservancy, New York. 7th Bienniel Long Island Sound Research Conference
 10103 Proceedings. Available online at:

Do Not Cite or Quote

Public Comment Draft

⁵⁸ Personal communication from Barry Pendergrass to James G. Titus. 9/19/2007.

10104	http://lisfoundation.org/downloads/lisrc_proceedings2004.pdf. Last accessed
10105	January 30, 2008.
10106	Holst, L, R. Rozsa, L. Benoit, S. Jacobsen, and C. Rilling, 2003: Long Island Sound
10107	Habitat Restoration Initiative, Technical Support for Habitat Restoration, Section
10108	1: Tidal Wetlands. EPA Long Island Sound Office, Stamford, CT. Available
10109	online at: http://www.longislandsoundstudy.net/habitat/index.htm. Accessed
10110	1/11/08.
10111	LISF (Long Island Sound Foundation), 2008: Plants & Animals of Hammonasset. Long
10112	Island Sound Foundation, Groton, CT. Available online at:
10113	http://www.lisfoundation.org/coastal_access/hamm_wildlife.html. Accessed
10114	1/11/08.
10115	LISHRI (Long Island Sound Habitat Restoration Initiative), 2003: Technical Support for
10116	Habitat Restoration, Section 5: Coastal Barriers, Beaches, and Dunes. EPA Long
10117	Island Sound Office, Stamford, CT. Available online at:
10118	http://www.longislandsoundstudy.net/habitat/index.htm. Accessed 1/11/08.
10119	Mushacke, F., 2003: Wetland loss in the Peconic estuary. Long Island Sound Tidal
10120	Wetland Loss Workshop, June 24-25, 2003, Stony Brook, New York. Workshop
10121	Proceedings and Recommendations to the Long Island Sound Study. Available at:
10122	http://www.longislandsoundstudy.net/habitatrestoration/more.htm. Accessed
10123	1/11/08.
10124	Nassau County, Nassau County GIS Department, 2002: Nassau County Bulkheads GIS
10125	data.
10126	New York State, 2002: State Coastal Policies (Policy 13, 14, 17). Accessible at
10127	http://nyswaterfronts.com/downloads/pdfs/State_Coastal_Policies.pdf. Accessed

10128 on January 30, 2008.

10129	NYDEC (New York Department of Environmental Conservation), Undated: Tidal
10130	Wetlands Permit Program: Do I Need a Permit? Available at
10131	http://www.dec.ny.gov/permits/6359.html. Accessed January 31, 2008.
10132	NYSDS DOS & USFWS (New York State Department of State and U.S. Fish and
10133	Wildlife Service), 1998: Shorebirds. South Shore Estuary Reserve, Technical
10134	Report Series. Available online at:
10135	http://www.nyswaterfronts.com/Final_Draft_HTML/Tech_Report_HTM/PDFs/C
10136	8A_Index_pdf.htm. Accessed 1/11/08.
10137	NYSDS DOS (New York State Department of State). Significant Coastal Fish and
10138	Wildlife Habitats. Available online at:
10139	http://nyswaterfronts.com/waterfront_natural_narratives.asp. Accessed 1/11/08.
10140	(Multiple location-specific pieces can be found on the site).
10141	PEP (Peconic Estuary Program), 2001: Peconic Estuary Comprehensive Conservation
10142	and Management Plan. Sponsored by the United States Environmental Protection
10143	Agency under Sec. 320 of the Clean Water Act. Suffolk County Department of
10144	Health Services, Program Office, Riverhead NY, 866 pp.
10145	Reed, D.J., D.A. Bishara, D.R. Cahoon, J. Donnelly, M. Kearney, A.S. Kolker, L.L.
10146	Leonard, R.A. Orson, and J.C. Stevenson, 2008: Site-specific scenarios for
10147	wetlands accretion in the Mid-Atlantic region. Section 2.1 In: Background
10148	Documents Supporting Climate Change Science Program Synthesis and
10149	Assessment Product 4.1: Coastal Elevations and Sensitivity to Sea Level Rise
10150	[Titus, J.G. and E.M. Strange (eds.)]. EPA 430R07004, Environmental Protection
10151	Agency, Washington, DC.
10152	Short, F.T. and H.A. Neckles, 1999: The effects of global climate change on seagrasses.
10153	Aquatic Botany, 63 , 169-196.
10154	Titus, J.G., and J. Wang, 2008: Maps of lands close to sea level along the middle Atlantic
10155	coast of the United States: an elevation data set to use while waiting for LIDAR.
10156	Section 1.1 in: Background Documents Supporting Climate Change Science

10157	Program Synthesis and Assessment Product 4.1: Coastal Elevations and
10158	Sensitivity to Sea Level Rise [Titus, J.G. and E.M. Strange (eds.)]. EPA
10159	430R07004, Environmental Protection Agency, Washington, DC.
10160	Town of East Hampton, 2006: Coastal Erosion Overlay District Legislation, Resolution
10161	2006-899. Available at: http://www.town.east-hampton.ny.us/coastal.pdf.
10162	Accessed January 30, 2008.
10163	TNC (The Nature Conservancy), No Date:
10164	USACE (U.S. Army Corps of Engineers), Undated: Fire Island to Montauk Point
10165	Refomulation Study: Vision Statement. Available at
10166	http://www.nan.usace.army.mil/fimp/pdf/vision2.pdf. Accessed on August 25,
10167	2007.
10168	USACE (U.S. Army Corps of Engineers), 2003: Regional Sediment Management (RSM)
10169	Demonstration Program Project Brief, New York District: Town of Hempstead,
10170	Long Island, New York. Available at www.wes.army.mil/rsm/pubs/pdfs/rsm-
10171	db9.pdf. Access January 31, 2008.
10172	USFWS (U.S. Fish and Wildlife Service), 1996: Piping Plover (Charadrius melodus)
10173	Atlantic Coast Population Revised Recovery Plan. Prepared by the Atlantic Coast
10174	Piping Plover Recovery Team.
10175	USFWS (U.S. Fish and Wildlife Service), 1997: Significant Habitats and Habitat
10176	Complexes of the New York Bight Watershed. U.S. Fish and Wildlife Service.
10177	http://training.fws.gov/library/pubs5/begin.htm. Accessed 1/11/08.
10178	USFWS (U.S. Fish and Wildlife Service), 2000: Piping Plover Atlantic Coast Population
10179	Delaware Status Report.
10180	http://www.fws.gov/northeast/pipingplover/state/de.html. Accessed 1/11/08.
10181	USFWS (U.S. Fish and Wildlife Service), 2004: 2002-2003 status update: U.S. Atlantic
10182	Coast piping plover population. Sudbury, Massachusetts. 8 pp. Accessed at

Public Comment Draft

10183	http://www.fws.gov/northeast/pipingplover/status/index.html on March 2, 2006.
10184	Preliminary estimates of 2004 and 2005 populations also available at this site.
10185	USFWS (U.S. Fish and Wildlife Service), 2005: Red knot, Calidris canutus rufa. Fact
10186	sheet available online at: <u>http://www.fws.gov/northeast/redknot/facts.pdf</u> .
10187	Accessed 1/11/08.

10188