798	Context: Sea-Level Rise and Its Effects on the Coast
799	
800 801 802	Lead Authors: S. Jeffress Williams, USGS; Benjamin T. Gutierrez, USGS; James G. Titus, EPA; Stephen K. Gill, NOAA; Donald R. Cahoon, USGS; E. Robert Thieler, USGS; K. Eric Anderson, USGS
803	Contributing Author: Duncan FitzGerald, Boston University
804	
805	The accumulation of scientific evidence over the past several decades unequivocally
806	demonstrates that the global climate is changing, largely due to carbon dioxide emissions
807	from human activities (IPCC, 2001; 2007). Sea-level rise is one effect of climate
808	warming that will have profound impacts on all coastal regions of the United States and
809	around the world. The geologic record shows that sea level and the global climate have
810	been relatively stable over the past 10,000 years and this stability is a significant factor in
811	enabling the development of human civilizations. The significant changes over the past
812	200 years in atmospheric carbon dioxide, temperature, ecosystems, and ice-sheet melting
813	follow a six-fold increase in global population (Zalasiewicz et al., 2008). Along the ocean
814	and estuarine coasts of most of the United States, sea level has risen over the last century
815	and will continue to do so in the future. The effects are evident in many areas, as shores
816	erode and move landward and formerly dry areas become submerged, more frequently
817	flooded by high tides and storm surges. People are responding to these impacts by taking
818	measures to protect threatened property or by relocating development inland to higher
819	ground. The intent of this report is to assess the potential effects and risks of sea-level

31 of 800

820	rise on coastal regions and provide information needed to understand the implications and
821	options for dealing with sea-level rise.

823	The effects of sea-level rise are likely to intensify and become more pervasive in the
824	coming decades as the Earth's climate warms. Throughout geologic history, climate
825	change has been the main factor driving the evolution of Earth and its inhabitants. Now,
826	climate is changing rapidly, largely in response to human activity (IPCC, 2007). Many
827	impacts of human-induced climate change are already occurring, including, melting
828	glaciers and ice sheets; changes in extreme weather, such as heavy downpours and
829	droughts, and an accelerated rise in sea level. These physical changes are also leading to
830	biologic responses such as changes in the range of species, earlier spring events (such as
831	animal migration), and a loss of habitat, such as coastal wetlands (IPCC, 2007). The rates
832	of warming occurring now and those projected for the future may exceed the ability of
833	many living organisms to adapt without major disruptions and extinctions. With future
834	warming and wide spread ice sheet melting too, sea-level rise could accelerate very
835	rapidly on decadal scales and follow non-linear patterns that would have large impacts on
836	coastal regions.
837	
838	More extreme weather events and storm activity and a world-wide rise in sea level are
839	two of the most likely, most disruptive, and most costly effects of global warming. Often
840	these two elements of climate change act in concert with each other to impact coastal
841	regions. They have most effect on coastal regions where the land relief is generally low,
842	land forms are susceptible to erosion, and human population and development are highly

Do Not Cite or Quote

32 of 800

	CCSP 4.1 February 12, 2008
843	concentrated. This includes much of the coast around the United States, but the mid-
844	Atlantic region (the main focus of this report) is particularly vulnerable due to high rates
845	of relative sea-level rise and dense coastal development.
846	
847	This report reviews available scientific literature and presents a scientific consensus on
848	the likely effects of sea-level rise on the mid-Atlantic coast of the United States, the
849	human and environmental impacts, likely responses in the context of current policies and
850	economic trends, and possible options for changing planning and management activities
851	so that society and the environment are better able to cope with an accelerated rise in sea
852	level. A summary of implications on a Nation-wide scale are presented in Part V. The
853	Preface of this report contains further information on the process for developing this
854	report, the nature of the regional focus, and the structure of this report.
855	
856	C.1 WHY IS GLOBAL SEA LEVEL RISING?
857	The elevation of global sea level is determined primarily by the balance between the
858	volume of ice on land (in glaciers and ice sheets) and the volume of water in ocean
859	basins. During the last 800,000 years, sea level has risen and fallen in response to the
860	buildup and decline of large ice sheets as climate warmed and cooled in natural cycles of

approximately 100,000 years. Figure C.1 shows a record of sea level change over the past

862 400,000 years.

863

Do Not Cite or Quote

33 of 800

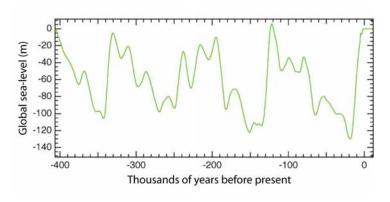


Figure C.1 Sea level change over the last 400,000 years resulting from natural glacial- interglacial cycles.
Evidence suggests that sea level was about 4-6 m higher than present during the last interglacial warm
period 125,000 years ago, and 120 m lower during the last Ice Age, about 21,000 years ago. Modified from
Huybrechts (2002).

871 In the recent geologic past, sea level has varied from 120 m (400 ft) lower than present

872 during the last Ice Age, when massive glaciers covered much of North America, northern

873 Europe, and Asia, and the shoreline was seaward at the edge of the continental shelf, to

about 4 to 6 m (20 ft) higher than present during the previous 'interglacial' (non-Ice Age)

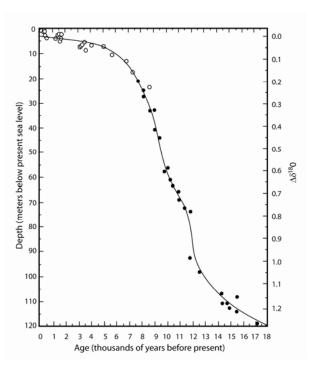
875 warm period when the coast was much further inland than present day. As ice sheets

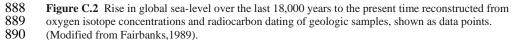
876 melted and climate warmed following the Ice Age, beginning approximately 21,000 years

ago, sea level rose. Global sea level reached close to its current position about 3,000

878 years ago (Figure C.2) and has fluctuated only slightly until the past several decades

879 when tide gauge and satellite data indicate an acceleration in sea-level rise rates. The


ocean has absorbed more than 80 percent of the atmospheric warming since 1961,


- 881 causing sea water to expand, contributing to this recent rise. In addition, rapid melting of
- 882 land-based glaciers as well as ice sheets on Greenland and Antarctica have very likely
- 883 increased sea-level rise (IPCC, 2007). The combination of stable sea level and moderate

Do Not Cite or Quote

34 of 800

- 884 climate during the current interglacial warm period has been a major factor contributing
- to the growth in human development and our modern civilization (Day *et al.* 2007).

891

887

892 The study of climate change and associated sea-level rise is complex. The most credible

and comprehensive body of scientific information on the subject, based on a consensus of

- approximately 2,500 of the world's scientists, has been compiled by the United Nations'
- 895 Intergovernmental Panel on Climate Change (IPCC) in a series of reports issued
- approximately every five years. The most recent IPCC (2007) report, *Climate Change*
- 897 2007: The Physical Science Basis, contains a comprehensive review and assessment of

Do Not Cite or Quote

35 of 800

	CCSP 4.1 February 12, 2008
898	climate change trends, expected changes over the next century, and the impacts and
899	challenges that both humans and the natural world are likely to be confronted with during
900	the next century. In addition, the U.S. Climate Change Science Program (CCSP)
901	Synthesis and Assessment Products (SAPs), including this one, are providing detailed
902	climate information for the United States. This SAP, discussing the impacts of sea-level
903	rise on the U.S., relies heavily on IPCC (2007) findings and predictions for sea-level rise.
904	A few key findings of the most recent IPCC reports are summarized in Box C.1
905	
906 907	BOX C.1 SELECTED IPCC (2007) FINDINGS ON CLIMATE AND SEA-LEVEL RISE
908 909	Recent Global Climate Change:
910 911 912 913	• Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level
914 915 916	• Carbon dioxide is the most important human-caused greenhouse gas. The atmospheric concentration of carbon dioxide in 2005 exceeds by far the natural range over the last 650,000 years
917 918 919 920 921	• Most of the observed increase in global average temperatures since the mid-20th century is <i>very likely</i> due to the observed increase in human-caused greenhouse gas concentrations. Discernible human influences now extend to other aspects of climate, including ocean warming, continental-average temperatures, temperature extremes and wind patterns
921 922 923	Recent Sea-Level Rise
924 925 926 927	• Observations since 1961 show that the average temperature of the global ocean has increased to depths of at least 3000 m and that the ocean has been absorbing more than 80% of the heat added to the climate system. Such warming causes seawater to expand, contributing to sea-level rise
928 929 930 931	• Mountain glaciers and snow cover have declined on average in both hemispheres. Widespread decreases in glaciers and ice caps have contributed to sea-level rise (ice caps do not include contributions from the Greenland and Antarctic ice sheets)
932 933 934	• New data show that losses from the ice sheets of Greenland and Antarctica have <i>very likely</i> contributed to sea-level rise between 1993 and 2003
935 936 937 938 939	• Global average sea level rose at an average rate of 1.8 [1.3 to 2.3] mm per year between 1961 and 2003. The rate was faster between 1993 and 2003: about 3.1 [2.4 to 3.8] mm per year. Whether the faster rate for 1993 to 2003 reflects decadal variability or an increase in the longer term trend is unclear. (Figure C.3)
940 941	• Global average sea level in the last interglacial period (about 125,000 years ago) was <i>likely</i> 4 to 6 m higher than during the 20th century, mainly due to the retreat of polar ice. Ice core data indicate that

36 of 800

CCSP 4.1

average polar temperatures at that time were 3°C to 5°C higher than present, because of differences in the
Earth's orbit. The Greenland ice sheet and other arctic ice fields *likely* contributed no more than 4 m of the
observed sea-level rise. There may also have been contributions from Antarctica ice sheet melting.

946 **Projections of the Future:**

Ontinued greenhouse gas emissions at or above current rates would cause further warming and induce many changes in the global climate system during the 21st century that would *very likely* be larger than those observed during the 20th century.

Based on a range of possible greenhouse gas emission scenarios for the next century, the IPCC
 estimates the global increase in temperature will likely be between 1.1 and 6.4°C. Estimates of sea-level
 rise for the same scenarios are 0.18m to 0.59 m, excluding the contribution from accelerated ice discharges
 from the Greenland and Antarctica ice sheets.

Extrapolating the recent acceleration of ice discharges from the polar ice sheets would imply an additional contribution up to 20 cm. If melting of these ice caps increases, larger values of sea-level rise cannot be excluded.

In addition to sea-level rise, the storms that lead to coastal storm surges could become more intense. The IPCC indicate that based on a range of computer models, it is *likely* that hurricanes will become more intense, with larger peak wind speeds and more heavy precipitation associated with ongoing increases of tropical sea surface temperatures, while the tracks of 'winter' or non-tropical storms are projected to shift towards the poles along with some indications of an increase in intensity in the North Atlantic.

966 -end-text box-

967

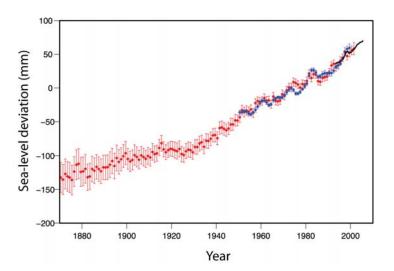


Figure C.3 Annual averages of global mean sea level from IPCC (2007). The red curve shows sea-level fields since 1870 updated from Church and White (2006); the blue curve displays tide gauge data from Holgate and Woodworth (2004), and the black curve is based on satellite altimetry from Leuliette *et al.* (2004). The red and blue curves are deviations from their averages for 1961 to 1990, and the black curve is the deviation from the average of the red curve for the period 1993 to 2001. Error bars show 90% confidence intervals. Modified from Bindoff *et al.* (2007).

Do Not Cite or Quote

37 of 800

- 976 Global sea-level rise resulting from the balance between global ice volume and ocean
- 977 seawater volume is a useful measure of the general direction of change; however there
- 978 are substantial local and regional variations in the rates of sea-level rise. In some
- 979 locations, subsidence of the land increases the 'effective' or 'relative 'sea-level rise,
- 980 whereas in other locations, local sea-level rise is less than the global average because the
- 981 land is still rising (rebounding) from a time when an ice sheet, sometimes a mile thick,
- 982 covered the area, depressing the Earth's crust. In a few cases, such as in the Pacific
- 983 Northwest of the U.S., this can lead to a drop in local sea level. In responding to sea-level
- 984 rise, it is necessary to refer to the local (relative) sea level-rise because it is this
- 985 combination of global effects and local conditions that impact the coast. Thus in this
- 986 report, 'sea-level rise' refers to relative sea-level rise. See box C.2 for further discussion.
- 987

988 Box C.2 Relative Sea Level

989 The term "global sea level", sometimes referred to as eustatic sea level, refers to the average level of tidal 990 waters around the world based on long-term measurements from coastal tide gauges. The most reliable data 991 are from gauges having records of 50 years or longer and are important observation instruments for 992 measuring sea level change trends. Vertical movements of the land surface at the coast can also contribute 993 significantly to sea-level change and the combination of sea level and land-level change is referred to as 994 "relative sea level" (Douglas, 2001). These two terms used by scientists are defined as follows:

995 996 997 998 999	 "global sea-level rise" is the worldwide increase in the volume of the world's oceans that occurs as a result of thermal expansion and melting ice caps and glaciers. "relative sea-level rise" refers to the change in sea level relative to the elevation of the land, which includes both global sea-level rise and vertical movements of the land.
1000	In this report, the term "sea-level rise" is used to mean "relative sea-level rise."
1001	
1002	Vertical changes of the land surface result from many factors including tectonic processes, adjustment of
1003	the Earth's crust, compaction of sediments, and extraction of subsurface fluids such as oil, gas, and water.
1004	A principal contributor to this change along the Atlantic coast of North America and northern Europe is the
1005	plastic-like adjustment of the Earth's crust to changing ice loads since the Ice Age. The thick accumulation
1006	of ice on continental landmasses depressed the Earth's surface in ice-covered regions. This displaced the
1007	mantle (the layer of the planet beneath the crust) causing a "peripheral bulge" some distance from the edges
1008	of the thick continental ice cover. As a result of these crustal adjustments, relative sea level records vary
1009	greatly along the coast from glaciated regions in New England southward to North Carolina. These vertical
1010	crustal adjustments have persisted for thousands of years and will continue to persist for some time. In
1010	addition to glacial adjustments, sediment loading also contributes to regional subsidence of the land
1011	
1012	surface. Subsidence contributes to high rates of relative sea level (>100 mm/yr) in the Mississippi River

Do Not Cite or Quote

38 of 800

CCSP 4.1

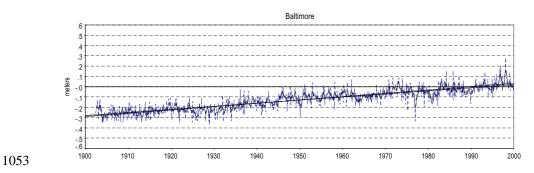

- delta where thick sediments have accumulated. Likewise, fluid withdrawal from coastal aquifers causes the sediments to locally compact as the water is extracted. In Louisiana, Texas, and the southern California region, oil, gas and ground-water extraction have contributed markedly to subsidence and relative sea level rise (Gornitz and Lebedeff, 1987, Emery and Aubrey, 1991, Galloway *et al.*, 1999; Morton *et al.*, 2004).
 Last, tectonic uplift affects the rates of relative sea level rise from Alaska to California. In places where the land surface is uplifted due to tectonic activity, rates of relative sea-level rise may be notably smaller than
- the rate of global sea level rise or in some cases, reversed, with localized relative sea-level fall. In locations
- 1020 where the land surface is subsiding, rates of relative sea-level rise may exceed the rate of global rise (*e.g.*, 1021 the central Gulf of Mexico coast and mid-Atlantic coast).
- 1022 --End Text Box—
- 1023

1024 C.2 SEA-LEVEL RISE AROUND THE UNITED STATES

- 1025 Sea level has varied greatly throughout the Earth's history due to a variety of geologic,
- 1026 oceanographic, and climatic processes (Douglas, 2001) and is influenced by many factors
- 1027 that operate globally to locally over a wide range of time scales, including days to weeks
- 1028 (tides, storms), seasons, decades, and millennia.
- 1029
- 1030 The long-term records from tide gauge stations have been the primary measurements of
- 1031 relative sea level trends over the last century (Douglas, 2001). Figure C.3 shows the
- 1032 variations in relative sea level for U.S. coastal regions. Many parts of the eastern and
- 1033 Gulf shores are showing higher rates of sea-level rise than for the world as a whole. For
- 1034 example, sea level is rising 3-4 mm/yr along the mid-Atlantic region compared to the
- 1035 absolute rate of 1.8 mm/yr for the world (Figures C.3, C.4)
- 1036

Do Not Cite or Quote

39 of 800

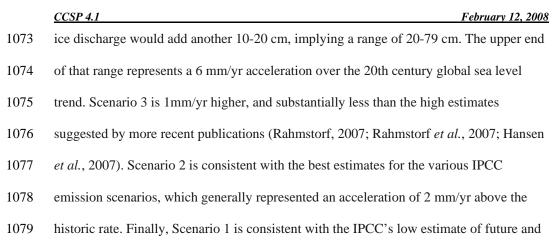

1039Figure C.4 Map of annual relative sea-level rise rates around the U.S. coast. The high rates for Louisiana1040(9.9 mm/yr) and the mid-Atlantic region (3-4 mm/yr) are due to land subsidence. Sea level is stable or1041dropping relative to the land in the Pacific northwest, where the land is tectonically active or rebounding1042upward in response to the melting of ice sheets (compiled by USGS from Zervas, 2001).

1044 NOAA routinely produces updated estimates of relative sea level trends observed at tide

- 1045 stations around the country and the results show a large variation of trends from very
- 1046 high rates of relative sea level rise in southern Louisiana (+ 9.9 mm/yr (+/- 0.35 mm) at
- 1047 Grand Isle) due to land subsidence, to high rates of relative sea level fall in southeast
- 1048 Alaska (- 16.7 mm/yr (+/- 0.42 mm) at Skagway) due to land rebound as a result of
- 1049 glacier melting (Zervas, 2001). Figure C.5 is an example of the monthly average (mean)
- 1050 sea level record and the computed relative sea-level rise trend at Baltimore, MD. Here,
- 1051 the relative sea level trend is 3.12 mm/yr (+/- 0.08), which, as a result of land subsidence,
- 1052 is nearly 2 times the present rate of global sea-level rise.

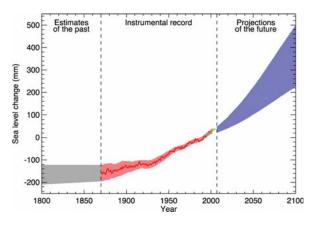
Do	Not	Cite	or	Quote
----	-----	------	----	-------

40 of 800


¹⁰⁵⁴Figure C.5 Sea-level rise for Baltimore, MD from 1900 to 2000. The plot shows the monthly mean sea1055level with the average seasonal cycle removed (blue dashed line), a 5-month average (black solid line), and1056the linear trend.

1058 C.2.1 Future Sea-Level Rise Around the United States: Our Approach

- 1059 This report does not develop new estimates of future sea-level rise. Instead, we use three
- 1060 scenarios of relative sea-level rise along the mid-Atlantic coast:
- 1061 Scenario 1: Continuation of the 20th century rate (3 mm/yr)
- 1062 Scenario 2: An acceleration of 2 mm/yr over the 20th century trend (total rate of 5
- 1063 mm/yr)
- 1064 Scenario 3: An acceleration of 7 mm/yr over the 20th century trend (total rate of 10
- 1065 mm/yr)
- 1066 These three scenarios enable an assessment of the implications of a rise of 30 cm, 50 cm,
- 1067 and 100 cm over the next century.
- 1068
- 1069 These scenarios are broadly consistent with recent assessments by the IPCC (2007) and
- 1070 others (see Figure C.6). The IPCC's likely range for a global rise in sea level is 10-59 cm
- 1071 over the next century, excluding the possibility of increased ice melting on Greenland and
- 1072 Antarctica. IPCC also states that extrapolating the central estimate of current accelerated


Do Not Cite or Quote

41 of 800

1080 current sea-level rise.

1082 1083

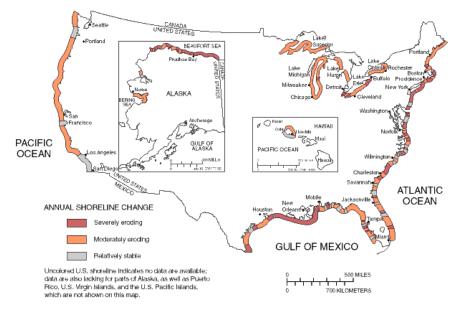
1084 Figure C.6 Past, present, and projected global sea-level rise. Time-series of global mean sea level compiled 1085 from the past (grey shading), late 19th and 20th century observations (red and green lines and red shaded 1086 region), and future projections (blue shading) determined in the recent IPCC assessment (Bindoff et al., 1087 2007). The grey shading shows the uncertainty in the estimated long-term rate of sea-level change. The red 1088 line is a reconstruction of global mean sea level from tide gauges and the shaded area indicates the rage of 1089 variations from this line. The green line illustrates the global mean sea level record based on satellite 1090 altimeter measurements. The blue shaded region represents the range of model projections complied from 1091 the IPCC assessment (Meehl et al., 2007). Figure from Bindoff et al.(2007).

- 1092
- 1093 The primary focus of this report is over the next century, but the longer term implications
- 1094 are also considered. Recent evaluations of changes in ice cover and glacial melting on
- 1095 Greenland, Antarctica, and smaller glaciers and ice caps from around the world indicate

Do Not Cite or Quote

42 of 800

	CCSP 4.1 February 12, 2008
1096	that ice loss could be more rapid than has been measured and predicted (Chen et al.,
1097	2006; Shepherd and Wingham, 2007; Meier et al., 2007). If so, this accelerated melting
1098	could significantly raise sea-level predictions to levels (~4-6 m) during the last
1099	interglacial period over the next several hundred years (Overpeck et al., 2006). The
1100	science behind these predictions is not yet well developed, but is worthy of study because
1101	of the very significant implications for all coastal regions.
1102	
1103	
1104	C.3 IMPACTS OF SEA-LEVEL RISE FOR THE UNITED STATES
1105	C.3.1 Coastal Vulnerability Around the United States
1106	Coastal communities and habitats will be increasingly stressed by climate change impacts
1107	interacting with development and pollution (Field et al., 2007). Impacts from sea-level
1108	rise include: land loss through submergence and erosion of lands in the coastal zone;
1109	migration of coastal landforms and changes to coastal environments; increased storm-
1110	surge flooding; wetland losses; and increased salinity in estuaries and coastal
1111	groundwater aquifers. Each of these effects can have important impacts on both natural
1112	ecosystems and human developments and infrastructure. Other impacts of climate
1113	change, such as increasingly severe droughts and storm intensity-along with continued
1114	rapid coastal development—could amplify the effects of sea-level rise.
1115	
1116	Sea-level rise in combination with other factors is already starting to have significant
1117	effects on the coastal zone of the United States. Flooding of low lying regions by storm
1118	surges and spring tides is becoming more frequent and causing more damage and


43 of 800

	<u>CCSP 4.1</u> February 12, 2008
1119	disruptions. Around the Chesapeake Bay, wetlands are being submerged, fringe forests
1120	are dying and being converted to marsh, farm land and lawns are being converted to
1121	marsh; and some roads are routinely flooded at high tides (Douglas, 2001). "Ghost
1122	forests" of standing dead trees killed by salt water intrusion are becoming increasingly
1123	common in southern New Jersey, Maryland, Virginia, Louisiana, and North Carolina
1124	(Riggs and Ames, 2003). Rising sea level is gradually intruding into estuaries and
1125	threatening fresh-water aquifers (Barlow, 2003).
1126	
1127	Rising sea level will affect to varying degrees entire coastal systems from the shoreline to
1128	the landward edge of the Coastal Plain. These physical and ecological changes that are
1129	likely to occur in the near future will also have impacts on humans and coastal
1130	development. In addition, it is uncertain how current practices in managing coastal
1131	systems for mitigating erosion and flooding are likely to affect potential future impacts.
1132	Climate change implications should be included in planning and decision making to best
1133	accommodate climate change.
1134	
1135	Continued rapid coastal development exacerbates both the environmental and the human
1136	impact of rising sea level. During the 20th century, an expanding proportion of the U.S.
1137	population and associated urban development relocated to the land along the Atlantic,
1138	Gulf of Mexico, and Pacific coasts. Coastal populations have doubled in the past 30 years
1139	and although the coastal population is currently increasing at approximately the same rate
1140	as the national population, continued coastal development increasingly conflicts with the
1141	natural processes associated with coastal change from storms and sea-level rise. Currently

44 of 800

	<u>CCSP 4.1 February 12, 2008</u>
1142	the majority of the U.S. population lives in the coastal zone and movement to the coast
1143	and development continues. Fourteen of the Nation's 20 largest urban centers are located
1144	along the coast. In addition, these economic and population pressures have transformed
1145	sparsely developed coastal areas into high-density year-round urban complexes. With
1146	accelerated rise in sea level and increased intensity of storms, the conflicts between
1147	development at the coast and the natural processes are likely to increase dramatically
1148	unless new coastal management and planning is employed.
1149	
1150	C.3.2 Shoreline Change and Coastal Erosion
1151	The diverse landforms comprising the more than 160,000 km of U.S. coast reflect a
1152	dynamic interaction between: 1) natural factors and physical processes that act on the
1153	coast (e.g., storms, waves, currents, sand sources and sinks, relative sea level), 2) human
1154	activity (e.g., dredging, dams, coastal engineering), and 3) the geological character of the
1155	coast and nearshore. Spatial and temporal variations in these physical processes and the
1156	geology along the coast are responsible for the variety of coastal landforms. As a result,
1157	the majority of the U.S. coast is undergoing long-term net erosion at highly varying rates
1158	as shown in Figure C.7.
1159	
1160	
1161	
1162	
1163	
1164	

45 of 800

1165 1166 1167 Figure C.7. Coastal Erosion Rates Around the U.S. All 30 coastal states are experiencing erosion at highly variable rates due to natural processes and human activity. From USGS National Atlas 1985. 1168

1169	The complex interactions among these factors make it difficult to identify a precise
1170	relationship between sea-level rise and shoreline change and to reach consensus among
1171	coastal scientists on quantitative approaches that can be used to predict how shorelines
1172	will change in response to sea-level rise. The difficulty in linking sea-level rise to coastal
1173	change stems from the fact that shoreline change does not occur directly as the result of
1174	sea-level rise. Instead, coasts are in an almost continual state of change in response to
1175	many driving forces and subject to the underlying geological character and the
1176	availability of sediment to the coastal system. Consequently, while there is strong
1177	scientific consensus that climate is changing and affecting coastal regions, there are still
1178	uncertainties associated with quantitative predictions of how the coast will respond to
1179	likely changes in future sea level.

Do Not Cite or Quote

46 of 800

	CCSP 4.1 February 12, 2008
1181	With current planning and decision making, we often assume that these systems operate
1182	in a steady-state. While the factors that influence coastal change in response to sea level
1183	rise are well known, our ability to incorporate this understanding into computer models
1184	that can be used to predict shoreline change over long time periods is limited and models
1185	are in their infancy. Part of the reason for this is the complexity of quantifying the effect
1186	of these factors on shoreline change. The models incorporate relatively few factors that
1187	influence shoreline change and rely on assumptions that do not always apply to real-
1188	world settings. In addition, these assumptions apply best to present conditions, not
1189	necessarily those that may exist in the future. The models that do incorporate many of the
1190	key factors (e.g., the geological framework and sediment budget) require detailed data
1191	(<i>i.e.</i> , sediment transport rates, landform evolution feedbacks) on a local scale. To apply
1192	over larger coastal regions, the necessary baseline information for most areas is not
1193	available. The unfortunate consequence is that our current capability to make long-term
1194	reliable predictions is limited. In addition, there is some indication that coastal landforms,
1195	such as barrier islands, might have "tipping points" or "thresholds" when limits are
1196	exceeded and the landforms become unstable and disintegrate. It is possible that this is
1197	already happening to barrier islands along the Louisiana coast and may occur in the near
1198	future along the North Carolina and the Maryland-Virginia coast with increased sea-level
1199	rise and storm activity (Culver et al., 2007; Sallenger et al., 2007; Riggs and Ames,
1200	2003).
1201	

- 1202 This report reviews the knowledge of how sea-level rise can impact coastal regions and
- 1203 the challenges that we face in planning and coping with these impacts. A large part of this

47 of 800

	<u>CCSP 4.1</u> February 12, 2008
1204	discussion is based on information from new assessments that address the potential
1205	impacts of sea level rise on the tidal inundation of low-lying lands, ocean shoreline
1206	processes, and the vertical accretion of tidal wetlands in the mid-Atlantic region.
1207	Following the terms of our charge from CCSP (2007), we do not evaluate the impacts of
1208	sea level rise on coastal flooding; nor do we evaluate the impacts of possible changes in
1209	the frequency and severity of coastal storms. That does not mean that the report ignores
1210	storm effects or assumes that the seas are always calm. Existing landforms, ecosystems,
1211	and human activities are already adapted to a certain level of storminess. Unless
1212	otherwise stated, the chapters that follow all assume that storms will continue in the
1213	future, and that many of the impacts of sea-level rise-on both people and the
1214	environment will only be realized after a severe storm.
1215	
1216	C.3.3 Managing the Coastal Zone as Sea Level Rises
1217	Coasts are dynamic junctions of water, air, and land. The interactions vary greatly over
1218	time and space. Winds and waves, tides and currents, migrating sand dunes, and river
1219	deltas combine to form ever-changing coasts, yet development continues in high risk
1220	coastal areas. If sea level rise accelerates, all of these landforms will become more
1221	dynamic. Some researchers believe that the combination of stable sea level and moderate
1222	climate during the current interglacial period has been a major factor contributing to the
1223	growth in human development and our modern civilization (Stanley and Warne, 1993;
1224	Day et al., 2007). The notion that sea level is constant and that coasts are stable is deeply
1225	embedded in many institutions, and in the assumptions of most coastal residents.

48 of 800

	CCSP 4.1 February 12, 2008
6	Adapting to an accelerated sea-level rise would require changes in both our institutions
7	and our mindset about natural processes.
8	
9	A key question for coastal zone management is how and where to "mitigate" or adapt to
0	these new coastal conditions. Shoreline erosion problems affecting property and
1	development or coastal wetland habitat losses tend to dominate shore-protection policy
2	rather than sea-level rise explicitly. Today, many property owners and government
3	programs are already engaged in coastal engineering activities designed to protect
4	property and beaches in developed areas by thwarting natural dynamic processes-but in
5	undeveloped areas, the natural processes usually govern. At first, an acceleration of sea-
5	level rise may simply increase the cost of current practices. Eventually, however, policy
,	makers may have to evaluate whether the approach to coastal development and protection
	assuming a relatively stable sea level should be modified to best respond to the higher sea
	levels.
	To facilitate these decisions, policy makers need credible information. Predicting these
	changes with the precision that a decision maker would prefer to have is not always
	possible. Yet there is little doubt that physical changes to the coastal system will also
	modify coastal ecosystems and the fish and wildlife. Further complicating the picture, are
	other related effects of climate change: storms, precipitation, run-off, drought,
	management practices, economic setting, and sediment supply. At present, our scientific
	understanding of the physical response of the coast to sea-level rise is lacking and in

49 of 800

	<u>CCSP 4.1 February 12, 2008</u>
1248	combination with the wide variety of human engineering activities along the shoreline,
1249	prediction of future effects with high confidence is challenging.
1250	
1251	In most cases, we manage our coasts as if sea level were stable, the shoreline fixed in
1252	location, and storms were regular and predictable. In this report, several chapters examine
1253	how sea-level rise and increased storminess might require managers to consider longer
1254	term perspectives. We also examine some possible tactics for coastal planning and
1255	management that might be more effective as sea-level rise accelerates.
1256	
1257	We have outlined the three sea-level rise scenarios used in this report, but in addition, we
1258	begin to consider how the impacts of sea-level rise may depend on the portion of the
1259	shoreline stabilized, as well as on the rate of sea-level rise. Unlike the future rate of sea-
1260	level rise, coastal managers collectively have some control over how much of the shore is
1261	ultimately protected, at least for the short term. Follow-on efforts will examine scenarios
1262	assuming continuation of existing policies, and will consider whether the cumulative
1263	environmental impacts might lead to a different set of choices for dealing with sea-level
1264	rise.
1265	
1266	In summary, continued sea-level rise, at current or accelerated rates, coupled with
1267	increasing storm intensity, will result directly in increasing vulnerability for people,
1268	property, and ecosystems and indirectly have national implications. Coasts are likely to
1269	erode and retreat more than we would expect from inundation by sea-level rise alone,
1270	especially for fragile barrier islands and low-lying delta regions. We need continued

50 of 800

	CCSP 4.1 February 12, 2008
1271	improvement in the science of coastal change, more comprehensive systems of data
1272	collection and analysis, observation, monitoring, modeling, and communication of results
1273	to the public and policy makers. Planning and decision making for the coastal zone across
1274	all levels of government needs to reflect the new scientific understanding of climate
1275	change and effects of sea-level rise and increased storms. Improvements in
1276	communication are needed to ensure that science is more relevant to inform policy. We
1277	hope that this report sets the stage for coastal decision makers to fully incorporate the
1278	ramifications of climate change and its effects on sea-level rise into long-term
1279	management and planning.
1280	
1281	CONTEXT REFERENCES
1282	Barlow, P.M., 2003: Ground water in freshwater-saltwater environments of the Atlantic
1283	coast. US Geological Survey Circular 1262, U.S. Geological Survey, Reston, VA
1284	113 pp.
1285	Bindoff, N.L., J. Willebrand, V. Artale, A, Cazenave, J. Gregory, S. Gulev, K. Hanawa,
1286	Le Quéré, S. Levitus, Y. Nojiri, C.K. Shum, L.D.Talley, and A. Unnikrishnan,
1287	2007: Observations: oceanic climate change and sea level. In: Climate Change
1288	2007: The Physical Science Basis. Contribution of Working Group I to the Fourth
1289	Assessment Report of the Intergovernmental Panel on Climate [Solomon, S., D.
1290	Qin, M. Manning, Z. Chen, M. Marquis, K.B. Avery, M. Tignor, and H.L. Miller
1291	(eds.)]. Cambridge University Press, Cambridge, UK and New York.
1292	Chen, J.L., C.R. Wilson, and B.D. Tapley, 2006: Satellite gravity measurments confirm
1293	accelerated melting of Greenland ice sheet. Science, 313, 1958-1960.
1294	Church, J.A. and N.J. White, 2006: A 20th century acceleration in global sea-level rise.
1295	Geophysical Research Letters, 33 , L01602, doi:10.1029/2005GL024826.
1296	Culver, S.J., Grand Pre, C.A., Mallinson, D.J., Riggs, S.R., Corbett, D.R., Foley, J.,
1297	Hale, M., Metger, L., Ricardo, J., Rosenberger, J., Smith, C.G., Smith, C.W.,

51 of 800

	CCSP 4.1 February 12, 2008
1298	Synder, S.W., Twamley, D., Farrell, K., and Horton, B, 2007: Late Holocene
1299	barrier island collapse: Outer Banks, North Carolina, USA, SEPM, The
1300	Sedimentary Record, 5, 4, 4-8.
1301	Day, J.W., Jr, D.F. Biesch, E.J. Clairain, G.P. Kemp, S.B. Laska, W.J. Mitsch, K Orth, H.
1302	Mashriqui, D.J. Reed, L. Shabman, C.A. Simenstad, B.J. Streever, R.R. Twilley,
1303	C.C. Watson, J.T.Wells, and D.F. Whigham, 2007: Restoration of the Mississippi
1304	Delta: lessons from hurricanes Katrina and Rita. Science, 315, 1679.
1305	doi:10.1126/science.1137030
1306	Douglas, B.C., 2001: Sea level change in the era of the recording tide gauges. In: Sea
1307	Level Rise: History and Consequences [Douglas, B.C., Kearney, M.S., and S.P.
1308	Leatherman (eds.)]. Academic Press, New York, 37-64.
1309	Emery, K.O. and D.G. Aubrey, 1991: Sea Levels, Land Levels, and Tide Gauges.
1310	Springer-Verlag, New York, 237 p.
1311	Fairbanks, R.G., 1989: A 17,000-year glacio-eustatic sea level recordinfluence of
1312	glacial melting rates on the Younger Dryas event and deep-sea circulation.
1313	<i>Nature</i> , 342 , 637-642.
1314	Field, C.B., L.D. Mortsch,, M. Brklacich, D.L. Forbes, P. Kovacs, J.A. Patz, S.W.
1315	Running and M.J. Scott, 2007: North America. ClimateChange 2007: Impacts,
1316	Adaptation and Vulnerability. Contribution of Working Group II to the
1317	FourthAssessment Report of theIntergovernmental Panel on Climate Change,
1318	M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson,
1319	Eds., Cambridge University Press, Cambridge, UK, 617-652.
1320	Galloway, D., D.R. Jones, and S.E. Ingebritsen, 1999: Land Subsidence in the United
1321	States. USGS Circular 1182, U.S. Geological Survey, Reston, VA, 177 pp.
1322	Gornitz, V. and S. Lebedeff, 1987: Global sea-level changes during the past century. In:
1323	Sea-Level Fluctuation and Coastal Evolution [Nummedal, D., O.H. Pilkey, and
1324	J.D. Howard, (eds.)]. Special Publication 41, Society of Economic Paleontologists
1325	and Mineralogists, Tulsa, OK, pp. 3-16.
1326	Hansen, J., M. Sato, P. Kharecha, G. Russell, D.W. Lea, and M. Siddall, 2007: Climate
1327	change and trace gases. Philosophical Transactions of the Royal Society A, 365,
1328	1925-1954.

<u>(</u>	CCSP 4.1 February 12, 2008
ł	Holgate, S.J. and P.L. Woodworth, 2004: Evidence for enhanced coastal sea level rise
	during the 1990s. Geophysical Research. Letters, 31, L07305,
	doi:10.1029/2004GL019626.
H	Huybrechts, P., 2002: Sea-level changes at the LGM from ice-dynamic reconstructions
	of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary
	Science Reviews, 21 , 203–231.
Ι	PCC, (2001). Climate Change 2001. The Scientific Basis. Contribution of Working
	Group I to the Third Assessment Report of the Intergovernmental Panel on
	Climate Change [Houghton, J.T., et al. (eds.)]. Cambridge University Press,
	Cambridge, UK and New York, 881 pp.
Ι	PCC, (2007), Climate Change 2007: The physical science basis. Contribution of
	Working Group I to the fourth assessment report of the Intergovernmental Panel
	on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis,
	K.B. Averyt, M. Tignor and H.L. Miller (eds.)]: Cambridge University Press,
	Cambridge, UK and New York, 996 pp
I	Leuliette, E.W., R.S. Nerem, and G.T. Mitchum, 2004: Calibration of TOPEX/Poseidon
	and Jason altimeter data to construct a continuous record of mean sea level
	change. Marine Geodesy, 27(1-2), 79-94.
N	Morton, R.A., T.L. Miller and L.J. Moore, 2004: National Assessment of Shoreline
	Change: Part 1, Historical Shoreline Changes and Associated Coastal Land Los
	Along the U.S. Gulf of Mexico. U.S. Geological Survey Open File Report 2004-
	1043, U.S. Geological Survey, Reston, VA, 44 pp.
N	Meier, M.F., M.B Dyurgerov, K.R. Ursula, S. O'Neel, W.T. Pfeffer, R.S. Anderson, S.P
	Anderson, and A.F. Glazovsky, 2007: Glaciers dominate Eustatic sea-level rise in
	the 21 st Century. Science, 317 , 1064. doi:10.1126/science.1143906
(Dverpeck, J.T., B.L. Otto-Bliesner, G.H. Miller, D.R. Muhs, R.B. Alley, and J.T. Keihl.
	2006: Paleo-climatic evidence for the future ice-sheet instability and rapid sea
	level rise. Science, 311 , 1747-1750.
ŀ	Rahmstorf, S., 2007: A semi-empirical approach to projecting future sea-level rise
	<i>Science</i> , 315 , 368-370.

53 of 800

	<u>CCSP 4.1</u> February 12, 2008
1359	Rahmstorf, S., A. Cazenave, J.A. Church, J.E., Hansen, R.F. Keeling, D.E. Parker, and
1360	R.C.J. Somerville, 2007: Recent climate observations compared to projections.
1361	Science Express, doi:10.1126/science.1136843.
1362	Riggs, S.R. and D.V. Ames, 2003: Drowning of North Carolina: Sea-Level Rise and
1363	Estuarine Dynamics. Publication number UNC-SG-03-04, North Carolina Sea
1364	Grant College Program, Raleigh, NC, 152 pp.
1365	Sallenger, A.S., C.W. Wright, and J. Lillycrop, 2007: Coastal-change impacts during
1366	Hurricane Katrina: an overview. In: Coastal Sediments '07, [Kraus, N.C. and J.D.
1367	Rosati (eds.)]. America Society of Civil Engineers, Reston, VA.
1368	Shepherd, A. and D. Wingham, 2007: Recent sea-level contributions of the Antarctic
1369	and Greenland ice sheets. Science, 315, 1529-1532.
1370	Stanley, D.J. and A.G. Warne, 1993: Nile delta: recent geological evolution and human
1371	impact. Science, 260(5108), 628-634.
1372	Zalasiewicz, J., Williams, M., Smith, A., Barry, T.L., Coe, A.L., Brown, P.R.,
1373	Brenchley, P., Cantrill, D., Gale, A., Gibbard, P., Gregory, F.J., Hounslow, M.W.,
1374	Kerr, A.C., Pearson, P., Knox, R., Powell, J., Waters, C., Marshall, J., Oates, M.,
1375	Rawson, P., and Stone, P., Are we now living in the Anthropocene?, GSA Today,
1376	18, 2, 4-7.
1377	Zervas, C., 2001: Sea Level Variations of the United States 1854-1999 NOAA Technical
1378	Report NOS CO-OPS 36, NOAA National Ocean Service, Silver Spring, MD,
1379	201 pp.
1380	
1381	

54 of 800