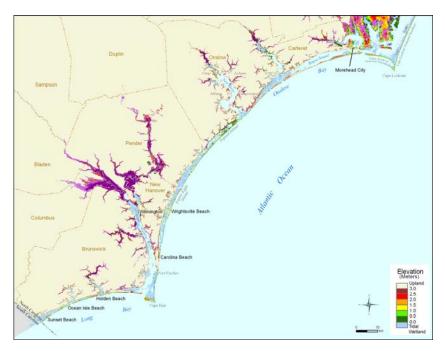
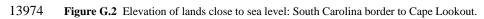
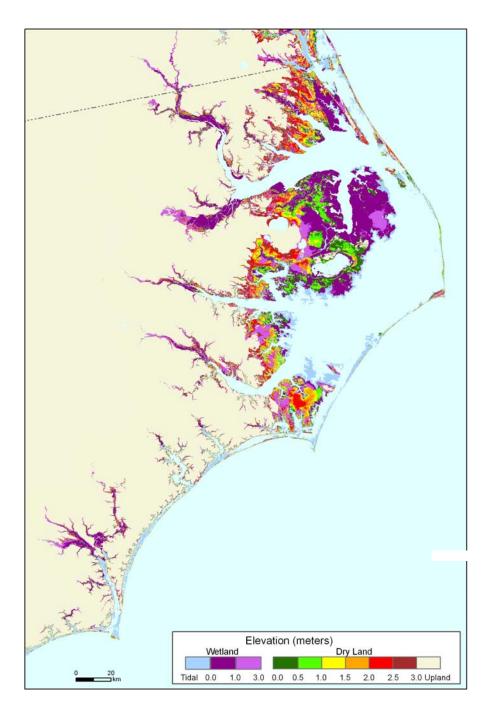

13892	Appendix G. North Carolina
13893	
13894	Lead Authors: James G. Titus, EPA; Rebecca L. Feldman, NOAA; Ben Poulter,
13895	Potsdam Institute for Climate Impact Research
13896	
13897	Contributing Authors: Jeff deBlieu, The Nature Conservancy NC; Ann Shallenbarger-
13898	Jones, Industrial Economics Inc.
13899	
13900	The coast of North Carolina has shifted significantly during the last few centuries due to
13901	rising sea level and other factors. In the 16th century the Outer Banks separated Roanoke
13902	Island (the first English Colony in North America) from the Atlantic Ocean, as they do
13903	today. But directly east of Roanoke Island was Roanoke Inlet, which separated Bodie
13904	Island (now southern Nags Head) from the barrier island to the north. There were several
13905	other inlets between Cape Hatteras and Back Bay. (Riggs and Ames, 2003 p. 118; Collet
13906	and Bayly 1790). Sediment transport along the shore eventually closed all of those inlets.
13907	Today, the nearest inlet is Oregon Inlet, more than 20 km away.
13908	
13909	Other shores have also changed substantially over the last four centuries. Croatan Island
13910	was split by the creation of Hatteras Inlet, leaving its northern and southern portions
13911	connected to what are now Hatteras and Ocracoke Islands, respectively. Roanoke Island
13912	was connected to the mainland of Dare County until the early 19th century by marshes.
13913	When Roanoke Inlet closed, the currents that drain Albemarle Sound eroded channels
13914	through the connecting marshes allowing Albemarle Sound and Currituck Sound to drain

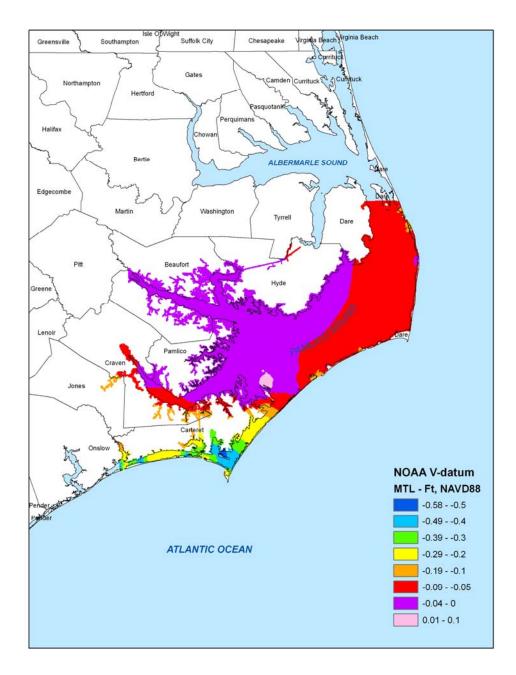

13915	to the ocean through Oregon Inlet and inlets farther south. (Riggs and Ames, 2003 p. 69).
13916	Stumpy Point Bay was an inland freshwater lake until the 19th century, when shoreline
13917	erosion opened it to Pamlico Sound. Albemarle-Pamlico Peninsula, which is very low
13918	and flat, at one time held the largest continuous area of wetlands in North Carolina and
13919	one of the largest in the nation (Cummings, 1966; Riggs and Ames, 2003 p. 69) but
13920	many of those wetlands have been drained for agriculture and other purposes.
13921	
13922	The North Carolina coast continues to evolve. Many ocean shores are gradually
13923	retreating, claiming shorefront homes and prompting officials to relocate the coastal
13924	highway (NC-12) and the Cape Hatteras lighthouse inland.
13925	
13926	This appendix examines some of the possible implications of rising sea level for North
13927	Carolina, with a focus on the impacts examined in chapters 1-6 of this report. The lands
13928	along North Carolina's Albemarle Sound, Pamlico Sound, and their tidal tributaries
13929	(sometimes collectively called the Albemarle-Pamlico Sound) account for 70 percent of
13930	the nontidal wetlands, 40 percent of the dry land, and 55 percent of all the land in the
13931	Mid-Atlantic within 1 meter above spring high water (Jones and Wang, 2008). Most
13932	importantly, the land is mostly low and wet. This area has a diverse array of habitats
13933	which include barrier beaches and salt marshes found in the rest of the Mid-Atlantic, as
13934	well as cypress and pocosin swamps (defined below) that are rarely found elsewhere in
13935	the region.

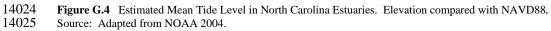

- 13937 The extent to which these habitats can adapt to sea-level rise is unclear. The unique
- 13938 hydrology of the Albermarle-Pamlico Sound particularly the low tide ranges and low
- 13939 salinity, may make the area's habitats particularly vulnerable if changes in the barrier
- 13940 islands expose the sounds to higher tide ranges and higher salinity water. With more than
- 13941 60 percent of the land within the Mid-Atlantic that might realistically be allowed to
- 13942 become submerged as sea level rises, North Carolina may represent an important
- 13943 environmental planning opportunity (Titus and Wang, 2008).
- 13944
- 13945 G.1 LAND VULNERABLE TO INUNDATION
- 13946 The third largest area of land vulnerable to rising sea level in the United States lies
- 13947 between Cape Lookout and the mouth of Chesapeake Bay. In North Carolina alone,
- 13948 between 1300 and 1800 square kilometers of dry land is within one meter above the tides
- 13949 (See Chapter 1) 171 approximately half the total for the entire Mid-Atlantic. Another
- 13950 3000 to 3400 square kilometers of nontidal¹⁷² wetlands are within one meter above the
- 13951 tides again approximately half the total for the entire Mid-Atlantic. Three counties are
- almost entirely within three meters above the tides.
- 13953
- 13954 North Carolina's coastal zone can be divided into two different geological zones, each
- 13955 with different characteristics (Riggs and Ames, 2003). The zone northeast of a line drawn
- 13956 between Cape Lookout and Raleigh is called the Northern Coastal Province. It has gentle
- 13957 slopes, four major rivers, and long barrier islands with a moderately low sediment supply,
- 13958 compared to barrier islands worldwide. The rest of the state's coastal zone has steeper
- 13959 slopes, an even lower sediment supply, short barrier islands, and many inlets.

13961 Figure G.1 Elevation of lands close to sea level: Cape Lookout to Virginia Beach.13962

13964	Figures G.1 and G.2 show the elevations of lands close to sea level north and south of
13965	Cape Lookout, respectively, distinguishing between dry land and nontidal wetlands.
13966	Figure G.3 shows the northern portion of the coast, without distinguishing between dry
13967	land and wetlands ¹⁷³ . Table G.1 provides low and high estimates of the area of dry and
13968	wet land, by county ¹⁷⁴ . The entire state has between 700 and 1200 square kilometers of
13969	dry land within 50 cm above the tides, as well as approximately 2300 to 2900 square
13970	kilometers of nontidal wetlands. Hyde, Tyrrell, and Dare counties account for more than
13971	half of the nontidal wetlands within 50 cm of the tides (Titus and Wang, 2008; Titus and
13972	Cacela, 2008).




Figure G.3 Elevation of lands close to sea level: Cape Lookout to Virginia Beach.


Table G.1 Low and high estimates of the area of dry and wet land close to sea level (square kilometers).

			50								
	Tidal		meters	-	neter	2 me		3 me		-	eters
		Low	High	Low	High	Low	High	Low	High	Low	High
County								below a	č		1
Beaufort		48.6	93.1	109.4	156.4	257.2	317.2	422.2	481.8		744.0
Bertie		1.8	3.4	4.7	6.8	12.1	14.8	22.3	25.9	56.2	64.6
Brunswick		14.5	20.1	24.1	31.1	47.8	55.1	73.8	82.9	140.3	149.3
Camden		10.5	21.2	25.7	45.7	115.1	147.0	200.9	231.7	321.3	336.2
Carteret		56.0	95.5	126.9	179.4	326.4	379.3	427.4	436.8	489.9	495.5
Chowan		2.9	5.0	6.5	9.2	17.3	22.2	42.0	54.7	172.9	187.6
Craven		7.9	16.2	19.6	31.5	60.0	78.3	110.8	131.7	242.8	266.6
Currituck		22.9	37.9	49.6	70.6	143.4	177.8	251.7	273.3	321.7	325.5
Dare		47.0	65.2	71.5	86.1	106.2	117.5	133.4	140.4	153.7	154.8
Gates		5.3	10.5	11.3	16.1	22.3	27.1	36.3	49.6	106.6	130.2
Hertford		3.7	6.9	7.4	11.3	17.5	21.5	26.5	30.6	50.2	55.4
Hyde		280.5	410.4	433.5	482.0	548.3	586.4	640.9	659.5	703.9	707.4
New Hanover		8.3	13.0	14.9	20.5	29.9	35.1	45.2	52.0	83.5	89.6
Onslow		25.3	32.6	35.3	43.1	58.2	67.6	85.0	95.8	152.2	165.8
Pamlico		26.9	48.2	64.3	94.6	169.8	194.4	243.0	262.6	321.6	325.1
Pasquotank		11.0	26.1	39.6	64.9	131.4	161.2	220.7	259.4	457.3	460.0
Pender		5.9	9.9	11.6	16.8	28.0	36.3	55.2	68.9	135.9	148.6
Perquimans		5.0	8.8	11.7	18.1	51.9	79.1	144.7	189.4	427.1	432.0
Tyrrell		130.6	235.5	269.3	321.1	357.8	369.1	375.1	377.5	380.3	380.3
Washington		5.6	13.7	22.4	38.4	80.9	106.2	191.6	238.1	534.8	555.7
North				-							
Carolina ¹		724	1179	1368	1757	2609	3030	3803	4208	6124	6349
			Cu	mulative	(total) a	mount of	wetlands	below a	given ele	evation	
Beaufort	35.1	64.9	94.6	105.4	131.0	171.1	202.2	252.5	272.3	322.9	329.8
Bertie	0.3	110.2	123.1	127.0	132.4	146.9	152.6	171.0	176.9	224.8	233.6
Brunswick	109.2	38.4	44.0	47.2	51.9	60.8	64.6	73.2	76.7	94.6	97.8
Camden	7.1	137.2	146.3	148.7	154.6	167.7	174.7	186.8	194.2	243.1	258.0
Carteret	334.3	33.9	66.5	86.6	117.1	180.0	201.6	236.5	243.3	286.4	292.5
Chowan	0.0	29.1	32.5	34.0	36.6	41.7	43.9	51.2	55.8	95.9	104.3
Craven	12.1	58.9	74.3	79.7	94.4	121.1	136.8	158.7	169.7	216.6	227.5
Currituck	124.6	129.3	144.4	150.1	158.6	177.9	183.8	196.3	199.3	218.7	220.6
Dare		376.3		552.6	604.0	658.6	663.5	665.5	665.9	666.4	666.4
Gates	0.0	78.5	88.6	89.3	93.1	98.7	102.3	107.8	113.7	129.4	132.0
Hertford	0.0	44.8	53.0	53.8	57.6	61.8	65.4	68.9	70.8	79.7	81.2
Hyde	199.3		461.1	488.4	538.2	577.9	592.2	619.5	633.6	684.6	688.7
New Hanover	55.7	27.7	34.7	36.0	39.0	43.3	45.4	49.1	51.0	59.1	60.5
Onslow	68.8	24.7	29.6	31.1	35.1	41.3	44.7	50.5	54.0	69.4	71.7
Pamlico	111.6	51.6	66.7	73.1	81.0	106.3	123.1	148.4	161.0	221.1	231.6
Pasquotank	0.3	50.0		62.4	68.2	78.6	84.0	96.3	101.9		124.1
Pender	38.2		107.4	113.4	127.7	149.8	160.7	178.8	188.8		238.9
Perquimans	0.0	38.1	43.7	46.8	52.0	65.8	73.6	90.5	97.8		180.2
Tyrrell		421.7		522.5	554.1	571.5	578.9	593.3	601.5		622.5
Washington	0.3	70.0	78.2	85.5	92.5	105.5	112.0	134.5	145.5		
North	0.5	, 0.0	70.2	55.5	12.5	105.5	112.0	154.5	145.5	171.0	177.1
Carolina ¹	1272	2280		3048	3354	3794	3992	4347	4509		5405
Dry +		3004	4059	4415	5112	6404	7021	8150	8717	11397	11754

	Nontidal wetland
	All Land 1272 4276 5331 5687 6384 7676 8293 9422 9989 12669 13026
	Source. Adapted from Titus and Wang (2008) and Titus and Cacela (2008). ¹ Includes Bladen, Columbus, Duplin, Edgecombe, Greene, Halifax, Jones, Lenoir, Martin, Northampton, Pitt, and Sampson Counties which were omitted to fit table on a single page.
13980	
13981	More than half the dry land below 50 cm is in either Hyde or Tyrrell County. But
13982	Carteret, Beaufort, and Dare counties also have approximately 50 to 100 square
13983	kilometers of dry land below the 50-cm contour. All of these counties have populated
13984	areas close to sea level. In the case of Dare County, some of the low-lying areas are on
13985	the sound side of the Outer Banks.
13986	
13987	The data on coastal elevations probably understate the vulnerability of North Carolina
13988	relative to the rest of the Mid-Atlantic. Because the land is flat, areas a few meters above
13989	sea level drain slowly — so slowly that most of the lowest land is nontidal wetland.
13990	Because rising sea level decreases the average slope between nearby coastal areas and the
13991	sea, it may also slow the speed at which these areas drain. Some of the dry land a few
13992	meters above the tides could convert to wetland from even a small rise in sea level; and
13993	nontidal wetlands at these elevations would be saturated more of the time. Wetland loss
13994	could occur if dikes and drainage systems are built to prevent dry land from becoming
13995	wet.
13996	
13997	The very low tide range in some of the sounds is another possible source of vulnerability.
13998	Albemarle Sound, Currituck Sound, and much of Pamlico Sound have a very small tide
13999	range, because inlets to the ocean are few and far between (NOAA, 2005). Some are

14000	narrow and shallow as well. Although Oregon and Ocracoke inlets are more than 10
14001	meters deep (over 30 feet), the inlets are characterized by extensive shoals on both the
14002	ebb and flood sides, and the channels do not maintain depth for long distances before
14003	they break into shallower finger channels ¹⁷⁵ . Like narrow channels, this configuration
14004	slows the flow of water between the ocean and sounds. Thus, although the astronomic
14005	tide range at the ocean entrances is approximately 90 cm, it decreases to 30 cm just inside
14006	the inlets, and a few centimeters in the centers of the estuaries.
14007	
14008	The water-level variations are driven by local and regional wind and barometric pressure
14009	changes rather than astronomical tides. NOAA estimates that most of the estuary is about
14010	15 cm above sea level (although the average water level in parts of these estuaries may be
14011	below the ocean sea level). Figure G.4 shows estimated mean tide level, compared with
14012	the reference elevation known as NAVD88, which is 13 cm above the ocean sea level
14013	(NOAA 2008). Therefore, even areas with no dikes have substantial dry land and
14014	nontidal wetlands within (for example) 30 cm above the estuary's mean tide level (45 cm
14015	above ocean sea level). But it is possible that rising sea level combined with storm-
14016	induced erosion will cause more, wider, and/or deeper inlets in the future (Zhang et al.,
14017	2004; see chapter 2). If creation of more extensive inlets caused the astronomical tide
14018	range to increase to (for example) 60 cm, then the dryland and nontidal wetlands lands
14019	that are 30 cm above the estuary's mean level today would be inundated by the tides
14020	even if mean sea level did not rise ¹⁷⁶ . For the same reason, if sea level continues to rise or
14021	accelerates, the average high tide could rise by 30-60 cm more than the rise in mean sea
14022	level.

Public Comment Draft

14026	The reduced tidal flushing also keeps salinity levels relatively low in most of the estuaries
14027	within the Northern Coastal Province (Riggs and Ames, 2003 p.9). Salinity is relatively
14028	high at the inlets, but declines as one proceeds upstream. Also, there is a strong seasonal
14029	variation with lower salinities during the periods of maximum river discharge and higher
14030	salinities during periods of drought. The salinity in Albemarle-Pamlico Sound can
14031	generally range from 0 parts per thousand (ppt) to 20 ppt, with the salinity in the upper
14032	reaches of the Neuse and Pamlico Rivers, Albemarle Sound and Currituck Sound having
14033	salinities usually below 5 ppt (Calwell, 2001; Tenore, 1972). Some tidal marshes (which
14034	are irregularly flooded by the winds rather than the regularly flooded by astronomical
14035	tides) are thus unable to tolerate salt water. In some areas, the flow of shallow
14036	groundwater to the sea is also fresh, so the soils are also unaccustomed to salt water.
14037	
14038	More than other areas in the Mid-Atlantic, the Albemarle-Pamlico Sound region appears
14039	to be potentially vulnerable to the possibility that several impacts of sea-level rise might
14040	compound to produce an impact larger than the sum of the individual effects (Poulter and
14041	Halpin, 2008). If a major inlet opened, increasing the tide range and salinity levels, it is
14042	possible that some freshwater wetlands that are otherwise able to keep pace with rising
14043	sea level would be poisoned by excessive salinity and convert to open water. Similarly, if
14044	a pulse of salt water penetrated into the groundwater, sulfate reduction of the organic-rich
14045	soil and peat that underlays parts of the region could cause the land surfaces to subside
14046	(Portnoy and Giblin, 1997; Mitsch and Gosselink, 2000 p.10; Henman and Poulter,
14047	2008).

14049	Thus the land surrounding the Pamlico and Albemarle sounds faces the triple threat in
14050	which rising sea level (a) directly threatens low-lying areas with erosion and tidal
14051	inundation (Chapter 1) and might also create larger or more inlets (Chapter 3), which
14052	could (b) further increase tidal flooding, and (c) increase salinity levels, which could
14053	induce additional erosion and land subsidence ¹⁷⁷ . Moreover, as we saw in Chapter 2, a
14054	substantial acceleration in the rate of sea-level rise could cause barrier islands to
14055	disintegrate. Pamlico Sound (and potentially Albemarle Sound) could be transformed
14056	from a protected estuary into a semi-open embayment with saltier waters, regular
14057	astronomical tides, and larger waves (Riggs, 2006).
14058	
14059	G.2 SHORE PROCESSES
14060	G.2.1 Ocean Coasts
14060 14061	G.2.1 Ocean Coasts North Carolina receives the highest wave energy along the entire east coast of the United
14061	North Carolina receives the highest wave energy along the entire east coast of the United
14061 14062	North Carolina receives the highest wave energy along the entire east coast of the United States. When Hurricane Isabel cut a 1,700-foot-wide gap in Hatteras Island in September
14061 14062 14063	North Carolina receives the highest wave energy along the entire east coast of the United States. When Hurricane Isabel cut a 1,700-foot-wide gap in Hatteras Island in September 2003, the North Carolina Department of Transportation and Army Corps of Engineers
14061 14062 14063 14064	North Carolina receives the highest wave energy along the entire east coast of the United States. When Hurricane Isabel cut a 1,700-foot-wide gap in Hatteras Island in September 2003, the North Carolina Department of Transportation and Army Corps of Engineers were able close the breach within two months at a cost of about \$6.2 million (Schmitt,
14061 14062 14063 14064 14065	North Carolina receives the highest wave energy along the entire east coast of the United States. When Hurricane Isabel cut a 1,700-foot-wide gap in Hatteras Island in September 2003, the North Carolina Department of Transportation and Army Corps of Engineers were able close the breach within two months at a cost of about \$6.2 million (Schmitt, 2003; Beavers and Bruner, 2003). However, there are at least five sections of Hatteras
14061 14062 14063 14064 14065 14066	North Carolina receives the highest wave energy along the entire east coast of the United States. When Hurricane Isabel cut a 1,700-foot-wide gap in Hatteras Island in September 2003, the North Carolina Department of Transportation and Army Corps of Engineers were able close the breach within two months at a cost of about \$6.2 million (Schmitt, 2003; Beavers and Bruner, 2003). However, there are at least five sections of Hatteras Island that transportation planners refer to as "hot spots," narrow, highly dynamic areas
14061 14062 14063 14064 14065 14066 14067	North Carolina receives the highest wave energy along the entire east coast of the United States. When Hurricane Isabel cut a 1,700-foot-wide gap in Hatteras Island in September 2003, the North Carolina Department of Transportation and Army Corps of Engineers were able close the breach within two months at a cost of about \$6.2 million (Schmitt, 2003; Beavers and Bruner, 2003). However, there are at least five sections of Hatteras Island that transportation planners refer to as "hot spots," narrow, highly dynamic areas
14061 14062 14063 14064 14065 14066 14067 14068	North Carolina receives the highest wave energy along the entire east coast of the United States. When Hurricane Isabel cut a 1,700-foot-wide gap in Hatteras Island in September 2003, the North Carolina Department of Transportation and Army Corps of Engineers were able close the breach within two months at a cost of about \$6.2 million (Schmitt, 2003; Beavers and Bruner, 2003). However, there are at least five sections of Hatteras Island that transportation planners refer to as "hot spots," narrow, highly dynamic areas where the highway is at risk from storm surges at any time.

14071 shorelines in 1998 with the oldest available maps of shoreline location, mostly from the

14072	1940s. The average erosion rate was 0.8 m (4.3 ft) per year. Approximately 18% of the
14073	ocean coastline retreated by more than 1.5 m/yr (5 ft/yr), and approximately 61%
14074	retreated by at least 0.6 m/yr (2 ft/yr). But 32% of the coastline accreted (NC DCM,
14075	2003) ¹⁷⁸ . The NCDCM recalculates long-term erosion rates about every five years to
14076	better track the dynamic shoreline trends and establish the setback line that determines
14077	where structures may be permitted on the oceanfront (NCDCM, 2005).
14078	
14079	Several authors have estimated future shoreline erosion as sea level rises. One analysis
14080	of statewide erosion rates over the past 100 years led researchers to estimate that a one
14081	meter sea-level rise would cause the shore to retreat an average of 88 m, in addition to the
14082	erosion caused by other factors (excluding inlets) (Leatherman, Zhang and Douglas,
14083	2000a) ¹⁷⁹ . Another study estimated that a rise in sea level of 0.52 m between 1996 and
14084	2050 would cause the shoreline at Nags Head to retreat between 33 and 43 m (Daniels,
14085	1996).
14086	
14087	Some researchers also believe that the barrier islands themselves may be in jeopardy if
14088	sea-level rise accelerates. According to Riggs and Ames, about 40 km (25 miles) of the
14089	Outer Banks are so sediment-starved that they are already in the process of
14090	"collapsing" ¹⁸⁰ . Within a few decades, they estimate, portions of Cape Hatteras National
14091	Seashore could be destroyed by (1) sea-level rise (at current rates or higher), (2) storms of
14092	the magnitude experienced in the 1990s, or (3) one or more Category 4 or 5 hurricanes
14093	hitting the Outer Banks (Riggs and Ames, 2003). If several breaches were to open
14094	simultaneously, Pamlico Sound (and potentially Albemarle Sound) could be transformed

- 14095 from a protected estuary into a "semi-open embayment" with saltier waters, regular
- 14096 astronomical tides, and larger waves (Riggs, 2006).

- 14098 Considering these and other studies, a panel of shoreline experts organized by USGS
- 14099 concluded that most of the Outer Banks between Nags Head and Ocracoke is vulnerable
- 14100 to barrier island disintegration over the next century if the rate of sea-level rise
- 14101 accelerates 2 mm/yr and portions may be vulnerable even at the current trend. (See
- 14102 Chapter 3). The state of North Carolina alone has as much vulnerable ocean shore as all
- 14103 of the shores from Virginia to New York combined. (See Chapter 3).
- 14104

14105 G.3 VULNERABLE HABITATS AND SPECIES

- 14106 Chapter 3 presents an assessment of the potential for wetland accretion from Virginia to
- 14107 New York, which excludes North Carolina. Nevertheless, authors in North Carolina
- 14108 appear to have reached a similar qualitative result. Some wetland systems are already at
- 14109 the limit of their ability to vertically keep pace with rising sea level, such as the remnants
- 14110 of the tidal marshes that connected Roanoke Island to the mainland of Dare County until
- 14111 the 19th century. The pocosin wetlands can vertically accrete by about 1-2 mm per year
- 14112 with or without rising sea level—when they are in their natural state (Craft and
- 14113 Richardson, 1998; Moorhead and Brinson, 1995). The altered drainage patterns, however,
- 14114 appear to be limiting their vertical accretion—and saltwater intrusion could cause
- 14115 subsidence and conversion to open water. Rather than helping the ecosystem respond to
- 14116 rising sea level, human activities appear to be disabling the processes that could
- 14117 otherwise allow these wetlands to stay ahead of the rising sea.

14118	
14119	This section examines the types of wetlands in this area and the landscapes where they
14120	are found, followed by shoreline erosion and some of the rates at which it has been
14121	measured in different settings. We then discuss how wetlands affect the position of the
14122	shoreline and ways wetlands can respond to sea-level rise. Some wetlands, particularly
14123	marshes and swamps, can migrate landward as sea level rises, particularly if the slope of
14124	the land is gradual. Finally, we discuss some of the environmental effects of wetlands
14125	loss.
14126	
14127	G.3.1 Distribution of Wetland Types
14128	The Albemarle-Pamlico Sound system includes most of the major estuaries in North
14129	Carolina. The Albemarle Sound receives drainage from the Chowan and Roanoke Rivers
14130	(as well as Currituck Sound and Back Bay in Virginia Beach) and the Pamlico Sound
14131	receives drainage from the Tar and Neuse Rivers. All of these rivers deliver substantial
14132	quantities of sediments that are either deposited on adjacent floodplains or are carried
14133	into the Albemarle Sound and the Pamlico River and Neuse estuaries. Deposition rates of
14134	these sediments in the estuaries approximate the rate of rising sea level (2-3 mm/yr)
14135	(Benninger and Wells, 1993). These sediments generally do not reach coastal marshes, in
14136	part because they are deposited in subtidal areas and in part because there is little or no
14137	astronomic tide to carry them to wetland surfaces. Storms that generate high water levels,
14138	especially 'northeasters' that raise water levels in the southern portions of Pamlico
14139	Sound, deposit sediments on storm levees adjacent to marsh shorelines. Most tributaries

14140	that drain the coastal plain are a minor supply of suspended sediment to the estuaries
14141	(Riggs, 1996).
14142	
14143	While many wetlands in coastal North Carolina formed in similar geologic settings,
14144	different types of wetlands emerged. Poorly drained flat plains between streams (known
14145	as inter-stream divides) typify the Albemarle-Pamlico Peninsula. Portions of these areas
14146	are locally known as "pocosins," which refers to a plant community of evergreen shrubs
14147	and wetland tree species occupying peat deposits ¹⁸¹ . Rising sea level has now reached
14148	some peatlands, particularly those at lower elevations, e.g., in Dare County, on the
14149	extreme eastern end of the Albemarle-Pamlico peninsula. As a result, scarped peat
14150	shorelines (i.e., peat shorelines with steep vertical drop-offs created by waves) are
14151	extensive (Riggs and Ames, 2003).
14152	
14153	Other types of wetlands, including large areas of marshes and forested wetlands, are also
14154	influenced by sea level. Many are classified as fringe wetlands because they occur along
14155	the periphery of estuaries that flood them irregularly. Salinity is the major control that
14156	determines the dominant vegetation type. In the fresh to slightly brackish (oligohaline)
14157	Albemarle Sound region, forested shrub-scrub wetlands dominate. Forested wetlands also
14158	occur on floodplains of the major rivers (Chowan, Roanoke, Tar, and Neuse), as well as
14159	tributaries draining pocosins and other areas of the coastal plain. As the shoreline erodes
14160	in areas with forested wetlands, bald cypress trees become stranded in the permanently
14161	flooded zone. They eventually die and fall down, which creates a zone in shallow water
14162	with a complex habitat structure, including fallen trees and relic "knees" cypress trees

14163	once sprouted for support. Landward, one finds a "storm levee" (coarse sand deposited
14164	during storms) bordering the swamp forest in areas exposed to waves. These forests are
14165	described as "tidal cypress-gum swamp." (Shafale and Weakley, 1990) They can range
14166	from gum-maple swamps on mineral soils to evergreen shrub bogs (pocosins) growing on
14167	peaty deposits.
14168	
14169	Salinity is an important factor that affects the types of vegetation found in a given area.
14170	Trees are killed by extended exposure to salinity above 10 ppt (approximately $1/4 - 1/3$
14171	the salinity of sea water), and the growth of most trees and shrubs is restricted at much
14172	lower salinities (Conner et al., 1997; Poulter et al., 2008). In brackish water areas,
14173	marshes consisting of plants that are saltwater-tolerant replace forested wetlands. Along
14174	the Pamlico Sound, a large area consists of brackish marshes. Marshes are largely absent
14175	from the shore of Albemarle Sound and mouths of the Tar and Neuse Rivers, where
14176	salinities are too low to affect vegetation. It is only the lower reaches of the Chowan,
14177	Roanoke, Tar, and Neuse rivers that are affected by rising sea level. Along small
14178	tributaries of the Neuse and Pamlico River estuaries, there are brackish marshes at
14179	estuary mouths and forested wetlands in regions further upstream, where the salinity is
14180	low (Brinson et al., 1985).
14181	
14182	Sea level influences the location of the boundaries between wetlands and uplands, in part
14183	because estuarine water levels can drive poor drainage of coastal wetlands. These
14184	boundaries are commonly found where brackish water from storm surges has created a
14185	transition between salt-tolerant marshes and upland forest. Sea level also may influence

14186	the zones different plant communities occupy. For example, where waves have raised the
14187	elevation of wetlands by depositing sediment on "storm levees" on the shore of marshes,
14188	the elevation tends to be higher than in adjacent areas, and therefore different types of
14189	plants tend to be found there.
14190	
14191	G.3.2 Estuarine Shoreline Erosion
14192	Rising sea level is not the primary cause of shoreline retreat along estuarine shores in
14193	North Carolina. Storm waves cause shorelines to recede whether or not the sea is rising.
14194	Nevertheless, rising sea level can indirectly increase the erosive power of storm waves,
14195	and decrease the ability of shores to advance between storms. (See Chapter 2). A study of
14196	21 sites estimated that shoreline retreat — caused by "the intimately coupled processes of
14197	wave action and rising sea level" — is already eliminating wetlands at a rate of about 3.2
14198	square kilometers (800 acres) per year, mostly in zones of brackish marsh habitat, such as
14199	on the Albemarle-Pamlico Peninsula (Riggs and Ames, 2003).
14200	
14201	Riggs and Ames (2003) compiled data collected across North Carolina shorelines, both
14202	those that are adjacent to wetlands and those that are not. These data show that the vast
14203	majority of estuarine shores in the region are eroding, except for the sound sides of
14204	barrier islands (which one might expect to advance toward the mainland). Shores have
14205	retreated almost 2 m per year, over periods as long as 30 years. Annual averages for most
14206	shoreline types are less than 1 m per year, (Table G.2) but annual maxima exceed the
14207	average many-fold and can reach 8 m per year where the shoreline is characterized by
14208	sediment bluffs or high banks. One or a few individual storm events contribute

- 14209 disproportionately to average annual shoreline recession rates (Riggs and Ames, 2003).
- 14210 Variables that affect erosion rates include number and pattern of seasonal storms, fetch
- 14211 (the distance waves travel over open water), shoreline type, composition of soil, presence
- 14212 and type of vegetation, and depth of water near the shore.

Shoreline type	Percent of shoreline	Maximum rate per year (m)	Average rate per year (m)
Sediment Bank			
Sediment low bank	30	2.7	1.0
Sediment bluff/high bank	8	8.0	0.8
Back-barrier strandplain	?	0.6	-0.2*
Organic Shoreline			
Mainland marsh	55	5.6	0.9
Back-barrier marsh	?	5.8	0.4
Swamp forest	7	1.8	0.7
Total			2.7

Table G.2 Estuarine shoreline erosion rates by shoreline type and the percent of total shoreline for each type. From Riggs and Ames (2003), Table 9-1-5, at 145.

14214

14215 G.3.3 Will Wetlands Keep Pace With Rising Sea Level?

14216 Although wetlands are retreating at their seaward boundaries, away from the shore, most

14217 marshes and swamps in North Carolina appear to be keeping pace with rising sea level.

14218 As we look into the future, three scenarios seem possible:

14219

14220 Continuation of current trends. If sea level continues to rise approximately 3 mm/year,

14221 most wetlands are unlikely to drown, although some wetland will be lost as shores retreat.

14222

14223 *Wetland drowning*, however, may result if rates of sea-level rise increase by 2 mm/yr,

14224 and is likely if rates increase by 7 mm/yr^{182} . Under the drowning scenario, the low-lying

14225 wetlands of the lower coastal plain would convert to aquatic ecosystems, and the large,

14226 low, and flat pocosin would transform from forest to aquatic habitat (Poulter, 2005). In

14227 areas of pocosin peatland, shrub and forest vegetation first would be killed by brackish

14228 water. In contrast to fringe wetlands, swamp forest wetlands along the piedmont-draining

14229 rivers are likely to sustain themselves under the drowning scenario. This is due to the

14230 general abundance of mineral sediments when rivers overflow their banks. This applies to

14231	regions within the floodplain, but not at river mouths. Also, pocosin swamp forest
14232	peatlands at higher elevations in the coastal plain will continue to grow vertically,
14233	independently of sea-level rise and of mineral sediment supplies since they are
14234	disconnected from the riverine and estuarine systems.
14235	
14236	Barrier islands are breached. Chapter 6 suggests that more inlets are likely, and that
14237	disintegration of some of the barrier islands is possible if sea-level rise accelerates. This
14238	would cause a state change from a non-tidal to tidal regime as additional inlets open,
14239	causing the Albemarle and Pamlico Sounds to have a significant tide range and increased
14240	salinity. Poulter (2005) estimated that conversion from a non-tidal to tidal estuary might
14241	expose hundreds of square kilometers of nontidal wetlands to tidal flooding. In theory, it
14242	is possible that this transformation might increase the ability of wetland to keep pace with
14243	rising sea level by increasing the supply of sediment. The conversion of Pamlico Sound
14244	to a tidal system would likely re-establish tidal channels where ancestral streams were
14245	located. The remobilization of sediments could then supply existing marshes with
14246	inorganic sediments. It is more likely, however, that marshes would become established
14247	landward on newly inundated mineral soils of former uplands.
14248	
14249	As sea level rises further and waters with higher salt content reach the peninsula, the
14250	ability of peat-based wetlands to keep up is doubtful (Riggs, 2006). In peatlands, shrub
14251	and forest vegetation first would be killed by brackish water. It is unlikely that pocosin
14252	and swamp forest areas would convert to tidal wetlands, for two reasons. First, the root
14253	mat within them would collapse due to plant mortality and decomposition, causing a

14254	rapid subsidence of several centimeters ¹⁸³ . Second, brackish water may accelerate
14255	decomposition of peat. When seawater reaches peat soils, a group of sulfate-metabolizing
14256	bacteria begin to digest the soil at a much faster rate than the normal methane-producing
14257	bacteria that inhabit freshwater peat soils (Portnoy and Giblin, 1997). Further, the death
14258	of woody vegetation and fact that wetland plants can no longer become established
14259	results in the exposure of organic-rich soils directly to decomposition, erosion,
14260	suspension, and transport, without the stabilizing properties of vegetation (Henman and
14261	Poulter, 2008; IPCC, 2007).
14262	
14263	G.3.4 Environmental Implications of Habitat Loss and Shore Protection
14264	North Carolina's coastal wetlands provide important habitat for many species. Human
14265	activities to control shoreline erosion and flooding, however, are already harming
14266	wetlands. Nontidal wetlands account for more than 69 percent of the land within one
14267	meter above spring high water.
14268	
14269	Ecological/habitat processes and patterns. Some wetland functions are proportional to
14270	size. Other functions depend on the wetland's edges, that is, the borders between open
14271	water and wetland. Because of the large size of many irregularly flooded marshes in the
14272	region, their interior portions are effectively isolated from the aquatic portions of the
14273	estuary.
14274	
14275	In the absence of tidal creeks and astronomic tidal currents, pathways for fish and

14276 invertebrate movement are severely restricted. In contrast, the twice-daily inundation of

14277	tidal marshes increases connections across the aquatic-wetland edge, as does the presence
14278	of tidal creeks, which allow fish and aquatic invertebrates to exploit intertidal areas
14279	(Kneib and Wagner, 1994). Mobility across ecosystem boundaries is less prevalent in
14280	irregularly flooded marshes, where some fish species become marsh "residents" because
14281	of the long distances required to navigate from marshes to subtidal habitats (Marraro et
14282	al., 1991). Where irregularly-flooded marshes are inundated for weeks at a time, little is
14283	known about how resident species adapt. These include, among other species, several
14284	types of fish (e.g., killifish and mummichogs), brown water snakes, crustaceans (various
14285	species of crabs), birds (yellowthroat, marsh wren, harrier, swamp sparrow, and five
14286	species of rails), and several species of mammals (nutria, cotton rat, and raccoon). North
14287	Carolina's coastal marshes are also home to a reintroduced population of red wolves (see

14288 Box G.1).

Public Comment Draft

BOX G.1: Reintroduced population of red wolves in North Carolina

Red Wolf (Canus rufus)

Photograph credit: U.S. Fish and Wildlife Service. Red Wolf Recovery Project. Photos. Accessed at: <u>http://www.fws.gov/alligatorriver/red</u> wolf/rwpics.html on March 12, 2007. Photo: Greg Koch

Habitat: The red wolf (*Canus rufus*) is federally listed as endangered and was formerly extinct in the wild. Red wolves were hunted and trapped aggressively in the early 1900s as the southeast became increasingly developed, and the remaining wolves then suffered further declines with the extensive clearing of forest and hardwood river bottoms that formed much of the prime red wolf habitat (USFWS, 1993; USFWS, 2004). The last wild red wolves were found in coastal prairie and marsh habitat, having been pushed to the edges of their range in Louisiana and Texas. The red wolf is elusive, and most active at dawn and dusk. It lives in packs of five to eight animals, and feeds on white-tailed deer, raccoon, rabbit, nutria, and other rodents. In addition to food and water in a large home range area (25 to 50 square miles), red wolves require heavy vegetation cover (USFWS, 1993).

Locations: Through a captive breeding program and reintroduction of the species, there are now an estimated total of 100 red wolves living in the wild in coastal areas of North Carolina. In the wild, the red wolf currently occupies approximately 1.7 million acres on three national wildlife refuges and other public and private lands in eastern North Carolina. Principal among these areas is the Alligator River National Wildlife Refuge (NWR), the site of the red wolf's reintroduction to the wild in 1987 (USFWS, 2006). The refuge is surrounded on three sides by coastal waters and connected to the mainland by a largely developed area. Red wolves have also been reintroduced to the Pocosin Lakes NWR, slightly inland from Alligator River NWR, and are occasionally sighted on the Mattamuskeet NWR. The last wild red wolves were found in Louisiana and Texas coastal marsh areas, but their historic range extended from southern Pennsylvania throughout the southeast and west as far as central Texas (USFWS, 2004). Despite their potential for survival in numerous habitat types throughout the southeastern United States, the small current population faces serious threats from sea level rise.

Impact of Sea Level Rise: Alligator River National Wildlife Refuge (NWR), the red wolf's primary population center is at risk due to sea level rise. Developed areas inland of the peninsular refuge limit habitat migration potential. In a 2006 report, the Defenders of Wildlife (an environmental advocacy organization) characterized Alligator River NWR as one of the ten NWRs most gravely at risk due to sea level rise. The effects of sea level rise can already be seen on the habitat in Alligator NWR, where pond pine forest has transitioned into a sawgrass marsh in one area, and the peat soils of canal banks are eroding near the sounds (Stewart, 2006). Areas of hardwood forest and pocosin will be replaced by expanding grass-dominated freshwater marshes currently occupying the edges of the sounds. Bald cypress and swamp tupelo forests will also replace the hardwood areas (USFWS, 2006). The red wolf is not likely to adapt to the marsh habitat in the short amount of time that these processes are already taking place (Stewart, 2006).

14289

Do Not Cite or Quote

Public Comment Draft

14290	Effects of human activities. Human alterations, including bulkheads and other shore
14291	protection structures, have served mostly to stabilize the position of coastal wetlands and
14292	thus resist effects of both rising sea level and erosion.
14293	
14294	Levees associated with waterfowl impoundments have isolated large marsh areas in
14295	southern Pamlico Sound from any connection with estuarine waters. Impoundments were
14296	built to create a freshwater environment conducive to migratory duck populations and

14297 thus eliminate most other habitat functions mentioned above for brackish marshes.

14298 Further, isolation from sea level influences has likely disconnected the impoundment

14299 from pre-existing hydrologic gradients that would promote vertical accretion of marsh

14300 soil. If the impoundments were opened to an estuarine connection after decades of

14301 isolation, they would likely become shallow, open-water areas incapable of reverting to

14302 wetlands (Day *et al.*, 1990).

14303

14304 Drainage ditches, installed to drain land so that it would be suitable for agriculture, are 14305 prevalent in North Carolina. By the 1970s, on the Albemarle-Pamlico Peninsula, there 14306 were an estimated 20 miles of streams and artificial drainage channels per square mile of 14307 land, while the ratio in other parts of North Carolina ranged from 1.4–2.8 to 1 (Heath, 14308 1975). In many cases, ditches, some of which were dug more than a century ago to drain 14309 farmland (Lilly, 1981) now serve to transport brackish water landward, a problem that 14310 could become increasingly prevalent as sea level rises. Saltwater intrusion to agricultural 14311 soils is a major consequence of this process. A number of tide gates have been installed 14312 on the Albemarle-Pamlico Peninsula to reduce brackish water intrusion. Numerous canals

14313	and ditches in the Alligator River and Pocosin Lakes National Wildlife Refuges likewise
14314	carry brackish water inland, reversing intended flow directions. Brackish water may not
14315	only alter vegetation type in an area, but peat can collapse from the intrusion of sulfate-
14316	rich, brackish water. Studies are ongoing to understand the current and future effects of
14317	drainage networks (Poulter, Goodall and Halpin, in review).
14318	
14319	Potential effects of human activities at the marsh-forest boundary on overland migration
14320	of wetlands are more subtle. The conversion of marsh into forest is an ongoing process
14321	that can expand or maintain marsh surface area that would otherwise be diminished by
14322	shoreline retreat. Existing structures can interfere with these processes, and new ones are
14323	being constructed in association with increasing shoreline and shore zone development.
14324	Highway and railroad beds directly impede wetland migration. Even those with culverts
14325	would hinder overland flow of water and slow wetland migration. Levees constructed to
14326	protect property from storm surges, dense housing developments with extensive
14327	bulkheads, and new highways and streets have similar effects.
14328	
14329	G.4 DEVELOPMENT AND SHORE PROTECTION
14330	G.4.1 Statewide Policy Context
14331	Several North Carolina laws and regulations have an impact on response to sea-level rise
14332	within the state. First, setback rules encourage retreat by requiring buildings being

- 14333 constructed or reconstructed to be set back a certain distance from where the shoreline is
- 14334 located when construction permits are issued. Second, North Carolina does not allow
- 14335 shore protection structures such as seawalls and revetments on oceanfront shorelines,¹⁸⁴

14336	preventing property owners from employing one possible method of holding back the sea
14337	to protect their property. ¹⁸⁵ . Adding sand to beaches (<i>i.e.</i> , beach nourishment) is the
14338	preferred method in North Carolina to protect buildings near the ocean coastline. In
14339	addition, the State requires coastal counties to adopt land use plans to guide future
14340	development, and these plans are supposed to take into account sea-level rise ¹⁸⁶ . In most
14341	county land use plans, this component does not explicitly address how the county will
14342	address sea-level rise, but land use plans are updated regularly (Feldman, 2007, pp. 64-
14343	65; Feldman, 2008, p. 5). The requirement could encourage counties to give more
14344	thought to how the areas most likely to be impacted by sea-level rise should respond in
14345	the future. Finally, the North Carolina Division of Coastal Management analyzes
14346	information and educates the public about shoreline change and coastal hazards in the
14347	state, and its efforts could heighten public awareness about sea-level rise vulnerability in
14348	North Carolina's coastal counties (Feldman, 2008).
14349	
14350	North Carolina's Coastal Area Management Act and Dredge and Fill Law authorizes the
14351	Coastal Resources Commission (CRC) to regulate certain aspects of development within
14352	North Carolina's 20 coastal counties ¹⁸⁷ . For example, the CRC issues permits for
14353	development and classifies certain regions as Areas of Environmental Concern (e.g.,
14354	ocean hazard zones and coastal wetlands) where special rules governing development
14355	apply. In response to the threat of damage to coastal structures from the waves, North
14356	Carolina has required since 1980 new development to be set back from the oceanfront.
14357	The setbacks are measured from the first line of stable natural vegetation ¹⁸⁸ . Single-
14358	family homes of any size—as well as multi-family homes and non-residential structures

14359	with less than 5,000 square feet of floor areamust be set back by 60 feet or 30 times the
14360	long-term rate of erosion as calculated by the state, whichever is greater. Larger multi-
14361	family homes and non-residential structures must be set back by 120 feet or the erosion-
14362	based setback distance, whichever is greater. The setback distance for these larger
14363	structures is calculated as either 60 times the annual erosion rate or 105 feet plus 30 times
14364	the erosion rate, whichever is less ¹⁸⁹ . North Carolina is considering changes to its
14365	oceanfront setback rules, including progressively larger setback factors for buildings with
14366	10,000 square feet of floor area or more (NC CRC, 2007, p.1). Along estuarine
14367	shorelines, North Carolina has a 30-foot setback ¹⁹⁰ and restricts development between 30
14368	and 75 feet from the shore ¹⁹¹ . As the shore moves inland, these setback lines move inland
14369	as well.
1 4 2 7 0	
14370	
14370 14371	As of 2000, the U.S. Army Corps of Engineers participated in beach nourishment projects
	As of 2000, the U.S. Army Corps of Engineers participated in beach nourishment projects along more than 32 miles of North Carolina's shoreline (including some nourishment
14371	
14371 14372	along more than 32 miles of North Carolina's shoreline (including some nourishment
14371 14372 14373	along more than 32 miles of North Carolina's shoreline (including some nourishment projects that occurred as a result of nearby dredging projects), and nourishment along an
14371 14372 14373 14374	along more than 32 miles of North Carolina's shoreline (including some nourishment projects that occurred as a result of nearby dredging projects), and nourishment along an additional 85 miles of coastline had been proposed (USACOE, 2000) ¹⁹² . If necessary,
14371 14372 14373 14374 14375	along more than 32 miles of North Carolina's shoreline (including some nourishment projects that occurred as a result of nearby dredging projects), and nourishment along an additional 85 miles of coastline had been proposed (USACOE, 2000) ¹⁹² . If necessary, property owners can place large (geotextile) sandbags in front of buildings to attempt to
14371 14372 14373 14374 14375 14376	along more than 32 miles of North Carolina's shoreline (including some nourishment projects that occurred as a result of nearby dredging projects), and nourishment along an additional 85 miles of coastline had been proposed (USACOE, 2000) ¹⁹² . If necessary, property owners can place large (geotextile) sandbags in front of buildings to attempt to protect them from the waves. Standards apply to the placement of sandbags, which is
14371 14372 14373 14374 14375 14376 14377	along more than 32 miles of North Carolina's shoreline (including some nourishment projects that occurred as a result of nearby dredging projects), and nourishment along an additional 85 miles of coastline had been proposed (USACOE, 2000) ¹⁹² . If necessary, property owners can place large (geotextile) sandbags in front of buildings to attempt to protect them from the waves. Standards apply to the placement of sandbags, which is supposed to be temporary (to protect structures during and after a major storm or other
14371 14372 14373 14374 14375 14376 14377 14378	along more than 32 miles of North Carolina's shoreline (including some nourishment projects that occurred as a result of nearby dredging projects), and nourishment along an additional 85 miles of coastline had been proposed (USACOE, 2000) ¹⁹² . If necessary, property owners can place large (geotextile) sandbags in front of buildings to attempt to protect them from the waves. Standards apply to the placement of sandbags, which is supposed to be temporary (to protect structures during and after a major storm or other short-term event that causes erosion, or to allow time for relocation) ¹⁹³ . Buildings are

- 14382 guidelines for siting and constructing estuarine hardened structures are under review by
- 14383 the Coastal Resources Commission (see, *e.g.*, Feldman, 2008, p. 5).

14385	The Coastal Area Management Act also requires that coastal counties develop and
14386	periodically update land use plans, which are binding in Areas of Environmental
14387	Concern. One of the hazards that these land use plans are supposed to take into account is
14388	sea-level rise, but most plans either do not include policies tailored to areas threatened by
14389	sea-level rise, address it only in passing, or defer to the state to take action.
14390	
14391	North Carolina officials are in the process of reassessing certain state policies in light of
14392	the forces of shoreline change and climate change. Policy considerations have been
14393	affected by numerous studies that researchers have published on the potential effects of
14394	sea-level rise on North Carolina (Poulter et al., in review). The state legislature appointed
14395	a Legislative Commission on Global Climate Change to study and report on potential
14396	climate change effects and potential mitigation strategies, including by providing
14397	recommendations that address impacts on the coastal zone (see the "North Carolina
14398	Global Warming Act," Session Law 2005-442. The Commission's recommendations
14399	have not yet been finalized, but a draft version offered such suggestions as creating a
14400	mechanism to purchase land or conservation easements in low-lying areas at great risk
14401	from sea-level rise; providing incentives for controlling erosion along estuarine
14402	shorelines using ecologically beneficial methods; creating a commission to study
14403	adaptation to climate change and make recommendations about controversial issues; and
14404	inventorying, mapping, and monitoring the physical and biological characteristics of the

14405	entire shoreline (Feldman, 2007, pp. 42-42; Feldman, 2008, p. 8; Riggs, Stephenson, and
14406	Clark 2007). The Coastal Resources Commission is also considering the potential effects
14407	of sea-level rise and whether to recommend any changes to its rules affecting
14408	development in coastal areas (Feldman, 2008, p.6). In addition, NCDCM is developing a
14409	Beach and Inlet Management Plan to define beach and inlet management zones and
14410	propose preliminary management strategies given natural forces, economic factors,
14411	limitations to the supply of beach-quality sand, and other constraints (Moffatt and Nichol,
14412	2007).
14413	
14414	G.4.2 Current Land Use
14415	As discussed in Chapter 5, ongoing studies have combined land use data, regulations, and
14416	planner expectations for future development to create alternative scenarios of shore-
14417	protection and wetland migration. Because those studies have not yet been published in
14418	peer review journal articles, we describe some of the aspects of land use that would
14419	influence whether people hold back the sea or allow wetlands and beaches to migrate
14420	inland.
14421	
14422	Ocean Coast. North Carolina's ocean coast, like the coasts of most states, includes
14423	moderate and densely developed communities, as well as undeveloped roadless barrier
14424	islands. Unlike other mid-Atlantic states, North Carolina's coast also includes a roadless
14425	coastal barrier that is nevertheless being developed, densely populated areas that
14426	nevertheless have been yielding homes to the sea, and a major lighthouse that has been
14427	relocated landward.

Public Comment Draft

14428	
14429	The northern 23 kilometers of the state's coastline is a designated undeveloped coastal
14430	barrier and hence ineligible for most federal programs (USFWS, not dated). This stretch
14431	of barrier island includes two sections of Currituck National Wildlife Refuge, each about
14432	2 kilometers long, which are both off-limits to development and make it infeasible for the
14433	County to even consider a road along the barrier island (NC DOT, not dated).
14434	Nevertheless, the privately owned areas are gradually being developed, even though they
14435	are accessible only by boat or four-wheel drive vehicles traveling along the beach. The
14436	roadless areas are ineligible for federal beach nourishment and flood insurance.
14437	
14438	Along the Dare County coast from Kitty Hawk to Nags Head, federal legislation has
14439	authorized shore protection, provided that it is cost-effective. Homes have been falling
14440	into the water as shores erode; but now that the through streets parallel to the shore are at
14441	risk, small sand replenishment projects have been undertaken to protect these roads. The
14442	beaches in some of the communities north of Kitty Hawk are not yet open to the public,
14443	and hence they are currently ineligible for beach nourishment.
14444	
14445	From Nags Head to Hatteras Island, most of the coast is part of Cape Hatteras National
14446	Seashore, with a coastal highway running the entire length, from which one can catch a
14447	ferry to Ocracoke Island. Congress appropriated \$9.8 million to move the Cape Hatteras
14448	Lighthouse 1,600 feet inland (NPS, 2000). The National Park Service generally allows
14449	shores to retreat, and the road has been relocated inland in places. Nevertheless, the
14450	coastal coastal highway is essential infrastructure, the protection of which would require

14451	maintaining the barrier island. A possible exception is that part of Hatteras Island
14452	between Rodanthe and Oregon Inlet. The federal and state governments are considering
14453	the possibility that when a new bridge is built over Oregon Inlet, that it would run over
14454	Pamlico sound just west of Hatteras Island, as far as Rodanthe.
14455	
14456	Southwest of Cape Lookout, the coast consists mostly of developed barrier islands, ,
14457	conservation lands that will not be protected, and designated "undeveloped coastal
14458	barriers" that are nevertheless being developed. The undeveloped Portsmouth Island and
14459	Core Banks constitute Cape Lookout National Seashore., and lack road access. Cape
14460	Lookout is located on Core Banks. Shackleford Banks, immediately adjacent to the
14461	southwest, is roadless and uninhabited. To its west, Bogue Banks includes five large
14462	communities with high dunes and dense forests (Pilkey et al., 1998). The island also
14463	receives fill to widen its beaches regularly.
14464	
14465	To the west of Bogue Banks are the barrier islands of Onslow County and then Pender
14466	County. Some islands are only accessible by boat, and most of these are undeveloped.
14467	North Topsail Beach, on Topsail Island, has been devastated by multiple hurricanes, in
14468	part due to its low elevation and the narrow width of Topsail Island. Erosion has forced
14469	multiple roads on the island to be moved. While some parts of North Topsail Beach are
14470	part of a unit under the Coastal Barrier Resources Act (CBRA) system, making them
14471	ineligible for federal subsidies, development has occurred within them nonetheless
14472	(Pilkey <i>et al.</i> , 1998).
14473	

14474	Further to the west are the barrier islands of New Hanover County. An exclusive
14475	residential neighborhood is located on Figure Eight Island. Wrightsville Beach, like many
14476	other communities southwest of Cape Lookout, has an inlet on each side. It is the site of a
14477	well-known battle to protect a hotel from being washed away due to inlet migration. The
14478	U.S. Army Corps of Engineers has committed, over the long term, to regular beach
14479	renourishment to maintain the place of the shoreline in Wrightsville Beach and Carolina
14480	Beach (USACOE, 2006 p.38). An exception to North Carolina's rules forbidding
14481	hardened structures has been granted in Kure Beach, west of Carolina Beach, where rock
14482	rip-rap has been placed on the oceanfront to protect Fort Fisher (which dates back to the
14483	Civil War) (Pilkey et al., 1998). The rip-rap also protects a highway that provides access
14484	to the area. Most of the beach communities in New Hanover County are extensively
14485	developed.
14486	
14487	Some of the barrier islands in Brunswick County are heavily forested with high
14488	elevations, making them more resilient to coastal hazards (Pilkey et al., 1998). Holden
14489	Beach and Ocean Isle Beach, however, contain many dredge-and-fill finger canals.
14490	Historically, at least two inlets cut through Holden Beach; and storms could create new
14491	inlets where there are currently canals (Pilkey et al., 1998).
14492	
14493	Estuarine Shores. Significant urbanization was slow to come to this region for many
14494	reasons. Most of the area is farther from population centers than the Delaware and
14495	Chesapeake estuaries. The Outer Banks were developed more slowly than the barrier
14496	islands of New Jersey, Delaware, and Maryland. And most importantly, the land is

14497	mostly low and wet. With more than 60 percent of the land within the Mid-Atlantic that
14498	might realistically be allowed to become submerged as sea level rises, this area represents
14499	an environmental planning opportunity that is of national importance.
14500	
14501	The lands along the Albemarle and Pamlico sounds account for 70 percent of the nontidal
14502	wetlands, 40 percent of the dry land, and 55 percent of all the land in the Mid-Atlantic
14503	within 1 meter above spring high water.(Titus and Wang, 2008) They include about 50
14504	percent of the dry land where protection is precluded or unlikely, and 63 percent of all
14505	land within the Mid-Atlantic that is likely to be submerged, assuming that nontidal
14506	wetlands are also allowed to flood (See Chapter 1).
14507	
14508	Unlike the Delaware Estuary, communities in North Carolina do not have a long history
14509	of diking tidal wetlands to reclaim land from the sea for agricultural purposes ¹⁹⁶ . But they
14510	are starting to gain experience with dikes to protect agricultural lands from flooding. In
14511	Tyrrell County, the Gum Neck has been protected with a dike for four decades. A dike is
14512	now planned for the town and farms around Swan Quarter, the county seat of Hyde
14513	County (which includes Ocracoke Island). Especially in Tyrell County, shore protection
14514	is a matter of self-preservation to this county. Hurricane Floyd led Pamlico County to
14515	encourage people to gradually abandon the eastern portion of the county, by working
14516	with FEMA to relocate people rather than rebuild damaged homes (Barnes, 2001). In
14517	parts of Carteret County, by contrast, people learned the opposite lesson and elevated
14518	homes. Hyde County is building a dike around its county seat and many farms nearby.
14519	

14520	G.5 POPULATION OF LANDS CLOSE TO SEA LEVEL
14521	Approximately 900,000 people live in the 20 coastal counties in North Carolina. The
14522	economies of these counties are dependent on agriculture, forestry, and tourism. Tourism
14523	is associated with coastal development and beach visits, as well as recreational sports and
14524	fishing. Bin et al., (2007) estimated the economic costs of climate change in coastal
14525	North Carolina by evaluating impacts on tourism (beach visits and fishing), private
14526	property, and the business sector. They considered losses of beach width and fishing
14527	locations due to increased shoreline erosion from sea-level rise, loss of property value
14528	from direct inundation, and business interruptions from increased frequency of hurricanes
14529	associated with increasing sea surface temperatures.
14530	
14531	In just four coastal counties (representing a cross-section of economic characteristics and
14532	vulnerability to sea-level rise), between 2 and 12% of properties were at risk from an 81
14533	cm rise in sea level by the year 2080. The value of lost residential and nonresidential
14534	property in these four counties was estimated at \$6.9 billion in 2080 (adjusted for a 2%
14535	discount rate) (Bin et al., 2007). Impacts of sea-level rise on tourism, including
14536	recreational fishing, were based on the assumption that wider beaches are more
14537	frequently visited than narrower beaches. The study estimated that the lost recreational
14538	value ranged up to \$3.5 billion for the southern North Carolina beaches, while lost fishing
14539	opportunities ranged up to \$430 million (both estimates assumed a 2% discount rate) (Bin
14540	et al., 2007). Lastly, business interruptions from changes in hurricane frequency and
14541	intensity were estimated, however the uncertainty regarding the relationship between
14542	climate change and hurricane characteristics is highly uncertain. The authors estimated

- 14543 that business impacts could increase 150% if hurricane intensity increases from Category
- 14544 2 to 3 (Bin *et al.*, 2007).

BOX G.2: Vulnerability of the Albemarle-Pamlico Peninsula and Emerging Stakeholder Response

Vulnerability to sea level rise on the diverse Albemarle-Pamlico Peninsula is very high: about two-thirds of the peninsula is less than 5 feet above sea level (Heath, 1975), and approximately 30 percent is less than 3 feet above sea level (Poulter, 2005). Erosion rates in parts of the peninsula are already high. For example, along bluffs, erosion rates up to 25 feet per year have been measured (Riggs and Ames, 2003). The ecosystems of the Albemarle-Pamlico Peninsula have long been recognized for their biological and ecological value. The peninsula is home to four national wildlife refuges, the first of which was established in 1932. In all, about a fourth of the peninsula has been set aside for conservation purposes.

The Albemarle-Pamlico Peninsula is among North Carolina's poorest areas. Four of its five counties are classified as economically distressed by the state, with high poverty and unemployment rates, along with low wages. However, now that undeveloped waterfront property on the Outer Banks is very expensive and very scarce, developers have discovered the small fishing villages on the peninsula and begun acquiring property in several areas—including Columbia (Tyrell County), Engelhard (Hyde County) and Bath (Beaufort County). The peninsula is being marketed as the "Inner Banks." Communities across the peninsula are planning infrastructure, including wastewater treatment facilities and desalination plants for drinking water, to enable new development. Columbia and Plymouth (Washington County) have become demonstration sites in the North Carolina Rural Economic Development Center's STEP (Small Towns Economic Prosperity) Program, which is designed to support revitalization and provide information vital to developing public policies that support long-term investment in small towns (NC REDC, 2006).

There are already signs that sea level rise is causing ecosystems on the Albemarle-Pamlico Peninsula to change. For example, at the Buckridge Coastal Reserve, an 18,650-acre area owned by DCM, dieback is occurring in several areas of Atlantic white cedar. Other parts of the cedar community are beginning to show signs of stress. Initial investigations suggest the dieback is associated with altered hydrologic conditions, due to canals and ditches serving as conduits that bring salt and brackish water into the peat soils where cedar usually grows. Storm or wind events have pushed estuarine water into areas that are naturally fresh, affecting water chemistry, peatland soils, and vegetation intolerant of saline conditions (Poulter and Pederson, 2006).

There is growing awareness on the part of residents of the Albemarle-Pamlico Peninsula and local officials about potential vulnerabilities across the landscape. Many farmers acknowledge that salt intrusion and sea level rise are affecting their fields. Researchers at North Carolina State University are using Hyde County farms to experiment with the development of new varieties of salt-tolerant soybeans (NC SGA, 2002). Hyde County is building a dike around Swan Quarter, the county seat.

A variety of evidence has suggested to some stakeholders that the risks to the Albemarle-Pamlico Peninsula merit special management responses. In fact, because so much of the landscape across the peninsula has been transformed by humans, some have expressed concern that the ecosystem may be less resilient and less likely to be able to adapt when exposed to mounting stresses (Pearsall et al. 2005). Thus far, no comprehensive long-term response to the effects of sea level rise on the peninsula has been proposed. In 2007, The Nature Conservancy, Environmental Defense, Ducks Unlimited, the North Carolina Coastal Federation and others began working to build an Albemarle Conservation Partnership to develop a long-term strategic vision for the peninsula. Although this initiative is only in its infancy, sea level rise will be one of the first and most important issues the partnership will address.

The Nature Conservancy and others have already identified several potential responses to sea level rise on the Albemarle-Pamlico Peninsula. These approaches require community participation in conservation efforts, land protection, and adaptive management (Heath, 1975). Specific management strategies that the Nature Conservancy and others have recommended include: plugging drainage ditches and installing tide gates in agricultural fields so that sea water does not flow inland through them, establishing cypress trees where land has been cleared in areas that are expected to become wetlands in the future, reestablishing brackish marshes in hospitable areas where it is absent and areas that are likely to become wetlands in the future, creating corridors that run from the shoreline inland (which could facilitate habitat migration), reducing habitat fragmentation, banning or restricting hardened structures along the estuarine shoreline, and establishing submerged aquatic vegetation beds offshore (Pearsall and DeBlieu, 2005).

14545

- 14546 Table G.3 estimates the population of lands close to sea level in North Carolina. Because
- 14547 Census data for population is based on year-round residents, the estimates for many of
- 14548 the ocean coastal counties--especially Dare--would be greater if summer residents were
- 14549 included. The calculations assume that population is proportionately allocated in census
- 14550 blocks with high densities that are not along the open water. Therefore, the estimates for
- 14551 New Hanover County include residents of multifamily units on a census block that might
- 14552 have some low land along a historic or ancient creek. (See Chapter 6.)

14553

Table G.3 Population of lands close to sea level: North Carolina.

			low and high e below a given o	stimates of elevation (thous	sands)	
	50cm	1	1m	L	2m	
County	Low	High	Low	High	Low	High
North Carolina						
Beaufort	0.1	1.5	0.6	3.8	4.9	9.2
Brunswick	0.1	0.3	0.2	0.8	1.2	1.8
Camden	0.0	0.1	0.0	0.2	0.5	2.5
Carteret	0.4	2.1	1.2	5.3	8.4	14.6
Chowan	0.0	0.2	0.1	0.2	0.3	0.4
Craven	0.3	0.7	0.4	2.7	4.1	8.3
Currituck	0.0	0.2	0.1	0.7	1.2	3.2
Dare	0.0	1.9	1.1	5.1	7.3	11.9
Hyde	0.0	1.5	1.0	3.0	3.3	4.8
New Hanover	0.1	4.5	3.8	7.4	8.3	11.2
Onslow	0.3	0.8	0.7	1.1	1.3	2.8
Pamlico	0.0	0.3	0.3	0.7	1.3	2.7
Pasquotank	0.2	2.8	2.3	5.7	9.7	17.1
Pender	0.0	0.1	0.1	0.3	0.6	1.0
Perquimans	0.2	0.2	0.2	0.2	0.4	1.1
Tyrrell	0.0	1.4	0.9	2.3	3.1	3.6
Washington	0.0	0.1	0.1	0.2	0.3	1.2
otal	1.6	18.6	12.9	39.7	56.2	97.5

14554

14555

14556 APPENDIX G REFERENCES

- Barnes, J., 2001: North Carolina's Hurricane History. University of North Carolina Press,
 Chapel Hill, NC, 336 pp.
- 14559 Beavers, R. and J. Bruner, 2003: Hurricane Isabel: A case study in restoration response at
- 14560 three Mid-Atlantic national seashores. In: National Park Service. Natural
- 14561 Resource Year in Review 2003, at: 78-79 Online at
- 14562 <u>http://www2.nature.nps.gov/yearinreview/yir2003/06_H.html</u>. Accessed 1/21/08.

C(CSP	4.1	

14563	Benninger, L.K. and J.T. Wells, 1993: Sources of sediment to the Neuse River estuary,
14564	North Carolina. Marine Chemistry, 43, 137-156.
14565	Bin, P., C. Dumas, B. Poulter, and J. Whitehead, 2007: Measuring the Impacts of Climate
14566	Change on North Carolina Coastal Resources. Prepared for the National
14567	Commission on Energy Policy. [Appalachian State University, Boone, NC], 91
14568	pp. Available at http://econ.appstate.edu/climate/NC-
14569	NCEP%20final%20report.031507.pdf
14570	Brinson, M.M., H.D. Bradshaw, and M.N. Jones, 1985: Transitions in forested wetlands
14571	along gradients of salinity and hydroperiod. Journal of the Elisha Mitchell
14572	Scientific Society, 101, 76-94.
14573	Bruun, P., 2002: Technical and economic optimization of nourishment operations. In:
14574	Coastal Engineering 2002: Solving Coastal Conundrums. [McKee Smith, J. (ed.)].
14575	Proceedings of the 28th International Conference, v. 1. World Scientific,
14576	Singapore and River Edge, NJ.
14577	Callwell, W.S., 2001: Hydrologic and Salinity Characteristics of Currituck Sound and
14578	Selected Tributaries in North Carolina and Virginia, 1998-99. USGS Water
14579	Resources Investigation Report 01-4097, U.S. Geological Survey, Raleigh, NC,
14580	36 pp.
14581	Collet, J. (governor of Fort Johnston) and L. Bayly (engraver), 1790: A Compleat Map
14582	of North-Carolina from an Actual Survey. Published by Act of Parliament, 1790.
14583	Cumming, W.P., 1966: North Carolina in Maps. North Carolina Department of
14584	Archives and History, Raleigh, NC, 36 pp.
14585	Coastal Science & Engineering. Draft Beach Restoration Plan for a Locally Sponsored
14586	Project at Nags Head. Prepared for: Town of Nags Head. December 2004. Pg. 1.
14587	Available at:
14588	http://www.coastalscience.com/projects/nagshead/2145_nags_head.pdf

14589	Conner, W.H., K.W. McLeod, and J.K. McCarron, 1997: Flooding and salinity effects
14590	on growth and survival of four common forested wetland species. Wetlands
14591	Ecology and Management, 5, 99-109.
14592	Craft, C.B. and C.J. Richardson, 1998: Recent and long-term organic soil accretion and
14593	nutrient accumulation in the everglades. Soil Science Society of America Journal,
14594	62, 834-843.
14595	Daniels, R.C., 1996: An innovative method of model integration to forecast spatial
14596	patterns of shoreline change: A case study of Nags Head, North Carolina. The
14597	Professional Geographer, 48(2), 195-209.
14598	Dare County - 2007 Public Finance Record. Standard & Poor's, New York, pp. 3.
14599	Available at: http://www.co.dare.nc.us/BOC/2007/attachments/0219at10.pdf
14600	Day, R.H., R.K. Holz, and J.W. Day, Jr., 1990: An inventory of wetland impoundments
14601	in the coastal zone of Louisiana, USA: Historical trends. Environmental
14602	Management, 14(2), 229-240.
14603	Feldman, R.L., 2007: Planning for Sea Level Rise Vulnerability in North Carolina.
14604	Master's Thesis, Duke University, Durham, NC, 150 pp.
14605	Feldman, R.L., 2008: Recommendations for responding to sea level rise: lessons from
14606	North Carolina. In: Proceedings of Solutions to Coastal Disasters 2008, Oahu, HI.
14607	American Society of Civil Engineers, Reston VA.
14608	Galvin, C., 2000: Sea level rise shown to drive coastal erosion: comment. EOS
14609	Transactions of the AGU, 81(38), 437-440.
14610	Heath, R., 1975: Hydrology of the Albemarle-Pamlico Region, North Carolina: a
14611	preliminary report on the impact of agricultural developments. Water Resources
14612	Investigations 9-75, U.S. Geological Survey, Raleigh, NC, 98 pp.

|--|

14613	Henman, J. and B. Poulter, 2008: Inundation of freshwater peatlands by sea level rise:
14614	uncertainty and potential carbon cycle feedbacks. Journal of Geophysical
14615	Research-Biogeosciences, 113, G01011, doi:10.1029/2006JG000395.
14616	IPCC (Intergovernmental Panel on Climate Change) 2007: Climate Change 2007: The
14617	Physical Science Basis. Contribution of Working Group I to the Fourth
14618	Assessment Report (AR4) of the Intergovernmental Panel on Climate Change
14619	[Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor,
14620	and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK, and New
14621	York, 987 pp. Available at http://www.ipcc.ch
14622	Jones, R. and J. Wang, 2008: Interpolating Elevations: Proposed Method for Conducting
14623	Overlay Analysis of GIS Data on Coastal Elevations, Shore Protection, and
14624	Wetland Accretion. Section 1.2 in: Background Documents Supporting Climate
14625	Change Science Program Synthesis and Assessment Product 4.1: Coastal
14626	Elevations and Sensitivity to Sea Level Rise [Titus, J.G. and E. Strange (eds.)].
14627	EPA 430R07004. Environmental Protection Agency, Washington, DC.
14628	Kneib, R.T. and S.L. Wagner, 1994: Nekton use of vegetated marsh habitats at different
14629	stages of tidal inundation. Marine Ecology-Progress Series, 106, 227-238.
14630	Leatherman, S., K. Zhang, and B. Douglas, 2000a: Sea level rise shown to drive coastal
14631	erosion. EOS Transactions of the AGU, 81(6), 55, 57.
14632	Leatherman, S., K. Zhang, and B. Douglas, 2000b: Sea level rise shown to drive coastal
14633	erosion: A reply. EOS Transactions of the AGU, 81(38), 437, 441.
14634	Lilly, J.P., 1981: A history of swamp land development in North Carolina. In: Pocosin
14635	Wetlands [Richardson, C.J. (ed.)]. Hutchinson Ross, Stroudsbug, PA, pp. 20-30.
14055	Wenands [Kienardson, C.J. (ed.)]. Hutennison Koss, Stroudsbug, 17, pp. 20-50.
14636	Marraro, P.M, G.W. Thayer, M.L. LaCroix, and D.R. Colby, 1991: Distribution,
14637	abundance, and feeding of fish on a marsh on Cedar Island, North Carolina. In:
14638	Ecology of a Nontidal Brackish Marsh in Coastal North Carolina. [Brinson, M.M.

Do Not Cite or Quote

CCSP 4.1	

 (ed.)]. NWRC Open File Report 91-03, U.S. Fish and Wildlife Service, Washington, DC, pp. 321-385. Moffatt and Nichol (firm), 2007: Scope of work for development of a Beach and Inlet Management Plan for the state of North Carolina. Raleigh, NC, 5 pp. Available at http://www.nccoastalmanagement.net/Hazards/BIMP%20Scope%20of%20Work %20Oct.%2016,%202007.pdf Moorhead, K.K. and M.M. Brinson, 1995: Response of wetlands to rising sea level in the lower coastal plain of North Carolina. Ecological Applications, 5(1), 261-271. Mitsch, W.J., and J.G. Gosselink, 2000: Wetlands. John Wiley, New York, 3rd ed., 920 pp. NOAA (National Oceanic and Atmospheric Administration), 2005: Datum for Central Coastal Carolina: Tidal Datums, Marine Grids, and Sea Surface Topography. NOAA Technical Report NOS CS 21, NOAA National Ocean Service, Silver Spring MD, 46 pp. NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape Hatteras National Seashore, Manteo, NC.] Available at http://www.ncoastal Resources Commission), 2007: Draft rule language approved by CRC for public hearing, 15A NCAC 07H. 0306. Available at: http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 %20for%20public%20hearing%20_27July2007_pdf. Accessed 1/10/08.
 Moffatt and Nichol (firm), 2007: Scope of work for development of a Beach and Inlet Management Plan for the state of North Carolina. Raleigh, NC, 5 pp. Available at http://www.nccoastalmanagement.net/Hazards/BIMP%20Scope%200f%20Work %20Oct.%2016,%202007.pdf Moorhead, K.K. and M.M. Brinson, 1995: Response of wetlands to rising sea level in the lower coastal plain of North Carolina. Ecological Applications, 5(1), 261-271. Mitsch, W.J., and J.G. Gosselink, 2000: Wetlands. John Wiley, New York, 3rd ed., 920 pp. NOAA (National Oceanic and Atmospheric Administration), 2005: Datum for Central Coastal Carolina: Tidal Datums, Marine Grids, and Sea Surface Topography. NOAA Technical Report NOS CS 21, NOAA National Ocean Service, Silver Spring MD, 46 pp. NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape Hatteras National Seashore, Manteo, NC.] Available at http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language approved by CRC for public hearing, 15A NCAC 07H. 0306. Available at http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
 Management Plan for the state of North Carolina. Raleigh, NC, 5 pp. Available at http://www.nccoastalmanagement.net/Hazards/BIMP%20Scope%20of%20Work %20Oct.%2016,%202007.pdf Moorhead, K.K. and M.M. Brinson, 1995: Response of wetlands to rising sea level in the lower coastal plain of North Carolina. Ecological Applications, 5(1), 261-271. Mitsch, W.J., and J.G. Gosselink, 2000: Wetlands. John Wiley, New York, 3rd ed., 920 pp. NOAA (National Oceanic and Atmospheric Administration), 2005: Datum for Central Coastal Carolina: Tidal Datums, Marine Grids, and Sea Surface Topography. NOAA Technical Report NOS CS 21, NOAA National Ocean Service, Silver Spring MD, 46 pp. NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape Hatteras National Seashore, Manteo, NC.] Available at http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language approved by CRC for public hearing, 15A NCAC 07H.0306. Available at: http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
 Management Plan for the state of North Carolina. Raleigh, NC, 5 pp. Available at http://www.nccoastalmanagement.net/Hazards/BIMP%20Scope%20of%20Work %20Oct.%2016,%202007.pdf Moorhead, K.K. and M.M. Brinson, 1995: Response of wetlands to rising sea level in the lower coastal plain of North Carolina. Ecological Applications, 5(1), 261-271. Mitsch, W.J., and J.G. Gosselink, 2000: Wetlands. John Wiley, New York, 3rd ed., 920 pp. NOAA (National Oceanic and Atmospheric Administration), 2005: Datum for Central Coastal Carolina: Tidal Datums, Marine Grids, and Sea Surface Topography. NOAA Technical Report NOS CS 21, NOAA National Ocean Service, Silver Spring MD, 46 pp. NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape Hatteras National Seashore, Manteo, NC.] Available at http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language approved by CRC for public hearing, 15A NCAC 07H.0306. Available at: http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
 http://www.nccoastalmanagement.net/Hazards/BIMP%20Scope%20of%20Work http://www.nccoastalmanagement.net/Hazards/BIMP%20Scope%20of%20Work w200ct.%2016,%202007.pdf Moorhead, K.K. and M.M. Brinson, 1995: Response of wetlands to rising sea level in the lower coastal plain of North Carolina. Ecological Applications, 5(1), 261-271. Mitsch, W.J., and J.G. Gosselink, 2000: Wetlands. John Wiley, New York, 3rd ed., 920 pp. NOAA (National Oceanic and Atmospheric Administration), 2005: Datum for Central Coastal Carolina: Tidal Datums, Marine Grids, and Sea Surface Topography. NOAA Technical Report NOS CS 21, NOAA National Ocean Service, Silver Spring MD, 46 pp. NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape Hatteras National Seashore, Manteo, NC.] Available at http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language approved by CRC for public hearing, 15A NCAC 07H .0306. Available at: http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
 14644 %20Oct.%2016,%202007.pdf 14645 Moorhead, K.K. and M.M. Brinson, 1995: Response of wetlands to rising sea level in 14646 the lower coastal plain of North Carolina. Ecological Applications, 5(1), 261-271. 14647 Mitsch, W.J., and J.G. Gosselink, 2000: Wetlands. John Wiley, New York, 3rd ed., 920 14648 pp. 14649 NOAA (National Oceanic and Atmospheric Administration), 2005: Datum for Central 14650 Coastal Carolina: Tidal Datums, Marine Grids, and Sea Surface Topography. 14651 NOAA Technical Report NOS CS 21, NOAA National Ocean Service, Silver 14652 Spring MD, 46 pp. 14653 NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape 14654 Hatteras National Seashore, Manteo, NC.] Available at 14655 http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. 14656 NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language 14657 approved by CRC for public hearing, 15A NCAC 07H .0306. Available at: 14658 http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 14659 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
 Moorhead, K.K. and M.M. Brinson, 1995: Response of wetlands to rising sea level in the lower coastal plain of North Carolina. Ecological Applications, 5(1), 261-271. Mitsch, W.J., and J.G. Gosselink, 2000: Wetlands. John Wiley, New York, 3rd ed., 920 pp. NOAA (National Oceanic and Atmospheric Administration), 2005: Datum for Central Coastal Carolina: Tidal Datums, Marine Grids, and Sea Surface Topography. NOAA Technical Report NOS CS 21, NOAA National Ocean Service, Silver Spring MD, 46 pp. NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape Hatteras National Seashore, Manteo, NC.] Available at http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language approved by CRC for public hearing, 15A NCAC 07H .0306. Available at: http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
 the lower coastal plain of North Carolina. Ecological Applications, 5(1), 261-271. Mitsch, W.J., and J.G. Gosselink, 2000: Wetlands. John Wiley, New York, 3rd ed., 920 pp. NOAA (National Oceanic and Atmospheric Administration), 2005: Datum for Central Coastal Carolina: Tidal Datums, Marine Grids, and Sea Surface Topography. NOAA Technical Report NOS CS 21, NOAA National Ocean Service, Silver Spring MD, 46 pp. NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape Hatteras National Seashore, Manteo, NC.] Available at http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language approved by CRC for public hearing, 15A NCAC 07H .0306. Available at: http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
 the lower coastal plain of North Carolina. Ecological Applications, 5(1), 261-271. Mitsch, W.J., and J.G. Gosselink, 2000: Wetlands. John Wiley, New York, 3rd ed., 920 pp. NOAA (National Oceanic and Atmospheric Administration), 2005: Datum for Central Coastal Carolina: Tidal Datums, Marine Grids, and Sea Surface Topography. NOAA Technical Report NOS CS 21, NOAA National Ocean Service, Silver Spring MD, 46 pp. NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape Hatteras National Seashore, Manteo, NC.] Available at http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language approved by CRC for public hearing, 15A NCAC 07H .0306. Available at: http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
 Mitsch, W.J., and J.G. Gosselink, 2000: Wetlands. John Wiley, New York, 3rd ed., 920 pp. NOAA (National Oceanic and Atmospheric Administration), 2005: Datum for Central Coastal Carolina: Tidal Datums, Marine Grids, and Sea Surface Topography. NOAA Technical Report NOS CS 21, NOAA National Ocean Service, Silver Spring MD, 46 pp. NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape Hatteras National Seashore, Manteo, NC.] Available at http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language approved by CRC for public hearing, 15A NCAC 07H .0306. Available at: http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
 14648 pp. 14649 NOAA (National Oceanic and Atmospheric Administration), 2005: Datum for Central Coastal Carolina: Tidal Datums, Marine Grids, and Sea Surface Topography. 14651 NOAA Technical Report NOS CS 21, NOAA National Ocean Service, Silver 14652 Spring MD, 46 pp. 14653 NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape Hatteras National Seashore, Manteo, NC.] Available at Hatteras National Seashore, Manteo, NC.] Available at 14655 http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. 14656 NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language approved by CRC for public hearing, 15A NCAC 07H. 0306. Available at: http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 14659 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
 NOAA (National Oceanic and Atmospheric Administration), 2005: Datum for Central Coastal Carolina: Tidal Datums, Marine Grids, and Sea Surface Topography. NOAA Technical Report NOS CS 21, NOAA National Ocean Service, Silver Spring MD, 46 pp. NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape Hatteras National Seashore, Manteo, NC.] Available at http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language approved by CRC for public hearing, 15A NCAC 07H .0306. Available at: http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
 14650 Coastal Carolina: Tidal Datums, Marine Grids, and Sea Surface Topography. 14651 NOAA Technical Report NOS CS 21, NOAA National Ocean Service, Silver 14652 Spring MD, 46 pp. 14653 NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape 14654 Hatteras National Seashore, Manteo, NC.] Available at 14655 http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. 14656 NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language 14657 approved by CRC for public hearing, 15A NCAC 07H .0306. Available at: 14658 http://www.nccoastalmanagement.net/Hazards/15A% 20NCAC% 2007H% 200306 14659 %20for% 20public% 20hearing% 20_27July 2007pdf. Accessed 1/10/08.
 14650 Coastal Carolina: Tidal Datums, Marine Grids, and Sea Surface Topography. 14651 NOAA Technical Report NOS CS 21, NOAA National Ocean Service, Silver 14652 Spring MD, 46 pp. 14653 NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape 14654 Hatteras National Seashore, Manteo, NC.] Available at 14655 http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. 14656 NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language 14657 approved by CRC for public hearing, 15A NCAC 07H .0306. Available at: 14658 http://www.nccoastalmanagement.net/Hazards/15A% 20NCAC% 2007H% 200306 14659 %20for% 20public% 20hearing% 20_27July 2007pdf. Accessed 1/10/08.
 14651 NOAA Technical Report NOS CS 21, NOAA National Ocean Service, Silver 14652 Spring MD, 46 pp. 14653 NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape 14654 Hatteras National Seashore, Manteo, NC.] Available at 14655 <u>http://www.nps.gov/archive/caha/synopsis.htm</u>. [accessed March 6, 2007]. 14656 NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language 14657 approved by CRC for public hearing, 15A NCAC 07H .0306. Available at: 14658 http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 14659 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
 Spring MD, 46 pp. NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape Hatteras National Seashore, Manteo, NC.] Available at http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language approved by CRC for public hearing, 15A NCAC 07H .0306. Available at: http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
 NPS (National Park Service), 2000: Synopsis: Cape Hatteras Lighthouse. [NPS Cape Hatteras National Seashore, Manteo, NC.] Available at http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language approved by CRC for public hearing, 15A NCAC 07H .0306. Available at: http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
 Hatteras National Seashore, Manteo, NC.] Available at http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007]. NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language approved by CRC for public hearing, 15A NCAC 07H .0306. Available at: http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
14655http://www.nps.gov/archive/caha/synopsis.htm. [accessed March 6, 2007].14656NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language14657approved by CRC for public hearing, 15A NCAC 07H .0306. Available at:14658http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%20030614659%20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
 NC CRC (North Carolina Coastal Resources Commission), 2007: Draft rule language approved by CRC for public hearing, 15A NCAC 07H .0306. Available at: http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%200306 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
14657approved by CRC for public hearing, 15A NCAC 07H .0306. Available at:14658http://www.nccoastalmanagement.net/Hazards/15A% 20NCAC% 2007H% 20030614659% 20 for % 20 public % 20 hearing % 20_27 July 2007pdf. Accessed 1/10/08.
14657approved by CRC for public hearing, 15A NCAC 07H .0306. Available at:14658http://www.nccoastalmanagement.net/Hazards/15A% 20NCAC% 2007H% 20030614659% 20 for % 20 public % 20 hearing % 20_27 July 2007pdf. Accessed 1/10/08.
14658http://www.nccoastalmanagement.net/Hazards/15A%20NCAC%2007H%20030614659%20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
14659 %20for%20public%20hearing%20_27July2007pdf. Accessed 1/10/08.
14660 NC DCM (North Carolina Division of Coastal Management), 2003: Coastal
14661 Management News: CAMAgram: Spring 2003. Available at
14662 <u>http://dcm2.enr.state.nc.us/CAMAgram/Spring03/rates.htm</u> Accessed 1/21/08.
14663 NC DCM (North Carolina Division of Coastal Management), 2005: CAMA Handbook
14664 for Development in Coastal North Carolina. NCDENR Division of Coastal

Do Not Cite or Quote

14665	Management, Morehead City, NC, section 2. Available at
14666	http://dcm2.enr.state.nc.us/Handbook/section2.htm (Accessed 1/28/08).
14667	NC REDC (North Carolina Rural Economic Development Center), 2006: Small Towns
14668	Initiative. NC Rural Economic Development Center, Raleigh, NC. Available at
14669	http://www.ncruralcenter.org/smalltowns/initiative.htm (Accessed 1/28/08).
14670	NC SGA (North Carolina Soybean Growers Association), 2002: Salt Tolerant Soybean
14671	Varieties for the Tidewater Area of North Carolina. Progress Report to North
14672	Carolina Soybean Producers Association [includes results of experiments on salt-
14673	tolerance of different varieties of soybeans] at:
14674	http://www.ncsoy.org/Research_/2001_Annual_Reports/99-07_2001/99-
14675	<u>07_2001.htm</u> . April 1, 2002.
14676	NOAA (National Oceanic and Atmospheric Administration). 2004. Vdatum software
14677	version 1.06, NOAA National Ocean Service, 2004).
14678	NOAA 2008. Bench Mark Data Sheets: Duck Pier, NC.
14678	NOAA 2008. Bench Mark Data Sheets: Duck Pier, NC.
14678 14679	NOAA 2008. Bench Mark Data Sheets: Duck Pier, NC. http://tidesandcurrents.noaa.gov/station_retrieve.shtml?type=Bench+Mark+Data+ Sheets cited February 1, 2008.
14678 14679 14680 14681	 NOAA 2008. Bench Mark Data Sheets: Duck Pier, NC. http://tidesandcurrents.noaa.gov/station_retrieve.shtml?type=Bench+Mark+Data+ Sheets cited February 1, 2008. Pearsall, S. and J. DeBlieu, 2005: TNC's [The Nature Conservancy's] Adaptation Efforts
14678 14679 14680 14681 14682	 NOAA 2008. Bench Mark Data Sheets: Duck Pier, NC. http://tidesandcurrents.noaa.gov/station_retrieve.shtml?type=Bench+Mark+Data+ Sheets cited February 1, 2008. Pearsall, S. and J. DeBlieu, 2005: TNC's [The Nature Conservancy's] Adaptation Efforts in Conservation Landscapes: Sentinel Ecosystem, at
14678 14679 14680 14681	 NOAA 2008. Bench Mark Data Sheets: Duck Pier, NC. http://tidesandcurrents.noaa.gov/station_retrieve.shtml?type=Bench+Mark+Data+ Sheets cited February 1, 2008. Pearsall, S. and J. DeBlieu, 2005: TNC's [The Nature Conservancy's] Adaptation Efforts
14678 14679 14680 14681 14682 14683	 NOAA 2008. Bench Mark Data Sheets: Duck Pier, NC. http://tidesandcurrents.noaa.gov/station_retrieve.shtml?type=Bench+Mark+Data+ Sheets cited February 1, 2008. Pearsall, S. and J. DeBlieu, 2005: TNC's [The Nature Conservancy's] Adaptation Efforts in Conservation Landscapes: Sentinel Ecosystem, at http://www.climatescience.gov/workshop2005/presentations/EC1.9_Pearsall.pdf
14678 14679 14680 14681 14682 14683	 NOAA 2008. Bench Mark Data Sheets: Duck Pier, NC. http://tidesandcurrents.noaa.gov/station_retrieve.shtml?type=Bench+Mark+Data+ Sheets cited February 1, 2008. Pearsall, S. and J. DeBlieu, 2005: TNC's [The Nature Conservancy's] Adaptation Efforts in Conservation Landscapes: Sentinel Ecosystem, at http://www.climatescience.gov/workshop2005/presentations/EC1.9_Pearsall.pdf
14678 14679 14680 14681 14682 14683 14684	 NOAA 2008. Bench Mark Data Sheets: Duck Pier, NC. http://tidesandcurrents.noaa.gov/station_retrieve.shtml?type=Bench+Mark+Data+ Sheets cited February 1, 2008. Pearsall, S. and J. DeBlieu, 2005: TNC's [The Nature Conservancy's] Adaptation Efforts in Conservation Landscapes: Sentinel Ecosystem, at http://www.climatescience.gov/workshop2005/presentations/EC1.9_Pearsall.pdf (Accessed 1/28/08).
14678 14679 14680 14681 14682 14683 14684 14685	 NOAA 2008. Bench Mark Data Sheets: Duck Pier, NC. http://tidesandcurrents.noaa.gov/station_retrieve.shtml?type=Bench+Mark+Data+Sheets cited February 1, 2008. Pearsall, S. and J. DeBlieu, 2005: TNC's [The Nature Conservancy's] Adaptation Efforts in Conservation Landscapes: Sentinel Ecosystem, at http://www.climatescience.gov/workshop2005/presentations/EC1.9_Pearsall.pdf (Accessed 1/28/08). Pearsall, S. and B. Poulter, 2005: Adapting coastal lowlands to rising seas: a case study.
14678 14679 14680 14681 14682 14683 14684 14685 14685	 NOAA 2008. Bench Mark Data Sheets: Duck Pier, NC. http://tidesandcurrents.noaa.gov/station_retrieve.shtml?type=Bench+Mark+Data+Sheets cited February 1, 2008. Pearsall, S. and J. DeBlieu, 2005: TNC's [The Nature Conservancy's] Adaptation Efforts in Conservation Landscapes: Sentinel Ecosystem, at http://www.climatescience.gov/workshop2005/presentations/EC1.9_Pearsall.pdf (Accessed 1/28/08). Pearsall, S. and B. Poulter, 2005: Adapting coastal lowlands to rising seas: a case study. In: Principles of Conservation Biology [Groom, M.J., G.K. Meffe, and C.R.
14678 14679 14680 14681 14682 14683 14684 14685 14685 14686 14687	 NOAA 2008. Bench Mark Data Sheets: Duck Pier, NC. http://tidesandcurrents.noaa.gov/station_retrieve.shtml?type=Bench+Mark+Data+Sheets cited February 1, 2008. Pearsall, S. and J. DeBlieu, 2005: TNC's [The Nature Conservancy's] Adaptation Efforts in Conservation Landscapes: Sentinel Ecosystem, at http://www.climatescience.gov/workshop2005/presentations/EC1.9_Pearsall.pdf (Accessed 1/28/08). Pearsall, S. and B. Poulter, 2005: Adapting coastal lowlands to rising seas: a case study. In: Principles of Conservation Biology [Groom, M.J., G.K. Meffe, and C.R. Carroll (eds.)]. Sinauer Press, Sunderland, MA, 3rd ed., pp. 366-370.

|--|

14691	Pilkey, D.F., J. Bullock, and B.A. Cowan, 1998: The North Carolina Shore and Its
14692	Barrier Islands: Restless Ribbons of Sand. Durham, NC: Duke University Press.
14693	Pilkey, Jr. O.H., R.S. Young and D.M. Bush, 2000: Sea level rise shown to drive coastal
14694	erosion: Comment. EOS Transactions of the AGU, 81(38), 436.
14695	Portnoy, J.W. and A.E. Giblin, 1997: Biogeochemical effects of seawater restoration to
14696	diked salt marshes. Ecological Applications, 7(3), 1054-1063.
14697	Poulter, B., 2005: Interactions Between Landscape Disturbance and Gradual
14698	Environmental Change: Plant Community Migration in Response to Fire and Sea
14699	Level Rise. Doctoral Thesis, Duke University, Durham, NC, 216 pp.
14700	Poulter, B. and P.N. Halpin, 2008: Raster modeling of coastal flooding from sea-level
14701	rise. International Journal of Geographic Information Sciences. Published online
14702	ahead of print, doi:10.1080/13658810701371858
14703	Poulter, B., J. Goodall, and P.N. Halpin, In review: Applications of network analysis for
14704	adaptive management of artificial drainage systems in landscapes vulnerable to
14705	sea level rise. Journal of Hydrology (in review).
14706	
	Poulter, B. and N. Pederson, 2006: Stand dynamics and climate sensitivity of an Atlantic
14707	Poulter , B. and N. Pederson, 2006: Stand dynamics and climate sensitivity of an Atlantic white cedar (Chamaecyparis thyiodes) forest: implications for restoration and
14707 14708	
	white cedar (Chamaecyparis thyiodes) forest: implications for restoration and
14708	white cedar (Chamaecyparis thyiodes) forest: implications for restoration and management. Report to the North Carolina Division of Coastal Management.
14708 14709	white cedar (Chamaecyparis thyiodes) forest: implications for restoration and management. Report to the North Carolina Division of Coastal Management. Eastern Kentucky University, Cumberland Laboratory of Forest Science
14708 14709 14710	white cedar (Chamaecyparis thyiodes) forest: implications for restoration and management. Report to the North Carolina Division of Coastal Management. Eastern Kentucky University, Cumberland Laboratory of Forest Science Richmond, KY, 31 pp. Available at
14708 14709 14710 14711	white cedar (Chamaecyparis thyiodes) forest: implications for restoration and management. Report to the North Carolina Division of Coastal Management. Eastern Kentucky University, Cumberland Laboratory of Forest Science Richmond, KY, 31 pp. Available at http://people.eku.edu/pedersonn/pubs/AWCreportPoulter.pdf
14708 14709 14710 14711 14712	 white cedar (Chamaecyparis thyiodes) forest: implications for restoration and management. Report to the North Carolina Division of Coastal Management. Eastern Kentucky University, Cumberland Laboratory of Forest Science Richmond, KY, 31 pp. Available at http://people.eku.edu/pedersonn/pubs/AWCreportPoulter.pdf Poulter, B., R.L. Feldman, M.M. Brinson, B.P. Horton, M.K. Orbach, S.H. Pearsall, E.

|--|

14716	Poulter, B., N.L. Christensen, and S.S. Qian, 2008: Tolerance of two estuarine
14717	southeastern pine species to low-salinity and flooding: implications for
14718	equilibrium vegetation dynamics. Journal of Vegetation Science, 19(1), 15-22.
14719	doi:10.3170/2007-8-18410.
14720	Riggs, S.R., 2006: Geologic Evolution of the lower Roanoke River and Albemarle Sound
14721	drainage system in response to climate and sea-level change. Environmental
14722	Defense, Raleigh, NC.
14723	Riggs, S.R., 2001: Shoreline erosion in North Carolina. North Carolina Sea Grant,
14724	Raleigh, NC, 68 pp.
14725	Riggs, S.R. and D.V. Ames, 2003: Drowning the North Carolina coast: sea-level rise and
14726	estuarine dynamics. North Carolina Sea Grant, Raleigh, NC, 152 pp.
14727	Riggs, S.R., 1996: Sediment evolution and habitat function of organic-rich muds within
14728	the Albermarle estuarine system, North Carolina, 19(2A), 169-185.
14729	Riggs, S.R., J.H. Stephenson, and W. Clark, 2007: Preliminary recommendations for
14730	mitigating the consequences of climate change within North Carolina. Prepared
14731	for the NC Legislative Commission on Global Climate Change, January 9, 2007.
14732	3 pp.
14733	Sallenger, A.H., Jr., et al. 2000. Sea level rise shown to drive coastal erosion:
14734	Comment. EOS Transactions of the AGU, 81(38), 436.
14735	Schmitt, P., 2003: USACE Hurricane Isabel Response, at:
14736	http://www.hq.usace.army.mil/cepa/pubs/nov03/story8.htm. Accessed 1/21/08.
14737	Shafale, M.P. and A.S. Weakley, 1990: Classification of Natural Communities of North
14738	Carolina. North Carolina Natural Heritage Program, Division of Parks and
14739	Recreation, North Carolina Department of Environmental, Health, and Natural
14740	Resources, Raleigh, NC, 216 pp.

14741	Stewart, D. 2006: Alligator River National Wildlife Refuge biologist Dennis Stewart, as quoted in Kozak, Catherine. "Alligator
14742	River National Wildlife Refuge threatened by global warming". The Virginian-Pilot. October 6, 2006.
14743	Tenore, K.R., 1972: Macrobenthos of the Pamlico River Estuary, North Carolina,
14744	Ecological Monographs, 42(1), 51-69.
14745	Titus, J.G., 1990a: Greenhouse effect, sea level rise, and barrier islands: Case study of
14746	Long Beach Island, New Jersey. Coastal Management, 18, 65-90.
14747	Titus, J.G. and D. Cacela, 2008: Uncertainty ranges associated with EPA's estimates of
14748	the area of land close to sea level. Section 1.3b in: Background Documents
14749	Supporting Climate Change Science Program Synthesis and Assessment Product
14750	4.1: Coastal Elevations and Sensitivity to Sea Level Rise [Titus, J.G. and E.
14751	Strange (eds.)]. EPA 430R07004, Environmental Protection Agency, Washington,
14752	DC.
14753	USACOE (U.S. Army Corps of Engineers), 2000: Wilmington District. Attachment D:
14754	Dare County Beaches (Bodie Island Portion) Hurricane Protection and Beach
14755	Erosion Control Project, Dare County, North Carolina. Preliminary Complication
14756	of Disposal/Nourishment Zones and Borrow Areas in Recovery from 5-Year
14757	Running Total. Updated September 2000. Available at:
14758	www.saw.usace.army.mit/Dare%20County/Dare%20County%20Bodie%20Is.%2
14759	0%20FEIS%20Attachment%20D.pdf.
14760	USACOE (U.S. Army Corps of Engineers), 2006: Annual Report, Fiscal Year 2006 of
14761	the Secretary of the Army on Civil Works Activities. South Atlantic Division,
14762	Wilmington, N.C. District.
14763	USFWS (U.S. Fish and Wildlife Service), Date Unknown: John H. Chafee Coastal
14764	Barrier Resource System. Available at:

14765 <u>http://www.fws.gov/habitatconservation/coastal_barrier.htm</u>. Accessed 1/21/08.

14766	USFWS (U.S. Fish and Wildlife Service), 1993. Species Account for the Red Wolf. Accessed at:
14767	http://www.fws.gov/endangered/i/a/saa04.html on March 28, 2007. Source of website information listed as: Endangered
14768	and Threatened Species of the Southeastern United States (The Red Book) FWS Region 4 As of 8/93.
14769	USFWS (U.S. Fish and Wildlife Service), 2004: North Carolina's Outer Banks Alligator National Wildlife Refuge Red Wolf
14770	Reintroduction program. http://www.outer-banks.com/alligator-river/redwolf.asp (Accessed 3/ ^{28/07}).
14771	USFWS (U.S. Fish and Wildlife Service), 2006, Draft Comprehensive Conservation Plan and Environmental Assessment. Alligator
14772	River National Wildlife Refuge. Dare and Hyde Counties, North Carolina.
14773 14774	Zhang , K., B.C. Douglas, and S.P. Leatherman, 2004: Global warming and coastal erosion. Climatic Change, 64(1-2), 41–58.

14775