6527	Part III Overview: Preparing for Sea-Level Rise
6528	
6529	Author: James G. Titus, EPA
6530	
6531	For at least the last four centuries, people have been erecting permanent settlements in the
6532	coastal zone of the Mid-Atlantic without regard to the fact that the sea is rising. Because
6533	the sea has been rising slowly and only a small part of the coast was developed, the
6534	consequences have been relatively isolated and manageable. Part I of this report suggests,
6535	however, that a 2 mm/yr acceleration of sea-level rise <i>could</i> transform the character of
6536	the mid-Atlantic coast, with a large scale loss of tidal wetlands and possible
6537	disintegration barrier islands - and a 7 mm/yr acceleration probably would cause such a
6538	transformation, although shore protection may prevent some developed barrier islands
6539	from disintegrating and low-lying communities from being taken over by wetlands.
6540	
6541	For the last quarter century, scientific assessments have concluded that regardless of
6542	possible policies to reduce emissions of greenhouse gases, people will have to adapt to
6543	changing climate and rising sea level (NAS, 1983; Hoffman et al., 1983; IPCC 1990,
6544	1996, 2001, 2007). Adaptation assessments differentiate "reactive adaptation" from
6545	"anticipatory adaptation". (Titus, 1990; Scheraga and Grambsch, 1998; Klein et al., 1999;
6546	Frankhauser et al., 1999).
6547	
6548	Part III focuses on what might be done to prepare for sea-level rise. Chapter 9 starts by
6549	asking whether preparing for sea-level rise is even necessary. In many cases, reacting

Do Not Cite or Quote

329 of 800

6550	later is more justifiable than preparing now, both because the rate and timing of future
6551	sea-level rise is uncertain and the additional cost of acting now can be high when the
6552	impacts are at least several decades in the future. Nevertheless, for several types of
6553	impacts, the cost of preparing now is very small compared to the cost of reacting later.
6554	Examples where preparing appears to be rationally justified include:
6555	• <i>Coastal wetland protection.</i> It may be possible to reserve undeveloped lands for
6556	wetland migration, but once developed, it is very difficult to make land available for
6557	wetland migration. Therefore, it is far more feasible to aid wetland migration by
6558	setting aside land before it is developed, than to require development to be removed
6559	as sea level rises.
6560	• Some long-lived infrastructure. Whether it is beneficial to design coastal
6561	infrastructure to anticipate rising sea level depends on economic analysis of the
6562	incremental cost of designing for a higher sea level now, and the retrofit cost of
6563	modifying the structure at some point in the future. Most long-lived infrastructure in
6564	the threatened areas is sufficiently sensitive to rising sea level to warrant at least an
6565	assessment of the costs and benefits of preparing for rising sea level.
6566	• Floodplain management. Insurance works best when premiums reflect actual risk.
6567	Even without considering the possibility of accelerated sea-level rise, the National
6568	Academy of Sciences and a FEMA-supported study by the Heinz Center
6569	recommended to Congress that insurance rates should reflect the changing risks
6570	resulting from coastal erosion. Rising sea level increases the potential disparity
6571	between rates and risk.
6572	

Do Not Cite or Quote

330 of 800

6573	Chapter 10 discusses organizations that are preparing for a possible acceleration of sea-
6574	level rise. The chapter is short because few organizations responsible for managing
6575	coastal resources vulnerable to sea-level rise have modified their activities. Most of the
6576	best examples of preparing for the environmental impacts of sea-level rise are in New
6577	England, where several states have enacted policies to enable wetlands to migrate inland
6578	as sea-level rise. Ocean City (Maryland) is an example of a town considering future sea-
6579	level rise in its infrastructure planning.
6580	
6581	Chapter 11 examines the institutional barriers that make it difficult to take the potential
6582	impacts of future sea-level rise into account for coastal planning. Although few studies
6583	(e.g., U.S. Congress, 1993; Barth and Titus, 1984; Titus, 1990, 1998, 2001, 2004) have
6584	discussed the challenge of institutional barriers and biases in coastal decision making,
6585	their implications for sea-level rise are relatively straightforward:
6586	• Inertia and short-term thinking. Most institutions are slow to take on new
6587	challenges, especially those that require preparing for the future rather than fixing a
6588	current problem.
6589	• The interdependence of decisions reinforces institutional inertia. In many cases,
6590	preparing for sea-level rise requires a decision as to whether a given area will
6591	ultimately be given up to the sea, protected with structures and drainage systems, or
6592	elevated as the sea rises. Until communities decide which of those three pathways
6593	they will follow in a given area, it is difficult to determine which anticipatory or
6594	initial response measures should be taken.

331 of 800

6595	• Policies favoring protection of what is currently there. In some cases, longstanding
6596	preferences for shore protection (as discussed in Chapter 5) discourage planning
6597	measures that foster retreat. Because retreat may require a greater lead time than
6598	shore protection, the presumption that an area will be protected may imply that
6599	planning in unnecessary. On the other hand, these policies may help accelerate the
6600	response to sea-level rise in areas where shore protection is needed.
6601	• Policies Favoring Coastal Development. One possible response to sea-level rise is to
6602	invest less in the lands likely to be threatened. However, longstanding policies that
6603	encourage coastal development are a barrier to such a response. On the other hand,
6604	increasingly dense coastal development improves the ability to raise funds required
6605	for shore protection. Therefore, policies that encourage coastal development may be
6606	an institutional bias favoring shore protection, but they are not necessarily a barrier
6607	to responding to sea-level rise.
6608	
6609	PART III OVERVIEW REFERENCES
6610	Barth, M.C. and J.G. Titus (eds.), 1984: Greenhouse Effect and Sea Level Rise: A
6611	Challenge for this Generation. New York: Van Nostrand Reinhold.
6612	Frankhauser, S., J.B. Smith, and R.S.J. Tol, 1999: Weathering climate change: Some
6613	simple rules to guide adaptation decisions. <i>Ecological Economics</i> 30 , 67-78.
6614	Hoffman, J.S., D. Keyes, and J.G. Titus, 1983: Projecting Future Sea Level Rise;
6615	Methodology, Estimates to the Year 2100, and Research Needs. Washington
6616	D.C.: U.S. Environmental Protection Agency. 121 pp.
6617	IPCC, 1990: Strategies for Adaptation to Sea Level Rise. Report of the Coastal Zone
6618	Management Subgroup. Available at

332 of 800

6619	http://yosemite.epa.gov/OAR%5Cglobalwarming.nsf/content/ResourceCenterPub
6620	licationsSLRAdaption.html. Accessed September 25, 2007.
6621	IPCC, 1996: Climate Change 1995: The Science of Climate Change, [Houghton, J.J.,
6622	L.G. Meiro Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell
6623	(eds.)]. Cambridge University Press, Cambridge and New York, 584 pp.
6624	IPCC, 2001: Climate Change 2001: The Scientific Basis [Houghton, J.T., Y. Ding, D.J.
6625	Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnston
6626	(eds.)]. Cambridge University Press, Cambridge and New York, 84 pp.
6627	IPCC, 2007: Climate Change 2007: The Physical Science Basis [Alley, R., T. Berntsen,
6628	N.L. Bindoff, Z Chen, A. Chidthaisong, P. Friedlingstein, J. Gregory, G. Hegerl,
6629	M. Heimann, B. Hewitson, B. Hoskins, F. Joos, J. Jouzel, V. Kattsov, U.
6630	Lohmann, M. Manning, T. Matsuno, M. Molina, N. Nicholls, J. Overpeck, D.
6631	Qin, G. Raga, V. Ramaswamy, J. Ren, M. Rusticucci, S. Solomon, R. Somerville,
6632	T.F. Stocker, R. Stott, R.J. Stouffer, P. Whetton, R.A. Wood, and D. Wratt (eds.)].
6633	Klein, R.J.T., R.J. Nicholls. and N. Mimura, 1999: Coastal Adaptation to Climate
6634	Change: Can the IPCC Technical Guidelines be applied? Mitigation and
6635	Adaptation Strategies for Global Change 4(3-4), 239-252.
6636	Revelle, R.R. and P.E. Waggoner, 1983: Changing Climate. National Academy of
6637	Sciences, National Academy Press, Washington, D.C.
6638	Scheraga, J.D. and A.E. Grambsch, 1998: Risks, opportunities, and adaptation to climate
6639	change. Clim Res 10, 85-95.
6640	Titus, J.G., 1990: Greenhouse effect, sea level rise, and barrier islands: case study of
6641	Long Beach Island, New Jersey. Coastal Management 18, 65-90.
6642	Titus, J.G., 1998: Rising seas, coastal erosion and the takings clause: how to save
6643	wetlands and beaches without hurting property owners. Maryland Law Review
6644	57 (4), 1279-1299.

333 of 800

6645	Titus, J.G., 2001: Does the U.S. government realize that the sea is rising? How to
6646	restructure Federal programs so that wetlands and beaches survive. Golden Gate
6647	University Law Review, 20 , 717-778.
6648	Titus, J.G., 2004: Maps that depict the business-as-usual response to sea-level rise in the
6649	decentralized United States of America. Global Forum on Sustainable
6650	Development: Development and Climate Change. 11-12 November, Paris,
6651	Organisation for Economic Co-operation and Development (OECD). 22 pp.
6652	U.S. Congress, Office of Technology Assessment, Preparing for an Uncertain Climate –

6653 Volume I, OTA-O-567 (Washington, DC: U.S.	Government Printing Office,
--	-----------------------------

6654 October 1993).

Do Not Cite or Quote

334 of 800

6655	Chapter 9. Implications for Decisions
6656	
6657	Author(s): James G. Titus, EPA
6658	
6659	Contributing Author: James E. Neumann, Industrial Economics, Inc.
6660	
6661	KEY FINDINGS
6662	• The prospect of accelerated sea-level rise generally justifies examining the costs
6663	and benefits of taking adaptive actions. Determining whether and what specific
6664	actions are justified is difficult, due to uncertainty in the timing and magnitude of
6665	impacts, and difficulties in quantifying projected benefits and costs. Nevertheless,
6666	the literature has identified some cases where acting now is justified.
6667	• Key opportunities for preparing for sea-level rise include coastal wetland
6668	protection, location and elevation of coastal homes, buildings and infrastructure,
6669	and examining whether and how changing risk due to sea-level rise is reflected in
6670	flood insurance rates.
6671	• Incorporating sea-level rise into coastal wetlands programs can be justified
6672	because it is more effective to plan for the inland migration of tidal wetlands
6673	before people develop the dry lands onto which those wetlands would migrate,
6674	than afterwards. Possible tools include rolling easements, density restrictions,
6675	coastal setbacks, and vegetative buffers.
6676	• Long-term shoreline planning is likely to save more than it costs; the more the sea
6677	ultimately rises, the greater the value of that planning.

Do Not Cite or Quote

335 of 800

6678	Many decisions of everyday life in the coastal zone have little to do with the fact that the
6679	sea is rising. Some day-to-day decisions depend on today's water levels: Sailors, surfers,
6680	and fishermen all consult tide tables to decide when to go out. And the decision whether
6681	to evacuate during a storm may depend on how high the water is expected to rise above
6682	the normal level. The fact that the normal level of the sea is rising about 0.01 millimeters
6683	per day does not affect such short term decisions.
6684	
6685	Sea-level rise can have an impact, however, on the outcomes of many decisions with
6686	long-term consequences. Even in some of those cases, the impacts of sea-level rise still
6687	would not warrant doing things differently today, because the impacts are far enough in
6688	the future that people will have ample time to respond in the future. For example, there is
6689	no need to anticipate sea-level rise in the construction of port facilities (NRC 1987). In
6690	other cases, the adverse impacts of sea-level rise can be substantially reduced by
6691	preparing soon.
6692	
6693	The previous chapters discuss vulnerable private property and public resources threatened
6694	by sea-level rise including real estate, wetlands, and ecosystems, infrastructure (e.g.,
6695	roads, bridges, parks, playgrounds, industrial plants) and commercial buildings including
6696	hotels, casinos, and office buildings. The loss of habitats and ecosystems that support
6697	fishing and crabbing may result in the loss of those activities and the communities that
6698	depend on them. A continuing theme of previous chapters in this report is that some of
6699	these assets will be protected or preserved in their current locations, while others must
6700	move inland or be lost. This report examines some of the government policies that are, in

336 of 800

6701	effect, the current response to sea-level rise. This chapter discusses responses to sea-level
6702	rise that may be justified today.

6703

6704	This chapter describes the categories of decisions that may be sensitive, with a focus on
6705	the idea that preparing for sea-level rise is not worthwhile unless the expected present
6706	value of the benefits of preparing for sea-level rise is greater than the cost. It then
6707	examines five issues in greater detail: wetland protection, shore protection, long-lived
6708	structures, elevating homes, and floodplain management. The examples in this chapter
6709	focus on activities by governments and homeowners, rather than corporations. Most of
6710	the available studies have been funded by governments, with a focus either on improving
6711	government programs or providing risk communication and technical support to small
6712	property owners. Corporations engage in many of the activities discussed in this chapter;
6713	but we can not rule out the possibility that privately funded strategic assessments have
0/10	
6714	identified other near-term decisions that are sensitive to sea-level rise.
6714	
6714 6715	identified other near-term decisions that are sensitive to sea-level rise.
6714 6715 6716	identified other near-term decisions that are sensitive to sea-level rise. Much of the discussion in this chapter reflects the basic assumption that decision makers,
6714 6715 6716 6717	identified other near-term decisions that are sensitive to sea-level rise. Much of the discussion in this chapter reflects the basic assumption that decision makers, be they homeowners or corporations, have a well-defined objective for their interest in
 6714 6715 6716 6717 6718 	identified other near-term decisions that are sensitive to sea-level rise. Much of the discussion in this chapter reflects the basic assumption that decision makers, be they homeowners or corporations, have a well-defined objective for their interest in potentially vulnerable coastal resources. Where a well-defined objective can be stated,
 6714 6715 6716 6717 6718 6719 	identified other near-term decisions that are sensitive to sea-level rise. Much of the discussion in this chapter reflects the basic assumption that decision makers, be they homeowners or corporations, have a well-defined objective for their interest in potentially vulnerable coastal resources. Where a well-defined objective can be stated, the principles of economics and risk management provide an appropriate and useful
 6714 6715 6716 6717 6718 6719 6720 	identified other near-term decisions that are sensitive to sea-level rise. Much of the discussion in this chapter reflects the basic assumption that decision makers, be they homeowners or corporations, have a well-defined objective for their interest in potentially vulnerable coastal resources. Where a well-defined objective can be stated, the principles of economics and risk management provide an appropriate and useful paradigm for thinking about decision making, and how decisions are affected by sea-level

Do Not Cite or Quote

337 of 800

6724	include emotions, perceptions, cultural values, or other difficult to characterize factors -
6725	but those factors are beyond what we can evaluate in this chapter. Specifically, in this
6726	chapter we use an economic framework to discuss how the prospect of rising sea level
6727	might alter certain decisions, such as nourishing a beach or erecting a protective
6728	structure, that are consistent with homeowners or governments pursuing a particular
6729	objective. See Box 9.1 for further details on the basic economic framework we adopt.
6730	
6731	The discussion here is not directly tied to specific sea-level rise scenario, but it does
6732	consider a wide range of possible outcomes over time horizons that vary by decision from
6733	decades to centuries. As a result, the discussion implicitly acknowledges uncertainty
6734	about the future rate of sea-level rise. We also explicitly acknowledge uncertainty about
6735	the impacts of sea-level rise. The economic framework applied here, however, does not
6736	explicitly identify the extent to which decisions might be affected by sea-level rise.
6737	Instead, we reference a wide range of existing quantitative studies that are relevant to this
6738	topic.
6739	START BOX HERE
6740	Box 9.1 Conceptual Framework for Decision Making with Sea-Level Rise
6741	
6742	Our conceptual framework for decision-making starts with the basic assumption that homeowners or
6743 6744	governments with an interest in coastal resources seek to maximize the value of that resource to
6744 6745	themselves (homeowners) or to the public as a whole (governments), over a long time horizon (on the
6745 6746	order of 50 years or more). In each year, a coastal resource provides some value to its owner. In the case of the homeowner, a coastal property might provide rental income, or it might provide "imputed
6740 6747	rent" that the owner derives from owning the home rather than renting a similar home. The market
6748	
6748 6749	value of a property reflects an expectation that property will generate similar income over many years. Because income today is worth more than income in the future, however, the timing of the income
6750	stream associated with a property also matters (see explanation of "discounting" in the text).
6751	
6752	The income a property provides over time, however, can be affected by risks to the property, including
6753	natural hazards. Even without sea-level rise, there are significant natural hazards that affect coastal
(751	

natural hazards. Even without sea-level rise, there are significant natural hazards that affect coastal
resources - these include erosion, hurricane winds, and episodic flooding. All of these risks can cause
damage - that damage can reduce the income the property produces, increase the costs of maintaining

Do Not Cite or Quote

338 of 800

6756 6757 6758	the property, or both. These "baseline" risks should be taken into account in estimating the value of the property today, to the extent they are known and understood by the owner and the market of potential buyers.
6759	
6760 6761	Sea-level rise changes the risks to coastal resources; in almost all cases, it increases existing risks. Investments can be made, however, to respond to and mitigate those changes in the risk of property
6762 6763	damage. Decisions about those investments are the main topic of this chapter.
6764	In an economic framework, investing in a response that mitigates coastal hazards will only be

worthwhile if the cost of the investment (incurred in the short-term) is less than net expected returns
(which accrue over the long-term). It follows logically that these investments are more likely to be
judged worthwhile when: 1) there is a large risk of damage that will happen soon (and it can be
effectively reduced); 2) there is a small cost to effectively reduce the risk; or 3) the investment shifts
the risk to future years.

- 6771 END BOX
- 6772

6773 9.1 DECISIONS WHERE PREPARING FOR SEA-LEVEL RISE IS

6774 WORTHWHILE

- 6775 Sea-level rise justifies changing what we do today if the outcome from considering sea-
- 6776 level rise has an expected net benefit greater than the cost. This basic economic
- 6777 framework is expressed in Box 9.1: Conceptual Framework for Decision Making with
- 6778 Sea-Level Rise. Thus, as we consider decisions where sea-level rise justifies doing things
- 6779 differently, we can *exclude* from further consideration those decisions where either (a)
- 6780 the costs are large compared to the impacts we are considering or (b) the net benefits
- seem small or not necessarily positive. Few if any studies have analyzed the costs of
- 6782 preparing for sea-level rise. But it seems self-evident that preparing for a very small rise
- 6783 in sea level would not be worthwhile. Most of what we know about decisions sensitive to
- 6784 sea-level rise concern decisions whose consequences last decades or longer, during which
- time significant rise in sea level might occur. Those decisions include long-lived
- 6786 structures, land-use planning, and infrastructure decisions that may influence the location
- 6787 of development for centuries even if the structures themselves do not last a long time.

Do Not Cite or Quote

339 of 800

6788	For what type of decision is there likely to be a net benefit from considering sea-level
6789	rise? Most analyses of this question have focused on cases where (1) the more sea level
6790	rises, the worse the impact; (2) the impacts are mostly in the future — and uncertain
6791	because the precise impact of sea-level rise is uncertain; and (3) if we prepare now, we
6792	will reduce the eventual adverse consequences.
6793	
6794	The first step is to ask whether preparing now would be better than never preparing. If so,
6795	we can then investigate whether preparing now is also better than preparing during some
6796	future year. Preparing now to avoid possible effects in the future involves two key
6797	economic principles: uncertainty and discounting.
6797 6798	economic principles: uncertainty and discounting.
	economic principles: uncertainty and discounting. Uncertainty. Because projections of sea-level rise and its precise effects are uncertain,
6798	
6798 6799	Uncertainty. Because projections of sea-level rise and its precise effects are uncertain,
6798 6799 6800	<i>Uncertainty</i> . Because projections of sea-level rise and its precise effects are uncertain, preparing now involves spending today for the sake of uncertain benefits. If sea level
6798 6799 6800 6801	<i>Uncertainty.</i> Because projections of sea-level rise and its precise effects are uncertain, preparing now involves spending today for the sake of uncertain benefits. If sea level rises less than expected, then preparing now may prove — in retrospect — to have been
6798 6799 6800 6801 6802	<i>Uncertainty.</i> Because projections of sea-level rise and its precise effects are uncertain, preparing now involves spending today for the sake of uncertain benefits. If sea level rises less than expected, then preparing now may prove — in retrospect — to have been unnecessary. And if sea level rises more than expected, whatever we do today may prove

 $^{^{25}}$ An extensive economic literature on decision-making and planning under uncertainty, particularly where some effects are irreversible, is applicable here. A good summary of this literature, on the topic of "quasioption value" can be found in Freeman (2003), page 250-251. Quasi-option value arises from the value of information gained by delaying an irreversible decision (*e.g.*, to retreat). In the sea-level rise context, it applies because in the current state the costs and benefits of choosing to retreat or protect are uncertain, and we can reasonably expect that uncertainty will narrow over time, and yield a value of information, as we observe rates of sea-level rise and develop enhanced technologies for more effectively protecting or retreating. Two of the more influential works in this area include Arrow and Fisher (1974) and Fisher and Hanemann (1987); an application to climate policy decisions is Ha-Duong (1998).

340 of 800

6806	inexpensive, or the preparation has to be fairly "robust" (i.e., work over a wide variety of
6807	outcomes). If protecting existing development is important, beach nourishment is an
6808	example of a robust way to prepare, because the sand will do some good toward
6809	offsetting shore erosion no matter how fast or slowly the sea rises.
6810	
6811	Discounting. Discounting is a procedure by which economists determine the "present
6812	value" of something given or received at a future date (EPA, 2000, p. 33). A dollar today
6813	is preferred over a dollar in the future, even without inflation; so a future dollar must be
6814	discounted to make costs and benefits received in different years comparable. Economists
6815	agree that the appropriate way to discount is to pick an assumed annual interest rate and
6816	compound it year-by-year, just as interest compounds, and use the result to discount
6817	future dollars. The precise rate that one should use depends on who is making the
6818	decision — and there is ongoing discussion amongst economists regarding what the
6819	discount rate should be for the U.S. Government (EPA, 2000, Chapter 6).
6820	
6821	Most of the decisions where preparing now has a positive net benefit appear to fall into at
6822	least one of three categories: (1) the impact of sea-level rise is large in the near-term
6823	relative to value of asset; (2) preparing now costs little compared to the magnitude of the
6824	possible impact; or (3) preparing now involves options that reallocate (or clarify) risk, for
6825	example, by establishing today that the eventual costs of sea-level rise will be borne by a
6826	property owner making a decision sensitive to sea-level rise, rather than by third parties
6827	not involved in the decision. We discuss each in turn.
6828	

341 of 800

6829	9.1.1 Decisions that Address Large Near-term Impacts
6830	If the near-term impact of sea-level rise is large enough, preparing now may be
6831	worthwhile. Such decisions might include:
6832	• Beach nourishment to protect homes that are in danger of being lost if something is
6833	not done soon.
6834	• Enhancing vertical accretion (build-up) of wetlands that are otherwise in danger of
6835	being lost in the near term.
6836	• Elevating homes that are clearly below the expected flood level due to historic sea-
6837	level rise (often after they have been flooded once).
6838	• Fortifying dikes to the elevation necessary to protect from current floods.
6839 6840	9.1.2 Decisions Where Preparing Now Costs Little
6841	These response options can be referred to as "low regrets" and "no regrets," depending
6842	on whether the cost is little or nothing. In such cases, the response measure makes sense
6843	even if the sea does not rise. Examples include:
6844	• Setting a new home back from the sea within a given lot. Setting a home back from
6845	the water can push the eventual damages farther into the future, lowering their
6846	expected present value. Unlike the option of not building, this approach retains almost
6847	the entire value of using the property — especially if adjacent homes are also set back
6848	so that they do not block one's waterfront view, provided that the lot is large enough
6849	to build the same house as one would have built without the setback requirement.
6850	• Building a new building with a higher floor elevation. While elevating an existing
6851	home can be costly, building it a few feet higher may add little to the cost.

342 of 800

6852	• Designing new coastal drainage systems with larger pipes to incorporate future sea-
6853	level rise. The retrofit of rebuilding a drainage system can be substantially more
6854	expensive than including larger pipes in the initial construction (Titus et al., 1987).
6855	• Rebuilding roads to a higher elevation during routine reconstruction. If a road will
6856	eventually be elevated, it is easier to do so when it is being rebuilt anyway.
6857	• Designing bridges and other major facilities. As sea level rises, clearance under
6858	bridges declines, impairing navigation. Building the bridge higher is inexpensive
6859	compared with rebuilding it.
6860	
6861	9.1.3 Options That Reallocate or Clarify Risks from Sea-Level Rise
6862	Instead of imposing a cost today to avoid problems that may or may not come later, these
6863	approaches impose a cost later — but only if and when the problem emerges. The
6864	premise for these measures is that policies and practices encourage people to behave in a
6865	fashion that increases costs more than necessary. Changing the rules and expectations can
6866	avoid those costs. Long-term shoreline planning and rolling easements are two examples.
6867	
6868	In some cases, people will logically invest more along eroding shores if they assume that
6869	the government will provide subsidized shore protection. (Box 9.2: Erosion, Shore
6870	Protection, and Coastal Property Values). The value to to a buyer of that government
6871	subsidy is capitalized into higher land prices, which can further encourage increased
6872	construction. If the assumption of future government action is wrong (i.e., government
6873	does not provide shore protection), then prices can decline; and in extreme cases, people
6874	can lose their homes unexpectedly. People's lives as well as their economic investments

343 of 800

- 6875 can be disrupted if the absence of shore protection does not become widely known until
- 6876 dunes or dikes fail and a community is destroyed. A policy that clearly enunciates that
- 6877 such an area will *not* be protected could lead people to strategically downscale the
- 6878 physical property²⁶ and avoid developing the strong emotional attachment to the sense of
- 6879 place at that location²⁷, in favor of those areas that actually will be protected. (Chapter 11
- 6880 discusses this issue further.)

6881 START BOX HERE

6882

6883Box 9.2 Erosion, Shore Protection Programs, and Property Values6884

6885 Do government shore protection programs increase property values and encourage coastal development? 6886 Heinz Center (2000, p. 131-134) reported that along the Atlantic Coast, a house with a remaining lifetime 6887 of 10-20 years before succumbing to erosion is worth 20 percent less than a home expected to survive 200 6888 years. Landry et al. (2003) also found that property values tend to be higher with wide beaches and low 6889 erosion risk. It would therefore follow that shore protection programs that widen beaches, decrease erosion 6890 risk, and lengthen a home's expected lifetime would increase property values. Nevertheless, estimates of 6891 the impact on property values are complicated by the fact that proximity to the shore increases the risk of 6892 erosion but also improves access and views of the water (Bin *et al.*, in press). 6893

- 6894 Empirical verification that shore protection increases development is even less. Cordes and Yezer (1998) 6895 modeled the impact on new building permit activity in coastal areas of shore protection activity in 42 6896 coastal counties, including all of the counties with developed ocean coasts in New York, New Jersey, 6897 Maryland, and Virginia. They did not find a statistically relationship between shore protection and building 6898 permits. However they did find fewer building permits in areas where both flood insurance and shore 6899 protection are unavailable. The Heinz Center (200 p. 135) estimated that federal flood insurance and other 6900 government hazards programs had increased development densities about 30 percent over what it would 6901 otherwise be.
- 6902
- 6903 END BOX
- 6904

6905 Rolling easements either reallocate or clarify the risks of sea-level rise, depending on the

- 6906 pre-existing property rights of a given jurisdiction (Titus 1998). A rolling easement is any
- 6907 arrangement under which property owners have no right or expectation of holding back

Do Not Cite or Quote

344 of 800

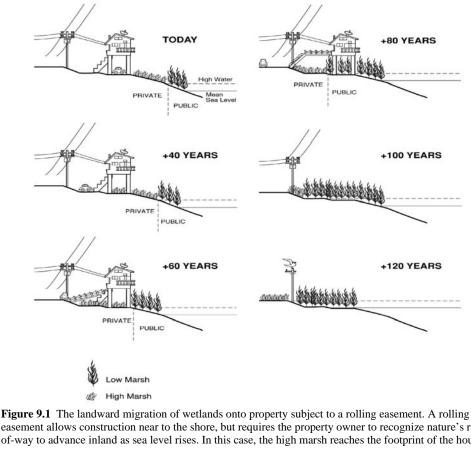
 $^{^{26}}$ Yohe *et al.* (1996) estimates the nationwide value of "foresight" regarding response to sea level rise at \$20 billion, based largely on the strategic depreciation that foresight makes possible.

²⁷ Carol Farbotko (2005) argues that one can view Tuvalu as either a victim losing it's sense of place, or a potentially resilient culture that must adapt to sea level rise.

6908	the sea if their property is threatened. In theory, such easements can be implemented
6909	either by regulation or as a special type of conservation easement ²⁸ . In either case, they
6910	prevent property owners from holding back the sea but allow any other type of use and
6911	activity on the land. As the sea advances, the easement automatically moves or "rolls"
6912	landward. Because shoreline stabilization structures cannot be erected, sediment transport
6913	remains undisturbed and wetlands and other tidal habitat can migrate naturally. Similarly,
6914	there will always be dry or intertidal land for the public to walk along, preserving lateral
6915	public access to the shore.
6916	
6917	Under a rolling easement, the property owner completely bears all of the risk of sea-level
6918	rise. Without a rolling easement, by contrast, along most shores property owners invest as
6919	if their real estate is sustainable, and then expend resources — or persuade governments
6920	to expend resources — to sustain the property. The overall effect of the rolling easement
6921	is that a community clearly decides to pursue retreat instead of shore protection in the
6922	future. This could also be done through a large-scale purchase of land now — but in that
6923	case there would be a large upfront cost as coastal land becomes unavailable for valuable
6924	uses.
6925	Rolling easements, by contrast, do not prevent the land from being used for the next few
6926	decades while the land remains dry. (Even if the government purchases the rolling
6927	easement, the purchase price is a simple transfer of wealth.) The landward migration from

6928 the rolling easement should have lower eventual costs than a government buyout several

Do Not Cite or Quote


²⁸ Another mechanism for allowing wetlands and beaches to migrate inland are setbacks, which prohibit development near the shore. Setbacks can often result in "takings" claims if a property is deemed undevelopable due to the setback line. By contrast, rolling easements place no restrictions on development and hence are not a taking. See, *e.g.*, Titus (1998).

³⁴⁵ of 800

- 6929 decades hence (Titus, 1991). Property owners can strategically depreciate their property
- and make other decisions consistent with the eventual abandonment of the property,
- 6931 efficiently responding to information on sea-level rise as it becomes available. Figure 9.1
- 6932 shows how a rolling easement might work over time in an area already developed when
- 6933 rolling easements are obtained.

346 of 800

6934

6935 6936 6937 easement allows construction near to the shore, but requires the property owner to recognize nature's right-6938 of-way to advance inland as sea level rises. In this case, the high marsh reaches the footprint of the house 6939 40 years hence. Because the house is on pilings, it can still be occupied (assuming that it is hooked to a 6940 sewerage treatment plant - a flooded septic system would probably fail). After 60 years, the marsh has 6941 advanced enough to require the owner to park the car along the street and construct a catwalk across the 6942 front yard. After 80 years, the marsh has taken over the entire yard; moreover, the footprint of the house is 6943 now seaward of mean high water and hence on public property. At this point, additional reinvestment in the 6944 property is unlikely. Twenty years later, the particular house has been removed, although other houses on 6945 the same street may still be occupied. But eventually, the entire area returns to nature (Titus, 1998). 6946 6947 Let us now examine some examples of long-term planning decisions and subsequent

6948 reallocation of risk.

- 6949
- 6950
- 6951

Do Not Cite or Quote

347 of 800

6952 9.2 PROTECTING COASTAL WETLANDS 6953 The nation's wetland programs generally result in the protection of wetlands in their 6954 current locations, but they do not explicitly consider retreating shorelines. Most tidal 6955 wetlands are likely to keep pace with the current rate of sea-level rise but could become 6956 marginal with a 2 mm/yr acceleration, and could be lost if sea-level rise accelerates by 7 6957 mm/yr (Chapter 3). The two key relationships determining future wetland area are the 6958 relationship between wetland vertical development and sea-level rise, and between the 6959 rates of seaward erosion and inland migration. If wetland vertical development keeps 6960 pace with sea-level rise, wetland area will expand if inland migration is greater than 6961 seaward erosion, remain unchanged if inland migration and seaward erosion are equal, 6962 and decline if seaward erosion is greater than inland migration. If wetland vertical 6963 development lags behind sea-level rise (*i.e.*, wetlands do not keep pace), the wetlands 6964 will eventually become submerged and deteriorate even as they migrate inland, resulting 6965 in a loss of wetland area. Thus although the dry land available for potential inland 6966 wetland migration or formation is estimated to be less than 20% of the current area of 6967 wetlands (Chapter 1), these lands could potentially become important wetland areas in 6968 the future. However, they may not be available for wetland migration and formation 6969 given current policies and land use trends (Chapter 5). 6970 6971 A continuation of the current practice of protecting almost all developed estuarine shores

- 6972 could reverse the accomplishments of important environmental programs. Until the
- 6973 middle of the 20th century, tidal wetlands were often converted to dredge-and-fill

6974	developments ²⁹ . By the 1970s, the aggregate result of the combination of federal and
6975	state regulations had, for all practical purposes, halted that practice. In the Mid-Atlantic,
6976	most tidal wetlands are off-limits to development. Coastal states generally prohibit the
6977	filling of low marsh, which is publicly owned in most states under the public trust
6978	doctrine (See Chapter 7).
6979	
6980	A landowner who wants to fill tidal wetlands on private property must obtain a permit
6981	from the Army Corps of Engineers. 33 U.S.C. §§ 403, 409, 1344(a). These permits are
6982	generally not issued unless the activity is inherently water-related, such as a marina. 40
6983	C.F.R. § 230.10(a)(3). Even then, the owners generally must mitigate the loss of wetlands
6984	by creating or enhancing wetlands elsewhere (EPA and USACE 1990). (Activities with
6985	very small impacts on wetlands, however, often qualify for a nationwide permit.) The net
6986	effect of all these programs has been to sharply reduce the rate of coastal wetland loss
6987	(e.g., Stockton and Richardson, 1987; Hardisky and Klemas, 1983) and preserve an
6988	almost continuous strip of marshes, beaches, swamps, and mudflats along the U.S. Coast.
6989	If sea-level rise accelerates, those wetlands are likely to be lost (Reed et al., 2008) unless
6990	either they are able to migrate inland or future generations use technology to ensure that
6991	wetland surfaces rise as rapidly as the sea (NRC, 2006).

349 of 800

 $[\]frac{1}{29}$ See Chapter 5 for an explanation of these developments and their vulnerability to sea level rise.

Current approaches would not protect wetlands for future generations if sea level rises
beyond the ability of wetlands to accrete — which is likely for most of the Mid-Atlantic
with a 7 mm/yr acceleration, and likely for a 2mm/yr acceleration for most of
Chesapeake Bay's wetlands.
Existing federal statutes are designed to protect existing wetlands, but the totality of the
Nation's wetland protection program is the end result of decisions made by many actors.
Federal programs discourage destruction of most existing coastal wetlands, but the
federal government has not moved towards allowing tidal wetlands to migrate inland
(Titus, 2000). The States of North Carolina, Maryland, New Jersey, and New York own
the tidal wetlands below mean high water; and Virginia, Delaware, and Pennsylvania
have enough of an ownership interest under the Public Trust Doctrine to preserve them
even if doing so requires landward migration (Titus, 1998). But most states give property
owners a near-universal permit to protect property by preventing wetlands from
migrating onto dry land. Farmers rarely erect shore protection structures, but
homeowners usually do (Titus, 1998; NRC, 2006). A few coastal counties and states have
decided to keep shorefront farms and forests undeveloped, (see Appendices D, E, and F)
but most have not. Government agencies that hold land with conservation objectives have
not decided to purchase the land or easements necessary to enable wetlands to migrate
inland ³⁰ . Thus, in effect, the United States has decided to <i>save</i> its existing wetlands. But
the net effect of all the decisions made at different levels is very likely to <i>eliminate</i>

 $[\]overline{^{30}}$ But see chapter 10 for discussion of private conservancies.

³⁵⁰ of 800

7013	wetlands by blocking their landward migration as a rising sea erodes their outer
7014	boundaries.
7015	
7016	Not only is the long-term success of wetland protection sensitive to sea-level rise, it is
7017	also sensitive to when such decisions are made. The political and economic feasibility of
7018	allowing wetlands to take over a given parcel as sea level rises is much greater if
7019	appropriate policies are in place before the property is intensely developed. Many coastal
7020	lands are undeveloped today, but development continues. Deciding now that wetlands
7021	will have land available to migrate inland could protect more wetlands than delaying such
7022	a decision. In some places, such policies might discourage development in areas onto
7023	which wetlands may be able to migrate. In other areas, development could occur with the
7024	understanding that eventually land will revert to nature if sea level rises enough to
7025	submerge it. Like beach nourishment, artificial vertical build-up of tidal wetlands would
7026	not necessarily require a lead-time of several decades; but developing technologies to do
7027	so and determining whether and where they are appropriate could also take decades. To
7028	the extent that human activities ³¹ interfere with natural vertical accretion (build-up),
7029	restoring natural processes before the wetlands are lost is more effective than artificially
7030	re-creating them (EPA 1995; EPA and USACE 1990; Kruczynski 1990).
7031	
7032	Even though the long-term success of the Nation's effort to protect wetlands is sensitive
7033	to sea-level rise, most of the individual decisions that ultimately determine whether

7034 wetlands can migrate inland depend on factors that are not sensitive to sea-level rise. The

Do Not Cite or Quote

 $^{^{31}}$ *E.g.*, water flow management, development that alters drainage patterns, and beach nourishment and inlet modification which thwarts barrier island overwash.

7035	desire of bayfront homeowners to keep their homes is strong; and unlikely to abate even
7036	with a significant acceleration of sea-level rise ³² . State governments must balance the
7037	public interest in the tidal wetlands against the well-founded expectations of coastal
7038	property owners that they will not have to yield their property. Only a handful of states
7039	- none of which are in the Mid-Atlantic - have decided in favor of the wetlands (see
7040	Chapter 10). Local government decisions regarding land use reflect many interests.
7041	Objectives such as near-term tax revenues (often by seasonal residents who make
7042	relatively few demands for services) and a reluctance to undermine the economic
7043	interests of landowners and commercial establishments are not especially sensitive to
7044	rising sea level.
7045	
7046	Today's decentralized decision making process seems to protect coastal wetlands
7047	reasonably well at the current rate of sea-level rise; but it will not enable wetlands to
7048	migrate inland as sea-level rise continues or accelerates. A large-scale landward
7049	migration of coastal wetlands is very unlikely to occur in most of the Mid-Atlantic unless
7050	a conscious decision is made for such a migration by a level of government with
7051	authority to do so.
7052	
7053	9.3 SHORE PROTECTION
7054	The case for anticipating sea-level rise as part of activities to prevent erosion and

- flooding has not been as strong as for wetland protection. The lead time required for
- shore protection is much less than for a planned retreat and wetland migration. Dikes,

352 of 800

³² See, *e.g.*, Weggel *et al.* (1989), Titus *et al.* (1991), and NRC (2006) for an examination of costs and options for estuarine shore protection.

7057	seawalls, bulkheads, and revetments can each be built within a few years. Beach
7058	nourishment is an incremental periodic activity; if the sea rises more than expected, one
7059	can add more sand.

7060

7061	The U.S. Army Corps of Engineers (Corps) has not evaluated whether sea-level rise will
7062	ultimately require fundamental changes in shore protection, but such changes do not
7063	appear to be urgent. Since the early 1990s, the Corps' guidance to project managers has
7064	urged them to attempt to identify robust strategies: "Feasibility studies should consider
7065	which designs are most appropriate for a range of possible future rates of rise. Strategies that
7066	would be appropriate for the entire range of uncertainty should receive preference over those that
7067	would be optimal for a particular rate of rise but unsuccessful for other possible outcomes."
7068	(USACE 2000a, page e-142). So far, this guidance has not significantly altered the Corps'
7069	approach to shore protection. Nevertheless, there is some question as to whether beach
7070	nourishment would be sustainable in the future if the rate of sea-level rise accelerates. It
7071	may be technically possible to double or triple the rate at which we nourish beaches and
7072	elevate the land surfaces of barrier islands 50-100 cm to offset rising sea level in the next
7073	century. But continuing such a practice indefinitely would eventually leave back barrier
7074	bays much deeper than today (see chapter 4), with unknown consequences for the
7075	environment and the barrier islands themselves. Similarly, it may be technically possible
7076	to build a low bulkhead along mainland shores as sea level rises 50-100 cm, but it could
7077	be more challenging to build a tall dike along the same shore—blocking waterfront
7078	views, requiring continual pumping, and exposing people behind the dike to the risk of
7079	flooding should that dike fail.
7000	

7080

Do Not Cite or Quote

353 of 800

7081

7082	The fact that eventually we will either hold back the sea or allow it to inundate a
7083	particular parcel of land does not, by itself, automatically imply that we must respond
7084	today. A community that will not need a dike until the sea rises 2 ft has little reason to
7085	build that dike today. Nevertheless, if the land where the dike would eventually be
7086	constructed happens to be vacant, the prospect of future sea-level rise might be a good
7087	reason to leave the land vacant. A homeowner whose house will be inundated in 30 to 50
7088	years has little reason to move the house back today, but if the opportunity arises, it might
7089	be advisable to rebuild the house on a part of the lot that would provide it with a longer
7090	life.
7091	
7092	Whether we need to be concerned about long-term sea-level rise ultimately depends on
7093	the lead time of our response options and on the costs and benefits of acting now versus
7094	later. A fundamental premise of benefit-cost analysis is that resources not deployed today
7095	can be invested profitably in another activity and yield a return on investment. Most
7096	engineering responses to sea-level rise fall into that category. For a given level of
7097	protection, dikes, seawalls, beach nourishment, jacking up structures, and elevating
7098	roadways are unlikely to cost more a few decades hence than today (USACE 2000b,
7099	2007), and they can be implemented within the course of a few years. To the extent that
7100	this is our response to sea-level rise, we may not need to do it today. However, there are
7101	two exceptions.
7102	

9.4 LONG-LIVED STRUCTURES: SHOULD WE PLAN NOW OR LATER?

Do Not Cite or Quote

354 of 800

7103	The first exception might be called the "retrofit penalty" for failing to think long-term. If
7104	one is building (or rebuilding) a road or a drainage system anyway, then it may be far
7105	cheaper to design for a rise in sea level than modify it later, because in the latter case, the
7106	project needs to be built twice. For example, in a particular watershed in Charleston,
7107	South Carolina, if the sea rises one foot, the planned drainage system would fail and have
7108	to be rebuilt, but it would only cost an extra 5% to design the system today for a one-foot
7109	rise (Titus et al., 1987, Table 2). The design and location of a house may be another
7110	example. If a house is designed to be moved, it can be moved; but a brick house on a slab
7111	foundation could be more problematic. Similarly, the cost of building a house 20 ft
7112	farther from the shore may be minor if the lot is large enough, whereas moving it back 20
7113	ft could be substantial (EPA, 1989).
7114	
7114 7115	The second exception concerns the incidental benefits of doing something sooner. If a
	The second exception concerns the incidental benefits of doing something sooner. If a dike is not needed until the sea rises 2 ft because at that point a 100-year storm would
7115	
7115 7116	dike is not needed until the sea rises 2 ft because at that point a 100-year storm would
7115 7116 7117	dike is not needed until the sea rises 2 ft because at that point a 100-year storm would flood the streets with 4 ft of water, the community is implicitly accepting the 2 ft of water
7115711671177118	dike is not needed until the sea rises 2 ft because at that point a 100-year storm would flood the streets with 4 ft of water, the community is implicitly accepting the 2 ft of water that such a storm would provide today. If a dike is built now, it would stop this smaller
71157116711771187119	dike is not needed until the sea rises 2 ft because at that point a 100-year storm would flood the streets with 4 ft of water, the community is implicitly accepting the 2 ft of water that such a storm would provide today. If a dike is built now, it would stop this smaller flood as well as protect from the larger flood that will eventually occur. This reasoning
 7115 7116 7117 7118 7119 7120 	dike is not needed until the sea rises 2 ft because at that point a 100-year storm would flood the streets with 4 ft of water, the community is implicitly accepting the 2 ft of water that such a storm would provide today. If a dike is built now, it would stop this smaller flood as well as protect from the larger flood that will eventually occur. This reasoning was instrumental in leading the British to build the Thames River Barrier, which protects
 7115 7116 7117 7118 7119 7120 7121 	dike is not needed until the sea rises 2 ft because at that point a 100-year storm would flood the streets with 4 ft of water, the community is implicitly accepting the 2 ft of water that such a storm would provide today. If a dike is built now, it would stop this smaller flood as well as protect from the larger flood that will eventually occur. This reasoning was instrumental in leading the British to build the Thames River Barrier, which protects London. Some people argued that this expensive structure was too costly given the small
 7115 7116 7117 7118 7119 7120 7121 7122 	dike is not needed until the sea rises 2 ft because at that point a 100-year storm would flood the streets with 4 ft of water, the community is implicitly accepting the 2 ft of water that such a storm would provide today. If a dike is built now, it would stop this smaller flood as well as protect from the larger flood that will eventually occur. This reasoning was instrumental in leading the British to build the Thames River Barrier, which protects London. Some people argued that this expensive structure was too costly given the small risk of London flooding, but rising sea level meant that such a structure would eventually

7125

Do Not Cite or Quote

355 of 800

7126	While most engineering responses can be delayed with little penalty, the same cannot be
7127	said about land use decisions. Once an area is developed, the cost of vacating it as the sea
7128	rises is much greater than that cost would have been if the area was not developed. This is
7129	not to say that eventual inundation should automatically result in placing land off-limits
7130	to development. Even if a home has to be torn down 50 to 100 years hence, it might still
7131	be worth building. In some coastal areas where demand for beach access is great, rentals
7132	may recover the cost of home construction in less than a decade. However, once an area
7133	is developed, as a practical matter, it will not be abandoned unless either the eventual
7134	abandonment was part of the original construction plan, or the owners could not afford to
7135	hold back the sea. Therefore, the only way to preserve natural shores would be to make
7136	such a decision before an area is developed. Because the coast is being developed today,
7137	a failure to deal with this issue now is, in effect, a decision to allow the loss of wetlands
7138	and bay beaches wherever development takes place.
7139	
7140	Among those options that have a net benefit compared to the baseline, many can be
7141	delayed because the benefits would still accrue. Delaying action can decrease the present
7142	value of the cost of acting — and increase the likelihood that the preparation is more
7143	closely tailored to what is necessary. But it can also increase the likelihood that one does
7144	not prepare until it is too late. One way to address this dilemma is to consider the lead
7145	times associated with particular types of adaptation (IPCC, 1992; O'Callahan, 1994).
7146	
7147	
7148	

356 of 800

7149	9.5 DECISIONS BY	COASTAL	PROPERTY	OWNERS	ON ELEVATING
------	------------------	---------	----------	---------------	---------------------

7150

HOMES 7151 People are increasingly elevating homes to reduce the risk of flooding during severe 7152 storms, and in very low areas, people also elevate their yards. The cost of elevating even 7153 a small wood-frame cottage on a block foundation is likely to be \$15,000–20,000 — and 7154 larger houses cost proportionately more. If it is necessary to drill pilings, the cost can be 7155 double because one has to move the house to the side and then move it back. If elevating 7156 the home prevents its subsequent destruction within a few decades, it will have been 7157 worthwhile. At a 5% discount rate, for example, it is worth investing 25% of the value of 7158 a structure to avoid a guaranteed loss 28 years hence. In areas where complete destruction 7159 of a home is unlikely, people sometimes elevate homes because of the lower insurance 7160 rates and to avoid the risk of water damages to walls and furniture. But the decision to 7161 elevate involves factors other than flooding as well, including better views of the water, 7162 increased storage and/or parking spaces, and greater difficulty for the elderly to enter 7163 their homes. Rising sea level can be a motivating factor to elevate a home even when one 7164 is uncertain about whether it is worth doing so, because it is likely that it will eventually

7165 be necessary (unless there is a good chance that the home will be replaced with a larger 7166 structure).

7167

7168 In cases where a new home is being constructed, or an existing home is elevated for

7169 reasons unrelated to sea-level rise, (such as a realization of the risk of flooding), rising

7170 sea level would justify raising the home to a higher level than would otherwise be the

7171 case. Elevating the home to (for example) 30 cm above the base flood elevation as part of

Do Not Cite or Quote

357 of 800

7172	the initial construction costs very little. The rising sea level increases the expected flood
7173	damages over the lifetime of a home. Thus, for very little marginal cost, future flood
7174	damages can be avoided by elevating the home more than would otherwise be the case.
7175	
7176	9.6 FLOODPLAIN MANAGEMENT
7177	The decisions that are potentially sensitive to rising sea level include floodplain mapping,
7178	floodplain regulations, flood insurance rates, and the various hazard mitigation activities
7179	that often take place in the aftermath of a serious storm. Although the outcomes of all
7180	these activities are clearly sensitive to sea-level rise, analysis is not available to enable
7181	assessment of whether future sea-level rise warrants changing the way things are done
7182	today.
7183	
7184	9.6.1 Floodplain Regulations
7185	The flood insurance program requires new (or substantially rebuilt) structures in the
7186	coastal floodplain to have the first floor above the base flood elevation (100-year flood).
7187	The program vests considerable discretion in local officials to tailor specific requirements
7188	to local conditions, or to enact regulations that are more stringent than FEMA's minimum
7189	requirements. Several communities have decided to require floor levels to be one foot (or
7190	more) above the base flood elevation. In some cases, past or future sea-level rise has been
7191	cited as one of the justifications for doing so. There is considerable variation in both the
7192	costs and benefits of designing building to accommodate future sea-level rise. If local
7193	governments believe that property owners need a nudge to optimally address sea-level
7194	rise, they can require more stringent (higher) floor elevations. A possible reason for

358 of 800

7195	requiring higher floor elevations is that the current structure of the program does not raise
7196	rates for existing structures even if flood risks increase over time.
7197	
7198	9.6.2 Floodplain Mapping
7199	Requiring flood elevations above the base flood elevation can create anomalies, unless
7200	floodplain mapping also takes sea-level rise in account. Local jurisdictions have pointed
7201	this out (see Baltimore box in Appendix F). Otherwise, building in today's floodplain
7202	would have to be higher than adjacent buildings on higher ground that is outside of the
7203	floodplain today. The ability of local officials to voluntarily prepare for rising sea level is
7204	thus somewhat constrained by the lack of floodplain mapping that takes account of sea-
7205	level rise. Creation of maps that take account of sea-level rise would thus appear to be a
7206	low-regrets activity, because it would enable local officials to modify requirements where
7207	appropriate.
7208	
7209	9.6.3 Federal Flood Insurance Rates
7210	A 1991 Report to Congress by FEMA concluded that there was little need to change the
7211	Flood Insurance Program because rates would be adjusted as sea level rises and flood
7212	maps are revised (FEMA, 1991). Other commentators have pointed out, however, that
7213	flood insurance rates respond to increased risk for new or rebuilt homes, but not existing
7214	homes.
7215	
7216	Flood insurance is different than most types of insurance. Unlike automobile insurance,
7217	the flood insurance program does not adjust rates as the individual conditions of a

359 of 800

7218	property make it riskier. Although shoreline erosion and rising sea level increase the
7219	expected flood damages of a given home, they do not cause the rates on a given property
7220	to rise. Unless a home is substantially changed, its assumed risk is grandfathered (e.g.,
7221	NFIP, 2007; Heinz Center, 2000). Thus, not only do insurance rates not anticipate future
7222	sea-level rise, they do not react to the past rise. This approach, in effect, prevents
7223	property owners from feeling the "market signal" of increased risks.
7224	
7225	New homes pay higher rates if new maps show risks to be increasing. And if the house is
7226	substantially enlarged, its rates will reflect the new risk. So whether or not a property
7227	owner feels the market signal of increased rates depends on the expected frequency of
7228	reconstruction compared with the time it will take for a significant increase in the risk.
7229	FEMA's Report to Congress assumed, in effect, that reconstruction occurs rapidly
7230	compared to the rate at which risk increases; so relatively few people will have an
7231	artificially low insurance rate due to sea-level rise (FEMA, 1991).
7232	
7233	Other studies have reached the opposite conclusion. The National Academy of Sciences
7234	has recommended that the Flood Insurance Program create mechanisms to ensure that
7235	insurance rates reflect the increased risks caused by coastal erosion (NAS 1990, p. 9, 91).
7236	NAS pointed out that Congress has explicitly included storm-related erosion as part of
7237	the damages covered by flood insurance (42 U.S.C. §4121), and that FEMA's regulations
7238	(44 CFR Part 65.1) already defined special "erosion zones" (NAS 1990, p. 72). A FEMA-
7239	supported study by the Heinz Center (2000) and a theme issue in the Journal of Coastal

360 of 800

7240	Research (Crowell and Leatherman, 1999) also concluded that, because of existing shore
7241	erosion, there can be a substantial disparity between actual risk and insurance rates.
7242	
7243	Would sea-level rise justify changing the current approach? Two possible alternatives
7244	would be to: (a) shorten the period during which rates are kept fixed so that rates can
7245	respond to risk and property owners can respond; or (b) keep the current policy of fixed
7246	rates, but instead of basing rates on the risk when the house is built — which tends to
7247	systematically underestimate the risk — base the rate on an estimate of the average risk
7248	over the lifetime of the structure, using assumed rates of sea-level rise, shore erosion, and
7249	structure lifetime. The latter approach received considerable consideration in the FEMA-
7250	supported study by the Heinz Center and the theme issue in Journal of Coastal Research.
7251	That analysis assumed current rates of sea-level rise. FEMA has not investigated whether
7252	accelerated sea-level rise would increase the disparity between risks and insurance rates
7253	enough to revisit that decision; nor has it investigated the option of adjusting rates to
7254	reflect changing risks. Although Congress has not provided FEMA with a mandate to act
7255	on the Heinz Center recommendations, the Government Accountability Office (2007)
7256	recently recommended that FEMA analyze the potential long-term implications of
7257	climate change for the National Flood Insurance Program. FEMA has told Congress that
7258	it intends to initiate such an analysis (Buckley 2007).
7259	
7260	9.6.4 Post Disaster Hazard Mitigation

- 7261 If a coastal community is ultimately going to be abandoned to the rising sea level, a
- major rebuilding effort in the current location may be less useful than expending the same

361 of 800

7263	resources rebuilding the community on higher ground. On the other hand, if the
7264	community plans to remain in its current location despite the increasing costs of shore
7265	protection, then it is important for people to understand that commitment. Unless
7266	property owners know which path the community is following, they do not know whether
7267	to reinvest. Moreover, if the community is going to stay in its current location, owners
7268	need to know whether their land will be protected with a dike or if the street is likely to
7269	be elevated a few feet.
7270	
7271	9.7 CONCLUSIONS
7272	The need to prepare for rising sea level depends on the length of the period of time over
7273	which the decision will continue to have consequences, how sensitive those consequences
7274	are to how much the sea rises, how rapidly the sea is expected to rise and the magnitude
7275	of uncertainty over that expectation, the decision maker's risk tolerance, and the
7276	implications of deferring a decision to prepare. Someone making a decision with
7277	outcomes over a long period of time about an activity that is sensitive to sea level may
7278	need to consider sea-level rise — especially if whatever one might do today to prepare
7279	would not be feasible later. Decisions with outcomes over a short period of time about
7280	activities that are not sensitive to sea level probably need not consider sea-level rise —
7281	especially if whatever one might do to prepare today would be just as effective if done
7282	later.
7283	
7284	Instances where the existing literature provides an economic rationale for preparing for

7285 accelerated sea-level rise include:

Do Not Cite or Quote

362 of 800

7286 •	Coastal wetland protection. Wetlands and the success of wetland-protection
7287	efforts are almost certainly sufficiently sensitive to sea-level rise to warrant
7288	examination of some changes in coastal wetland protection efforts, assuming that
7289	the objective is to ensure that most estuaries that have extensive wetlands today
7290	will continue to have tidal wetlands in the future. Coastal wetlands are sensitive to
7291	rising sea level, and many of the possible measures needed to ensure their survival
7292	as sea level rises have a very long lead time. Changes in management approaches
7293	would likely involve consideration of options at various levels of authority.
7294 •	Coastal infrastructure. Whether it is beneficial to design coastal infrastructure to
7295	anticipate rising sea level depends on the ratio of the incremental cost of
7296	designing for a higher sea level now, compared with the retrofit cost of modifying
7297	the structure later. No general statement is possible, because this ratio varies and
7298	relatively few engineering assessments of the question have been published. But
7299	because the cost of analyzing this question is very small compared with the
7300	retrofit cost, it is likely that most long-lived infrastructure in the coastal zone is
7301	sufficiently sensitive to rising sea level so as to warrant an analysis of the
7302	comparative cost of designing for higher water levels now and retrofitting later.
7303 •	Building along the coast. In general, the economics of coastal development alone
7304	does not currently appear to be sufficiently sensitive to sea-level rise so as to
7305	avoid construction in coastal areas. Land values are so high that development is
7306	often economic even if a home is certain to be lost within a few decades. The
7307	optimal location and elevation of new homes may be sensitive to prospects for
7308	rising sea level.

363 of 800

7309	•	Shoreline planning. A wide array of measures for adapting to rising sea level
7310		depend on whether a given area will be elevated, protected with structures, or
7311		abandoned to the rising sea. Several studies have shown that in those cases where
7312		the shores will retreat and structures will be removed, the economic cost will be
7313		much less if people plan for that retreat. The human toll of an unplanned
7314		abandonment may be much greater than if people gradually relocate when it is
7315		convenient to do so. Conversely, people may be reluctant to invest in an area
7316		without some assurance that lands will not be lost to the sea. Therefore, long-term
7317		shoreline planning is generally justified and will save more than it costs; the more
7318		the sea ultimately rises, the greater the value of that planning.
7319	•	Rolling easements, density restrictions, and coastal setbacks. Several studies have
7320		shown that in those cases where the shores will retreat and structures will be
7321		removed, the economic cost will be much less if people plan for that retreat.
7322		Along estuaries, a retreat is rarely forced by events and thus is likely to only occur
7323		if land remains lightly developed. It is very likely that options such as rolling
7324		easements, density restrictions, coastal setbacks, and vegetative buffers, would
7325		increase the ability of wetlands and beaches to migrate inland.
7326	•	Floodplain management: Consideration of reflecting actual risk in flood
7327		insurance rates. Economists and other commentators generally agree that
7328		insurance works best when the premiums reflect the actual risk. Even without
7329		considering the possibility of accelerated sea-level rise, the National Academy of
7330		Sciences (1990) and a FEMA-supported study by the Heinz Center (2000)
7331		concluded and recommended to Congress that insurance rates should reflect the

Do Not Cite or Quote

364 of 800

CCSP 4.1	

7332	changing risks resulting from coastal erosion. Rising sea level increases the
1332	changing fisks resulting from coastar crosion. Kising sea rever increases the
7333	potential disparity between rates and risks of storm-related flooding.
7334	
7335 7336	CHAPTER 9 REFERENCES
7337	Arrow, K.J and A.C. Fisher, 1974: Environmental preservation, uncertainty, and
7338	irreversibility. Quarterly Journal of Economics, 88(1), 312-319.
7339	Barth, M.C. and J.G. Titus, 1984: Greenhouse Effect and Sea Level Rise: A Challenge
7340	for This Generation. Van Nostrand Reinhold, New York, 325 pp.
7341	Bin, O., T. Crawford, J.B. Kruse, and C.E. Landry, Forthcoming: Viewscapes and flood
7342	hazard: coastal housing market response to amenities and risk. Land Economics
7343	(submitted)
7344	Bin, O., J.B. Kruse, and C.E. Landry, forthcoming: Flood hazards, insurance rates, and
7345	amenities: evidence from the coastal housing market. Journal of Risk and
7346	Insurance (submitted)
7347	Bukley, M., 2007: Testimony of Michael Buckley, U.S. Senate Committee on Homeland
7348	Security and Government Affairs, April 19, 2007
7349	Coase, R., 1969: The problem of social cost. Reprinted in: Economics of the
7350	Environment: Selected Readings [Stavins, R.N. (ed.)]. W.W. Norton, New York,
7351	4 th ed. (2000), 659 pp.
7352	Congressional Research Service, 2003: Benefit-Cost Analysis and the Discount Rate for
7353	the Corps of Engineers Waster Resource Projects: Theory and Practice. RL31976
7354	Cordes, J., D. Gatzlaff, and A. Yezer, 2001: To the water's edge, and beyond: effects of
7355	shore protection projects on beach development. Journal of Real Estate Finance
7356	and Economics, 22(2) , 287-302.

365 of 800

С	CSP	4.1

7357	Cordes, J.J. and A.M.J. Yezer, 1998: In harm's way: does federal spending on beach
7358	enhancement and protection induce excessive development in coastal areas? Land
7359	Economics, 74(1), 128-145.
7360	Crawford-Brown, D.J., 1999: Risk-Based Environmental Decisions: Methods and
7361	Culture. Kluwer Academic Publishers, Boston MA, 224 pp.
7362	Crosset, K.M., T.J. Culliton, P.C. Wiley, and T.R. Goodspeed, 2004: Population Trends
7363	along the Coastal United States: 1980–2008. NOAA National Ocean Service,
7364	Silver Spring, MD, 47 pp. Available at
7365	http://oceanservice.noaa.gov/programs/mb/pdfs/coastal_pop_trends_complete.pdf
7366	Crowell, M. and S.P. Leatherman (eds.), 1999: Coastal Erosion Mapping and
7367	Management. Journal of Coastal Research, Special Issue 28, 196 pp.
7368	Dasgupta, P., 2006: Comments on the Stern Review's Economics of Climate Change.
7369	University of Cambridge, 9 pp. Available:
7370	http://www.econ.cam.ac.uk/faculty/dasgupta/Stern.pdf.
7371	EPA, 1989: Potential Effects of Global Climate Change on the United States: Report to
7372	Congress. EPA Office of Policy, Planning, and Evaluation, Washington, DC.
7373	EPA, 1995: Federal guidance for the establishment, use and operation of mitigation
7374	banks. Federal Register, 60(228), 58605-58614.
7375	EPA, 2000: Guidelines for Preparing Economic Analyses. EPA 240-R-00-003, EPA
7376	Office of the Administrator, [Washington DC]. Available at
7377	http://yosemite.epa.gov/ee/epa/eed.nsf/webpages/Guidelines.html
7378	Environmental Protection Agency & U.S. Army Corps Of Engineers, Mitigation
7379	Memorandum Of Agreement 4 (Feb. 6, 1990).
7380	Farbotko, C., 2005: Tuvalu and climate change: constructions of environmental
7381	displacement in The Sydney Morning Herald. Geografiska Annaler, Series B:
7382	Human Geography, 87(4), 279-293. doi:10.1111/j.0435-3684.2005.00199

366 of 800

CCSP	4.1	

7383	Federal Emergency Management Agency, 1991: Projected Impact of Relative Sea
7384	Level Rise on the National Flood Insurance Program. FEMA Flood Insurance
7385	Administration, Washington DC, 72 pp.
7386	Fisher, A.C. and W.M. Hanemann, 1987: Quasi-option value: some misconceptions
7387	dispelled. Journal of Environmental Economics and Management, 14(2), 183-
7388	190.
7389	Freeman, A.M., 2003: The Measurement of Environmental and Resource Values: Theory
7390	and Methods. Resources for the Future, Washington, DC, 2 nd ed., 491 pp.
7391	Gilbert, S. and R. Horner, 1984: The Thames Barrier. Thomas Telford, London, 182 pp.
7392	Government Accountability Office, 2007: Climate Change: Financial Risks to Federal
7393	and Private Insurers in Coming Decades are Potentially Significant. Report to the
7394	Committee on Homeland Security and Governmental Affairs, U.S. Senate. GAO-
7395	07-285, Government Accountability Office, Washington DC, 68 pp. Available at
7396	http://www.gao.gov/cgi-bin/getrpt?GAO-07-285
7397	Hardisky, M.A. and V. Klemas, 1983: Tidal wetlands natural and human-made change
7398	from 1973 to 1979 in Delaware: mapping techniques and results. Environmental
7399	Management, 7(4), 339-344.
7400	Ha-Duong, M., 1998: Quasi-option value and climate policy choices. Energy Economics,
7401	20(5/6) , 599-620.
7402	Heinz Center, 2000. Evaluation of Erosion Hazards. The H. John Heinz III Center for
7403	Science, Economics, and the Environment, Washington, DC, 252 pp. Available at
7404	http://www.heinzctr.org/publications.shtml#erosionhazards
7405	Interagency Performance Evaluation Task Force, 2006: Performance Evaluation of
7406	the New Orleans and Southeast Louisiana Hurricane Protection System. U.S.
7407	Army Corps of Engineers, Washington, DC. Available at
7408	https://ipet.wes.army.mil

367 of 800

7409	IPCC, 1990: Strategies for Adaption (sic) to Sea Level Rise. Report of the Coastal Zone
7410	Management Subgroup of the Response Strategies Working Group.
7411	IPCC CZMS (Intergovernmental Panel on Climate Change Coastal Zone Management
7412	Subgroup), 1992: Global Climate Change and the Rising Challenge of the Sea.
7413	IPCC Response Strategies Working Group, Rijkswaterstaat, The Hague.
7414	Johnson, Z.P., 2000: A Sea Level Rise Response Strategy for the State of Maryland.
7415	Maryland Department of Natural Resources, Annapolis, MD, 49 pp.
7416	Just, R.E., D.L. Hueth, and A. Schmitz, 2004: The Welfare Economics of Public Policy:
7417	A Practical Approach to Project and Policy Evaluation. Edward Elgar,
7418	Northampton, MA, 688 pp.
7419	Kousky, C., F.E.P. Luttmer, and R.J. Zeckhauser, 2006: Private investment and
7420	government protection. Journal of Risk and Uncertainty, 33(1-2), 73–100.
7421	Kruczynski, W.L., 1990: Options to be considered in preparation and evaluation of
7422	mitigation plans. In Wetland Creation and Restoration: The Status of the Science
7423	[Kusler, J.A. and M.E. Kentula (eds.)]. Island Press, Washington, DC, 594 pp.
7424	Landry, C.E., A.G. Keeler, and W. Kriesel, 2003: An economic evaluation of beach
7425	erosion management alternatives. Marine Resource Economics, 18, 105–127.
7426	NAS, 1983: Risk Assessment in the Federal Government: Managing the Process.
7427	National Academy Press, Washington DC, 191 pp.
7428	National Academy of Sciences, 1990: Managing Coastal Erosion. National Academy
7429	Press, Washington, DC, 182 pp.
7430	Newell, R.G. and W.A. Pizer, 2004: Uncertain discount rates in climate policy analysis.

7431 *Energy Policy*, **32**(**4**), 519-529.

Do	Not	Cite	or	Quote
----	-----	------	----	-------

368 of 800

	CCSP 4.1 February 12, 2008
7432	NFIP (National Flood Insurance Program), 2007: Fact Sheet: Saving on Flood Insurance
7433	Information about the NFIP's Grandfathering Rule. FEMA, [Washington DC], 2
7434	pp. Available at http://www.fema.gov/library/viewRecord.do?id=2497
7435	Nordhaus, W.D., 2007a: Critical assumptions in the Stern Review on Climate Change.
7436	Science, 317(5835) , 201–202.
7437	Nordhaus, W.D. 2007b: A review of the Stern Review on The Economics of Climate
7438	Change. Journal of Economic Literature, XLV, 686-702.
7439	Nossiter, A. and J. Schwartz, 2006: U.S. issues lenient guidelines for rebuilding in New
7440	Orleans. New York Times (Late Edition (East Coast)), April 13, A-1.
7441	NRC, 1987: Responding to Changes in Sea Level: Engineering Implications. Committee
7442	on Engineering Implications of Changes in Relative Mean Sea Level, Marine
7443	Board. National Academy Press, Washington, DC, 148 pp.
7444	NRC, 2007: <i>Mitigating Shore Erosion Along Sheltered Coasts</i> . National Academies

7445 Press, Washington, DC, 188 pp.

7446 O'Callahan, J. (ed.), 1994: Global Climate Change and the Rising Challenge of the Sea.

7447 Proceedings of the third IPCC CZMS workshop, Isla de Margarita, Venezuela, 9-

7448 13 March 1992, National Oceanic and Atmospheric Administration, Silver

7449 Spring, MD, v+691 pp.

7450 **OMB** (Office of Management and Budget), 1992: Guidelines and Discount Rates for

7451 Benefit-Cost Analysis of Federal Programs. OMB Circular A-94, Office of

7452 Management and Budget, Washington, DC. Available:

7453 http://www.whitehouse.gov/omb/circulars/a094/a094.html.

7454 Pilarczyk, K.W., 2007: Flood protection and management in the Netherlands. In:

7455 Extreme Hydrological Events: New Concepts for Security. Proceedings of the

7456 NATO advanced research workshop. [Vasiliev, O.F., P.H.A.J.M van Gelder, E.J.

7457 Plate, and M.V. Bolgov (eds.)]. Springer, Dordrecht and London, pp. 385-408.

Do Not Cite or Quote

369 of 800

7458	Reed, D.J., D.A. Bishara, D.R. Cahoon, J. Donnelly, M. Kearney, A.S. Kolker, L.L.
7459	Leonard, R.A. Orson, and J.C. Stevenson, 2007: Site-Specific Scenarios for
7460	Wetlands Accretion as Sea Level Rises in the Mid-Atlantic Region. Supporting
7461	Document for CCSP 4.1, Question 3.
7462	Samuelson, P.A. and W.D. Nordhaus, 1989: <i>Economics</i> . McGraw-Hill, New York, 13 th
7463	ed., 1013 pp.
7464	Stockton, M.B. and C.J. Richardson, 1987: Wetland development trends in coastal North
7465	Carolina, USA, from 1970 to 1984. Environmental Management, 11(5), 649-657.
7466	Titus, J.G., 1990: Strategies for adapting to the greenhouse effect. Journal of the
7467	American Planning Association, 56(3), 311-323.
7468	Titus, J.G., 1991: Greenhouse effect and coastal wetland policy: how Americans could
7469	abandon an area the size of Massachusetts at minimum cost. Environmental
7470	Management, 15 (1), 39-58.
7471	Titus, J.G., 1998: Rising seas, coastal erosion and the taking clause: how to save
7472	wetlands and beaches without hurting property owners. Maryland Law Review,
7473	57 , 1277–1399.
7474	Titus, J.G., 2000: Does the U.S. government realize that the sea is rising? How to
7475	restructure federal programs so that wetlands and beaches survive. Golden Gate
7476	<i>Law Review</i> , 30 , 717–786.
7477	Titus, J.G., 2005: Does shoreline armoring violate the Clean Water Act? Rolling
7478	easements, shoreline planning, and other responses to sea level rise. In America's
7479	Changing Coasts: Private Rights and Public Trust [Whitelaw, D.M. and G.R.
7480	Visgilio (eds.)]. Edward Elgar, Cheltenham, UK and Northampton, MA, 248 pp.
7481	Titus, J.G. and V. Narayanan, 1996: The risk of sea level rise. Climatic Change, 33(2),
7482	151–212.

370 of 800

CCSP 4.1	

7483	Titus, J.G., R.A. Park, S.P. Leatherman, J.R. Weggel, and M.S. Greene, 1991:
7484	Greenhouse effect and sea level rise: the cost of holding back the sea. Coastal
7485	Management, 19(2) , 171-204.
7486	Titus, J.G., C.Y. Kuo, M.J. Gibbs, T.B. LaRoche, and M.K. Webb, 1987: Greenhouse
7487	effect, sea level rise, and coastal drainage systems. Journal of Water Resources
7488	Planning and Management, 113(2), 216-227.
7489	USACE 2000a: Planning Guidance Notebook Army Corps of Engineers document # ER
7490	1105-2-100. Washington, D.C.: Department of the Army, U. S. Army Corps of
7491	Engineers Appendix E: Civil Works Missions and Evaluation Procedures.
7492	Available at: http://www.usace.army.mil/publications/eng-regs/er1105-2-
7493	<u>100/toc.htm</u> (cited January 10, 2008).
7494	U.S. Army Corps of Engineers, 2000b: 31 March 2000, EM 1110-2-1304, Civil Works
7495	Construction Cost Index System (CWCCIS). For updated CWCCIS data tables
7496	revised 30 September 2007, see: http://www.usace.army.mil/publications/eng-
7497	manuals/em1110-2-1304/toc.htmn
7498	Weggel, S. Brown, J.C. Escajadillo, P. Breen, and E. Doheyn, 1989: The cost of
7499	defending developed shoreline along sheltered shores. In: U.S. Environmental
7500	Protection Agency. 1989. Report to Congress: Potential Effects of Global Climate
7501	Change on the United States. Appendix B: Sea Level Rise. Washington, DC:
7502	Office of Policy, Planning, and Evaluation.
7503	Yohe, G., J. Neumann, P. Marshall, and H. Ameden, 1996: The economic cost of
7504	greenhouse-induced sea-level rise for developed property in the United States.
7505	<i>Climatic Change</i> , 32(4) , 387-410.
7506	
7507	

371 of 800

7508	Chapter 10. Ongoing Adaptation
7509	
7510	Author: James G. Titus, EPA
7511	
7512	KEY FINDINGS
7513	• Most organizations are not yet taking specific measures to prepare for rising
7514	sea level. Recently, however, many public and private organizations have
7515	begun to assess possible response options.
7516	• Most of the specific measures that have been taken to prepare for accelerated
7517	sea level rise have had the purpose of reducing the long-term adverse
7518	environmental impacts of sea level rise.
7519	
7520	Preparing for the consequences of rising sea level has been the exception rather than the
7521	rule in the Mid-Atlantic. Nevertheless, many coastal decision makers are now starting to
7522	consider how to respond, and seriously thinking about changing some of the things
7523	people do to prepare for a rising sea.
7524	
7525	This chapter examines those cases in which organizations are consciously anticipating the
7526	effects of sea-level rise. It does not catalogue the activities undertaken for other reasons
7527	that might also be justified on the basis for rising sea level, nor does it include all the
7528	cases in which an organization has authorized a study but not yet acted upon the study.
7529	
7530	

Do Not Cite or Quote

372 of 800

7531	10.1 ADAPTATION FOR ENVIRONMENTAL PURPOSES
7532	Many organizations that manage land for environmental purposes are starting to
7533	anticipate the effects of sea-level rise. Outside the Mid-Atlantic, some environmental
7534	regulators have also begun to address this issue.
7535	
7536	10.1.1 Environmental Regulators
7537	Organizations that regulate land use for environmental purposes generally have not
7538	implemented adaptation options to address the prospects of accelerated sea-level rise.
7539	Congress has given neither the U.S. Army Corps of Engineers (USACE) nor the
7540	Environmental Protection Agency (EPA) a mandate to modify existing wetland
7541	regulations to address rising sea level; nor have those agencies developed approaches for
7542	moving ahead without such a mandate. Outside of the Mid-Atlantic, a number of state
7543	and local governments have enacted statutes and regulations to enable wetlands to
7544	migrate inland, with the regulations in Maine, Rhode Island, and Cape Cod explicitly
7545	addressing rising sea level (Titus, 1998). But none of the eight Mid-Atlantic states have
7546	altered land use requirements to help ecosystems adjust to accelerated sea-level rise
7547	(NOAA, 2006).
7548	
7549	Many restrictions on coastal development promulgated for unrelated reasons can also be
7550	justified as a response to sea-level rise. For example, Maryland's coastal land use statute
7551	limits development to one home per 20 acres in most rural areas within 300 m of the
7552	shore (see Appendix F). Although the statute was enacted in the 1980s to prevent
7553	deterioration of water quality, if a similar statute were enacted today in another state, it

373 of 800

7554	could be justified as part of a sea-level rise adaptation strategy. The prospect of losing
7555	natural shores as sea level rises has caused Maryland to rethink wetland regulations
7556	concerning shore protection. It has a policy preference for "living shorelines", which is
7557	slowly making its way into the wetlands regulations, as the state tries to remove biases
7558	that favor hard structures over the soft approaches that enable wetlands and beaches to
7559	persist as sea level rises. In the aftermath of Hurricane Isabel, the State of Maryland
7560	attempted to move in that direction.
7561	
7562	Federal Land Managers
7563	The Department of Interior has a requirement that climate change impacts be taken into
7564	account in planning and decision making. The requirement is embodied in Secretarial
7565	Order 3226 signed in 2001. Testimony to Congress in 2007 by Lynn Scarlett, Deputy
7566	Secretary of Interior, detailed the many ways the Department of Interior is dealing with
7567	climate change, from land planning to management practices to scientific studies. The
7568	National Park Service has worked with the United States Geological Survey (USGS) to
7569	examine coastal vulnerability on all of its coastal parks. The U.S. Fish and Wildlife
7570	Service is incorporating studies of climate change impacts, including sea-level rise, in
7571	their Comprehensive Conservation Plans where relevant.
7572	
7573	The National Park Service and the U.S. Fish and Wildlife Service each have large coastal
7574	landholdings that could erode or become submerged as sea level rises. Neither
7575	organization has an explicit policy concerning sea-level rise, but both are starting to
7576	consider their options. The National Park Service generally favors allowing natural

374 of 800

7577	processes to adjust to rising sea level, which led it to move the Hatteras Lighthouse
7578	inland some 2,900 ft at a cost of \$12 million in 1999. The U.S. Fish and Wildlife Service
7579	generally allows dry land to convert to wetlands, but it is not necessarily passive as rising
7580	sea level erodes the seaward boundary of tidal wetlands. Blackwater National Wildlife
7581	Refuge, for example, has used dredge material to rebuild wetlands on a pilot basis, and
7582	has plans to spend approximately \$500,000 to recreate 7,000 acres of marsh. Neither
7583	agency has made land purchases or easements to enable parks and refuges to migrate
7584	inland.
7585	
7586	The Nature Conservancy (TNC)
7587	TNC is the largest private holder of conservation lands in the Mid-Atlantic. It has
7588	declared as a matter of policy that it is trying to anticipate rising sea level and climate
7589	change. Its initial focus has been to preserve ecosystems on the Pamlico-Albemarle
7590	Peninsula (TNC, 2007). Options under consideration include plugging canals to prevent
7591	subsidence-inducing saltwater intrusion, planting cypress trees where pocosins have been
7592	converted to dry land, and planting brackish marsh grasses in areas likely to be inundated.
7593	As part of that project, TNC undertook the first attempt by a private conservancy to
7594	purchase rolling easements (although none were purchased). TNC owns the majority of
7595	barrier islands along the Delmarva Peninsula, but none of the mainland shore. TNC is
7596	starting to examine whether preserving the ecosystems as sea level rises would be best
7597	facilitated by purchasing land on the mainland side as well, to ensure sediment sources
7598	for the extensive mudflats so that they might keep pace with rising sea level.
7599	

375 of 800

- 7600 State conservation managers have not yet started to prepare for rising sea level (NOAA,
- 7601 2006). But at least one state (Maryland) is starting to refine a plan for conservation that
- 7602 would consider the impact of rising sea level.
- 7603

7604 10.2 OTHER ADAPTATION OPTIONS BEING CONSIDERED BY FEDERAL,

- 7605 STATE, AND LOCAL GOVERNMENTS
- 7606
- 7607 **10.2.1 Federal Government**

7608 Federal researchers have been examining how best to adapt to sea-level rise for the last

- 7609 few decades, and those charged with implementing programs are also now beginning to
- consider implications and options. The longstanding assessment programs will enable
- 7611 federal agencies to respond more rapidly and reasonably if and when policy decisions are
- 7612 made to begin preparing for the consequences of rising sea level.
- 7613
- 7614 The Coastal Zone Management Act is a typical example. The Act encourages states to
- 7615 protect wetlands, minimize vulnerability to flood and erosion hazards, and improve
- 7616 public access to the coast. Since 1990, the Act has included sea-level rise in the list of
- 7617 hazards that states should address. This Congressional mandate has induced NOAA to
- fund state-specific studies of the implications of sea-level rise, and encouraged states to
- 7619 periodically designate specific staff to keep track of the issue. But it has not yet altered
- 7620 what people actually do along the coast. One commentator has suggested that for this
- statutory provision to be carried out, the federal government should consider providing
- 7622 guidance on possible responses to sea-level rise (Titus, 2000). Similarly, the Corps of

Do Not Cite or Quote

376 of 800

- 7623 Engineers has formally included the prospect of rising sea level for at least a decade in its
- 7624 planning guidance for the last decade (USACE, 2000), and staff has sometimes evaluated
- the implications for specific decisions (e.g. Knuuti, 2002). But the Corps' overall
- approach to wetland permits and shore protection has not yet shifted.
- 7627

7628 10.2.2 State Government

- 7629 Maryland has considered the implications of sea-level rise in some decisions over the last
- few decades. Rising sea level was one reason that the state gave for changing its shore
- 7631 protection strategy at Ocean City from groins to beach nourishment. Using NOAA funds,
- the state developed a preliminary strategy for dealing with sea-level rise. As part of that
- strategy, the state also recently obtained a complete LIDAR data set of coastal elevations.
- 7634

7635 Delaware officials have long considered how best to modify infrastructure as sea level

- rises along Delaware Bay, although they have not put together a comprehensive
- ⁷⁶³⁷ strategy³³. Coastal Management staff of the New Jersey Department of Environmental
- 7638 Protection have been guided by a long-term perspective on coastal processes, including
- the impacts of sea-level rise. So far, neither Delaware nor New Jersey has specifically
- altered their activities because of projected sea-level rise. Nevertheless, New Jersey is
- 7641 currently undertaking an assessment that may enable it to factor rising sea level into its
- 7642 strategy for preserving the Delaware Estuary 34 .
- 7643

Do Not Cite or Quote

³³ CCSP 4.1 Stakeholder Report.

³⁴ CCSP SAP 4.1 Stakeholder Report (summarizing the reaction of the New Jersey Coastal Zone Management Program).

7644	A bill in the New York General Assembly would create a sea-level rise task force (Bill
7645	AO9002 2007-2008 Regular Session). Maryland has a climate change adaptation task
7646	force that is focusing on sea-level rise.
7647	
7648	Outside of the Mid-Atlantic, the California Legislature is considering Bill AB 1066,
7649	which would require state agencies to consider sea-level rise in their activities.
7650	
7651	10.2.3 Local Government
7652	A few local governments have considered the implications of rising sea level for roads,
7653	infrastructure, and floodplain management. (See text boxes in Appendices D and F.).
7654	New York City's plan for the year 2030 includes adapting to climate change. (NYC,
7655	2008; pp. 136-40). The New York City Department of Environmental Protection is
7656	looking at ways to decrease the impacts of storm surge by building flood walls to protect
7657	critical infrastructure such as waste plants, and is also examining ways to prevent the
7658	sewer system from backing up more frequently as sea level rises (Rosenzweig et al.,
7659	2006). The city has also been investigating the possible construction of a major tidal
7660	flood gate across the Verizano Narrows to protect Manhattan. (Velasquez-Manoff, 2006).
7661	
7662	Outside of the Mid-Atlantic, Miami-Dade County in Florida has been studying its
7663	vulnerability to sea-level rise, including developing maps to indicate which areas are at

- 7664 greatest risk of inundation. The county is hardening facilities to better withstand
- 7665 hurricanes, monitoring the salt front, examining membrane technology for desalinating

378 of 800

7666	seawater, and creating a climate advisory task force to advise the county commission
7667	(Yoder, 2007).
7668	
7669 7670	CHAPTER 10 REFERENCES
7671	City of New York, 2008: PlaNYC: A Greater, Greener New York. City of New York,
7672	New York, 155 pp. Available at
7673	http://home2.nyc.gov/html/planyc2030/downloads/pdf/full_report.pdf
7674	Knuuti, K., 2002: Planning for sea level rise: U.S. Army Corps of Engineers Policy. In:
7675	Solutions to Coastal Disasters '02 [Ewing, L. and L. Wallendorf (eds.)].
7676	American Society of Civil Engineers, Reston, VA.
7677	NOAA, 2006: Responses to Section 309 of the Coastal Zone Management Act. Coastal
7678	Zone Enhancement Program compiled by NOAA Office of Ocean and Coastal
7679	Resource Management, Silver Spring, MD. Available at
7680	http://coastalmanagement.noaa.gov/enhanc.html. Accessed July 23, 2007.
7681	Rosenzweig, C., D. Majors, M. Tults, and K. Demong, 2006: New York City Climate
7682	Change Task Force. In: Adapting to Climate Change: Lessons for London.
7683	Greater London Authority, London, pp. 150-153. Available at
7684	www.london.gov.uk/climatechangepartnership/.
7685	TNC (The Nature Conservancy), 2007: Save of the Week: Climate Change Action on
7686	North Carolina's Albemarle Peninsula. The Nature Conservancy, Arlington, VA.
7687	Available at http://www.nature.org/success/art14181.html. Accessed July 23,
7688	2007.
7689	Titus, J.G., 1998: Rising seas, coastal erosion, and the takings clause: how to save
7690	wetlands and beaches without hurting property owners. Maryland Law Review,
7691	57(4), 1376-1378.

379 of 800

7692	Titus IG	2000: Does t	he US o	overnment	realize t	hat the sea	is rising? He	w to
1092	Hus , J.O.,	2000. Does i	ne us ș	government	realize u	nat the sea	is fishing i no	JW IU

7693	restructure federal programs so that wetlands and beaches survive. Golden Gate
7694	University Law Review, 30(4) , 717–778.

VSACE, 2000: Planning Guidance Notebook Appendix E: Civil Works Missions and Evaluation Procedures. Army Corps of Engineers document # ER 1105-2-100, Department of the Army, U. S. Army Corps of Engineers, Washington, DC, 310
pp. Available at: <u>http://www.usace.army.mil/publications/eng-regs/er1105-2-</u>
100/toc.htm (cited January 10, 2008).
Velasquez-Manoff, M., 2006: How to keep New York afloat. *The Christian Science*Monitor, November 9, 2006, p. 13.

7702 Yoder, D., 2007: Miami Dade Water and Sewer Department presentation to American

7703 Water Works Association webcast: *Global Climate Impacts*. March 14, 2006.

7704

Do Not Cite or Quote

380 of 800

7705 7706	Chapter 11. Institutional Barriers
7707	Lead Author: James G. Titus, EPA
7708 7709	KEY FINDINGS
7710	• Most institutions were designed without considering sea-level rise.
7711	• Many institutions were created to respond to a demand for hard shoreline
7712	structures to hold the coast in a fixed location, and have generally not shifted
7713	to retreat or soft shore protection (e.g., beach nourishment).
7714	• The interdependence of decisions made by property owners and federal, state,
7715	and local governments creates an institutional inertia that currently impedes
7716	preparing for sea-level rise, as long as no decision has been made regarding
7717	whether particular locations will be protected or yielded to the rising sea.
7718	
7719	Chapter 9 describes several categories of decisions where the risk of sea-level rise
7720	justifies doing things differently today, and Chapter 10 examined the responses people
7721	are currently making, which in most cases are very limited.
7722	
7723	It takes time to respond to new problems. Most coastal institutions were designed before
7724	the 1980s. Land use planning, infrastructure, home building, property lines, wetland
7725	protection, and flood insurance all have been designed without considering the dynamic
7726	nature of the coast. There is also a general mindset that sea level and shores are stable —
7727	or should be. Even when a particular institution has been designed to account for shifting
7728	shores, people are reluctant to give up real estate to the sea. Although scientific

Do Not Cite or Quote

381 of 800

7729	information can quickly change what people expect, it takes longer to change what
7730	people want. Finally, a phenomenon known as "moral hazard" often prevails. Moral
7731	hazard refers to a situation in which insurance reduces someone's incentive to prevent or
7732	decrease the risk of a disaster (Pauly 1974). Our political process tends to sympathize
7733	with those whose property is threatened, rather than allowing them to suffer the
7734	consequences of the risk they assumed when they bought the property. It can be hard to
7735	say "no" to someone whose home is threatened (Viscusi and Zeckhauser 2006).
7736	
7737	This chapter explores some of the institutional barriers that discourage people and
7738	organizations from preparing for the consequences of rising sea level. This discussion has
7739	two general themes. First, examination of the institutions and decisions they make
7740	regarding sea-level rise reveals that the challenge may more appropriately be how to
7741	overcome institutional biases rather than barriers. Policies that encourage higher
7742	densities in the coastal zone, for example, may be barriers to wetland migration, but they
7743	improve the economics of shore protection. Such a policy might be viewed as creating a
7744	bias in favor of shore protection over wetland migration, but it is not really a barrier to
7745	adaptation from the perspective of a community that prefers protection anyway. A bias
7746	simply encourages one path over another; a barrier can block a particular path entirely.
7747	
7748	Second, interrelationships between various decisions tend to reinforce institutional
7749	inertia. Omission of sea-level rise from a land-use plan may discourage infrastructure
7750	designers from preparing for it; a federal regulatory preference for hard structures may
7751	prevent state officials from encouraging soft structures. Although inertia has slowed

382 of 800

7752	current acts to respond to the risk of sea-level rise, it could just as easily help to sustain
7753	momentum toward a response once key decision makers decide which path the course of
7754	action should follow.

7756	The barriers and biases examined in this chapter mostly concern governmental rather than
7757	private sector institutions. Private institutions do not always exhibit foresight-and their
7758	limitations have been an important reasons for creating government flood insurance,
7759	wetland protection, shore protection, and other government programs. But the published
7760	literature does not suggest that rising sea level would change the institutional limitations
7761	of the private sector. The duty of corporations to maximize shareholder wealth, for
7762	example, may prevent a business from altering development plans to facilitate future
7763	environmental preservation as sea level rises. But for purposes of this chapter, the duty to
7764	serve shareholders is an essential objective of the corporate institution, not a barrier that
7765	keeps corporations from fulfilling their missions. Finally, there is little literature available
7766	on private institutional barriers to preparing for sea-level rise. We do not know whether
7767	this absence implies that the private barriers are less important, or simply that private
7768	organizations keep their affairs private more than public institutions.
7769	
7770	11.1 SOME SPECIFIC INSTITUTIONAL BARRIERS AND BIASES
7771	Productive institutions are designed to accomplish a mission, and they design rules and
7772	procedures to help accomplish those objectives. These rules and procedures are

inherently biased toward achieving the mission, and against anything that thwarts the

Do Not Cite or Quote

383 of 800

7774	mission. By coincidence more than design, they may facilitate or thwart the ability of
7775	others to achieve other missions.
7776	
7777	No one has prepared an exhaustive catalogue of institutional biases in the coastal zone,
7778	but three biases have been the subject of substantial commentary: (1) shore protection
7779	versus retreat; (2) hard structures versus soft engineering solutions; and (3) coastal
7780	development versus preservation.
7781	
7782	11.1.1 Shore Protection Versus Retreat
7783	Federal, state, local, and private institutions all have a strong bias favoring shore
7784	protection over retreat in developed areas. Many institutions also have a bias against
7785	shore protection in undeveloped areas.
7786	
7787	U.S. Army Corps of Engineers (USACE) Civil Works. Congressional appropriations for
7788	shore protection in coastal communities generally provide funds for various engineering
7789	projects to limit erosion and flooding. The planning guidance documents for the Corps of
7790	Engineers appear to provide USACE the discretion to relocate or purchase homes if a
7791	policy of retreat is the locally preferred approach and more cost-effective than shore
7792	protection. (USACE 2000 p. 2-8). Nevertheless, the general mission of the Corps of
7793	Engineers, its history (Lockhart and Morang 2002), staff expertise, and funding
7794	preferences combine to make shore protection far more common than a retreat from the
7795	shore.
7796	

384 of 800

Public Review Draft

7797	State Shore Protection. North Carolina, Virginia, Maryland, Delaware, and New Jersey
7798	all have significant state programs to support beach nourishment along the Atlantic
7799	Ocean. (See Appendices C-F). Virginia, Delaware, and New Jersey have also supported
7800	beach nourishment in residential areas along estuaries as well. Some agencies in
7801	Maryland encourage private shore protection to avoid the environmental effects of shore
7802	erosion 35 (see Appendix F) and the state provides interest-free loans for up to 75% of the
7803	cost of nonstructural erosion control projects on private property (MD DNR 2008). None
7804	of these states has a program to support a retreat in developed areas.
7805	
7806	FEMA Programs. Some aspects of the National Flood Insurance Program (NFIP)
7807	encourage shore protection, while others encourage retreat. FEMA requires local
7808	governments to ensure that new homes along the ocean are built on pilings sunk far
7809	enough into the ground so as to remain standing even if the dunes and beach are largely
7810	washed out from under the house during a storm. 44 CFR 60.3(e)(4). Although beaches
7811	will often recover to some extent after storms, they frequently do not entirely come back.
7812	In the past, when homes were built less sturdily, strategic retreat from the shore often
7813	occurred after major storms (i.e., people did not rebuild as far seaward as homes had been
7814	before the storm). Now, newer homes can withstand storms and instead of retreating the
7815	tendency is for emergency beach nourishment operations to protect oceanfront homes.
7816	The requirement for construction on pilings also encourages larger homes; after a
7817	significant expense for pilings, people rarely build an inexpensive cottage. Therefore,
7818	larger homes are better able to justify shore protection. A FEMA emergency assistance

 $^{^{35}}$ MD DNR (2006), however, favors the no-action alternative over shore protection structures.

7819	program will often fund such nourishment in areas where the beach was nourished before
7820	the storm. (FEMA 2007 p. 86-87; 44 CFR 206.226(j)) In portions of Florida that receive
7821	frequent hurricanes, these projects are a significant portion of total beach nourishment.
7822	They have not yet been a major source of funding for beach nourishment in the Mid-
7823	Atlantic.
7824	
7825	Several FEMA programs are neutral or promote retreat. In the wake of Hurricane Floyd,
7826	one North Carolina county used FEMA money to elevate structures, while an adjacent
7827	county used those funds to help people relocate rather than rebuild (Appendix G.)
7828	Repetitively flooded homes have been eligible for relocation assistance under a number
7829	of programs. Because of FEMA's rate map grandfathering policy, (see Chapter 9), a
7830	statutory cap on annual rate increases, and limitations of the hazard mapping used to set
7831	flood insurance rates, some properties have rates that are substantially less than the risk.
7832	As a result, these programs assist property owners and save the flood insurance program
7833	money by decreasing claims. From 1985 until 1995, the Upton-Jones Act helped fund the
7834	relocation of homes in imminent danger from erosion (Crowell et al. 2007 p. 22).
7835	FEMA's Severe Repetitive Loss Program is authorized to spend \$80 million to purchase
7836	or elevate homes that have either made four separate claims or at least two claims totaling
7837	more than the value of the structure (FEMA 2008a). Several other FEMA programs
7838	provide grants for reducing flood damages, which states and communities can use for
7839	relocating residents out of the flood plain, erecting flood protection structures, or flood-
7840	proofing homes (FEMA 2008b, 2008c, 2008d, 2008e).
7841	

386 of 800

7842	Flood insurance rates are adjusted downward to reflect the reduced risk of flood damages,
7843	if a dike or seawall decreases flood risks during a 100-year storm. Because rates are
7844	ideally based on risk, this adjustment is not necessarily a bias toward shore protection.
7845	
7846	Wetland Protection. The combination of federal and state regulatory programs to protect
7847	wetlands in the Mid-Atlantic strongly discourages development from advancing into the
7848	sea, by prohibiting or strongly discouraging the filling or diking of tidal wetlands for
7849	most purposes (See Chapter 9). Within the Mid-Atlantic, New York promotes the
7850	landward migration of tidal wetlands in some cases (See Appendix A); Maryland favors
7851	shore protection in some cases. The Federal government has no policy on the question of
7852	retreat versus shore protection.
7853	
7854	Existing regulations do not encourage developers to create buffers that might enable
7855	wetlands to migrate inland, nor do they encourage landward migration in developed areas
7856	(Titus, 2000). In fact, the Corps of Engineers has issued a nationwide permit for
7857	bulkheads and other erosion-control structures. ³⁶ Titus (2000) concluded that this permit
7858	which often ensures that wetlands will not be able to migrate inland unless the property
7859	owner does not want to control the erosion. For this and other reasons, the State of New
7860	York has said that bulkheads and erosion structures otherwise authorized under the
7861	nationwide permit will not be allowed in special management areas (which cover a large
7862	percentage of the coast) without state concurrence (See Appendix A).

³⁶ See 61 Fed. Reg. 65,873, 65,915 (Dec. 13, 1996) (reissuing Nationwide Wetland Permit 13, Bank Stabilization activities necessary for erosion prevention). *See also* Reissuance of Nationwide Permits, 72 Fed. Reg. 11,1108-09, 11183 (March 12, 2007) (reissuing Nationwide Wetland Permit 13 and explaining that construction of erosion control structures along coastal shores is authorized).

³⁸⁷ of 800

7863	
7864	Federal statutes appear to discourage possible efforts by regulatory programs to
7865	encourage landward migration of wetlands. Section 10 of the Rivers and Harbors Act of
7866	1899 and Section 404 of the Clean Water Act require a permit to dredge or fill any
7867	portion of the navigable waters of the United States). ³⁷ Courts have long construed this
7868	jurisdiction to include lands within the "ebb and flow of the tides," (Gibbons v. Ogden;
7869	Zabel v. Tabb; 40 C.F.R. § 230.3(s)(1) (2000)), but it excludes lands that are dry today
7870	but would become wet if the sea rose a meter (Titus, 2000). The absence of a statutory
7871	requirement to enable wetlands to migrate inland can be a barrier to possible efforts by
7872	Federal wetlands programs to anticipate sea-level rise—especially measures involving
7873	preservation of lands that are currently inland of Federal jurisdiction.
7874	
7875	In most cases, the absence of a specific policy on sea-level rise appears to have a neutral
7876	effect on whether shores are protected or retreat. An important exception concerns the
7877	stabilization of barrier islands that might otherwise migrate inland. Under natural
7878	conditions, winds and waves tend to cause beaches and marshes on the bay sides of
7879	barrier islands to slowly advance into the bay toward the mainland. Rules against filling
7880	tidal waters prevent people from artificially doing so. After a storm washes sand from the
7881	beach onto the island, local governments bulldoze the sand back onto the beach rather
7882	than putting a portion into the bay, even though that is what would happen under natural
7883	conditions. Unlike the case of wetlands migrating onto dry land, limits on Federal

³⁷ See The Clean Water Act of 1977, § 404, 33 U.S.C. § 1344; The Rivers and Harbors Act of 1899, § 10, 33 U.S.C. §§ 403, 409 (1994).

388 of 800

- 7884 jurisdiction do not prevent the Federal regulatory program from encouraging the
- 7885 landward migration of barrier islands.

- 7887 *Relationship to Coastal Development.* Finally, many policies encourage or discourage
- 7888 coastal development, as discussed below. Even policies that subsidize relocation may
- indirectly encourage shore protection. Such assistance reduces the risk of an
- 7890 uncompensated loss of one's investment, thereby encouraging coastal construction,
- 7891 which in turn makes shore protection more likely.
- 7892
- 7893 11.1.2 Shoreline Armoring Versus Living Shorelines
- 7894 The combined effect of Federal and state wetland protection programs is a general
- 7895 preference for hard shoreline structures over soft engineering approaches to stop
- shoreline erosion. (Box 11.1) The Corps of Engineers has issued nationwide permits to
- 7897 expedite the ability of property owners to erect bulkheads and revetments. ³⁸ There is no
- such permit for soft solutions such as rebuilding an eroded marsh or bay beach.³⁹ The
- 7899 bias in favor of shoreline armoring results from the fact that the statute focuses on filling
- navigable waterways, not the environmental impact of the shore protection. Rebuilding a
- beach of marsh requires more of the land below high water to be filled than building a
- 7902 bulkhead.

Do Not Cite or Quote

389 of 800

³⁸ Reissuance of Nationwide Permits, 72 Fed. Reg. 11,1108-09, 11183 ((March 12, 2007) (reissuing Nationwide Wetland Permit 13 and explaining that construction of erosion control structures along coastal shores is authorized)

³⁹ Reissuance of Nationwide Permits, 72 Fed. Reg. 11, 11183, 11185 ((March 12, 2007) (explaining that permit 13 requires fill to be minimized and that permit 27 does not allow conversion of open to water to another habitat such as beach or tidal wetlands)

7903	Until recently, state regulatory programs shared the preference for hard structures.
7904	Maryland now favors "living shorelines" instead (Chapter 10). But Federal rules can be a
7905	barrier to these state efforts. After Hurricane Isabel destroyed many shore protection
7906	structures, and people were rebuilding them on an emergency basis, Maryland wanted to
7907	make it just as easy for someone to get a permit to replace a destroyed bulkhead with a
7908	living shoreline, as to rebuild the bulkhead. But the state was unable to obtain Federal
7909	approval (Appendix F.).
7910	
7911	The regulatory barrier to soft solutions appears to result more from inertia than a
7912	conscious bias in factor of hard structures. The nationwide permit program is designed to
7913	avoid the unnecessary burden of issuing a large number of specific but nearly-identical
7914	permits. For decades, many people have bulkheaded their shores, so Nationwide Permit
7915	13 was issued by the US Army Corps of Engineers in 2007 to cover bulkheads and
7916	similar structures. Because few people were rebuilding their eroding tidal wetlands, no
7917	nationwide permit for this activity has been issued. Today, as people become increasingly
7918	interested in more environmentally sensitive shore protection, they are dealing with
7919	institutions that have historically responded to requests for hard shoreline structures to
7920	hold the coast in a fixed location, and are just beginning to determine how to manage the
7921	development of soft shore protection measures.
7922	

390 of 800

7923 BEGIN BOX 11.1:

The Existing Decision-Making Process for Shoreline Protection on Sheltered Coasts
• There is an incentive to install seawalls, bulkheads, and revetments on sheltered coastlines because these structures can be built landward of the Federal jurisdiction and thus avoid the need for Federal permits.
• Existing biases of many decision-makers in favor of bulkheads and revetments with limited footprints limit options that may provide more ecological benefits.
• The regulatory framework affects choices and outcomes. Regulatory factors include the length of time required for permit approval, incentives that the regulatory system creates, [and] general knowledge of the options and their consequences.
• Traditional structural erosion control techniques may appear to be the most cost- effective. However, they do not account for the cumulative impacts that result in environmental costs nor the undervaluation of the environmental benefits of the nonstructural approaches.
• There is a general lack of knowledge and experience among decision makers regarding options for shoreline erosion mitigation on sheltered coasts, especially options that retain more of the shorelines' natural features.
• The regulatory response to shoreline erosion on sheltered coasts is generally reactive rather than proactive. Most states have not developed plans for responding to erosion on sheltered shores.
Source: National Research Council, Ocean Studies Board. 2007. <i>Mitigating Shore Erosion Along Sheltered Coasts</i> p. 122-23.
END BOX

Do Not Cite or Quote

391 of 800

7955 7956	11.1.3 Coastal Development Federal, state, local, and private institutions all have a modest bias favoring increased
7957	coastal development in developed areas. The Federal government discourages
7958	development in undeveloped areas, while state and local governments have a more
7959	neutral effect.
7960	
7961	Coastal counties often favor coastal development because expensive homes with seasonal
7962	residents can substantially increase property taxes without much demand for government
7963	services. The property tax system often encourages coastal development. A small cottage
7964	on a lot that has appreciated to \$1 million can have an annual property tax bill greater
7965	than the annual rental value of the cottage.
7966	
7967	Congressional appropriations for shore protection encourage coastal development along
7968	shores that are protected, by reducing the risk that the sea will reclaim their land and
7969	structures. This reduced risk increases land values and property taxes, which may
7970	encourage further development. It may also encourage increased densities in areas that
7971	are not eligible for funding. The benefit-cost formulas used to determine eligibility
7972	(USACE 2000) find greater benefits in the most densely developed areas, making
7973	increased density a possible path toward federal funding for shore protection. Keeping
7974	hazardous areas lightly developed, by contrast, is not a path for federal funding. (See <i>e.g.</i>
7975	Appendix A).
7976	
7977	Several commentators have argued that the National Flood Insurance Program (NFIP)
7978	encourages coastal development (e.g., Tibbetts 2006; Platt 2007). Without insurance,

392 of 800

7979	some people would be reluctant to risk $$250,000^{40}$ on a home that could be destroyed in a
7980	storm. ⁴¹ People would tend to build farther away from the shore, and the homes would be
7981	scaled to the level of wealth the owner is willing to place at risk Insurance converts a
7982	large risk into a modest annual payment that people are willing to pay. FEMA has
7983	analyzed this question, however, and concluded that overall, the owners of coastal
7984	property vulnerable to waves and to flooding pay premiums more than enough to pay the
7985	flood damage claims; there is no overall subsidy (FEMA 2006a; FEMA 2006b, Hayes et
7986	al. 2006, Crowell et al. 2007). But those analyses exclude the year 2005, when
7987	Hurricanes Katrina, Rita, and Wilma required the NFIP to borrow \$20 billion from the
7988	U.S Treasury (42 USC 4016 modified by PL109-208, 2006). FEMA has not decided
7989	whether to raise flood insurance rates to completely account for the risk of another storm
7990	like Katrina (Crowell et al., 2007) More broadly, the combination of flood insurance and
7991	the various post-disaster and emergency programs providing relocation assistance,
7992	mitigation (e.g., home elevation), and emergency beach nourishment provide coastal
7993	construction with a federal safety net that makes coastal construction a safe investment.
7994	
7995	Flood ordinances have also played a role in the creation of three-story homes where local
7996	ordinances once limited homes to two stories. Flood regulations have induced some
7997	people to build their first floor more than 8 ft above the ground (FFMA 1984, 1994

- people to build their first floor more than 8 ft above the ground (FEMA 1984, 1994,
- 2000, 2007b). Local governments have continued to allow a second floor no matter the

393 of 800

⁴⁰ NFIP only covers the first \$250,000 in flood losses. 44 CFR 61.6 For homes with a construction cost greater than \$250,000, federal insurance reduces a property owner's risk, but to a lesser extent.

⁴¹ Research quantifying the impact of flood insurance on development is sparse. See Chapter 9.

7999	elevation of the first floor. Property owners often enclose the area below the first floor
8000	(<i>e.g.</i> FEMA 2002), creating ground-level (albeit illegal ⁴² and uninsurable ⁴³) living space.
8001	
8002	Currently, FEMA does not adjust rates to reflect new information when flood risks
8003	increase, but rather "grandfathers" the assumed risk (NFIP, 2007). Adaptation to climate
8004	change means adjusting to the changing nature of risk. But as shore erosion and rising sea
8005	level make the property more vulnerable, rates do not rise to reflect the increased risk
8006	from erosion until the property is substantially improved (Heinz Center, 2000).
8007	Moreover, FEMA is prevented by statute from raising premiums by more than 10% per
8008	year (42 USC §4015(e)), even if premiums are substantially below the annual expected
8009	damages. Thus, the NFIP probably does provide a subsidized insurance rate for new
8010	construction along eroding shores, which would encourage people to build on such
8011	shores. Whether the NFIP will also protect policy holders from the risks of sea-level rise
8012	is less clear. Under current policy, an increase in total claims would cause an across-the-
8013	board increase in rates (Crowell et al. 2007). The ability of the NFIP to recover losses
8014	from Katrina through a general rate increase would be analogous to the program's ability
8015	to adjust rates in response to accelerated sea-level rise or other consequences of changing
8016	climate.
8017	

- 8018 The totality of these federal programs in conjunction with sea-level rise creates a
- 8019 "moral hazard." Coastal investment is profitable but risky. If government assumes much

⁴³ 44 CFR §61.5(a)

Do Not Cite or Quote

394 of 800

⁴² 44 CFR §60.3(c)(2)

8020	of this risk, then the investment can be profitable without being risky — an ideal situation
8021	for investors (Loucks et al, 2006). The "moral hazard" concern is that when investors
8022	make risky decisions whose risk is partly borne by someone else, there is a chance that
8023	they will create a dangerous situation by taking on too much risk (Pauly, 1974). The
8024	government may then be called upon to take on even the risks that the private investors
8025	had supposedly assumed, because the risk of cascading losses could harm the larger
8026	economy (Kunreuther and Michel-Kerjant, 2007). Shore protection seems cost-effective
8027	and flood insurance rates seem to reflect the risk in most cases. But if sea-level rise
8028	accelerates, will taxpayers, coastal property owners, or inland flood insurance
8029	policyholders have to pay the increased costs?
8030	
8031	The Coastal Barrier Resources Act (16 U.S.C. U.S.C. §3501 et seq.) discourages the
8032	development of designated undeveloped barrier islands and spits, by denying flood
8033	insurance, disaster assistance, federal highway funding, mortgage funding, and most
8034	other forms of federal spending to them. The increased demand for coastal property has
8035	led many of these areas to become developed anyway (GAO 1992). "Where the
8036	economic incentive for development is extremely high, the Act's funding limitations can
8037	become irrelevant." (USFWS 2002 p. 29.).
8038	
8039	11.2 INTERDEPENDENCE: A BARRIER OR A SUPPORT NETWORK?
8040	Uncertainty can be a burdle to preparing for see level rise. Uncertainty about see level

- 8040 Uncertainty can be a hurdle to preparing for sea-level rise. Uncertainty about sea-level
- 8041 rise and its precise effects is one problem, but uncertainty about what others will do can
- also be a barrier. For environmental stresses, a single Federal agency is charged with

395 of 800

8043	developing and coordinating the nation's response. The response to sea-level rise requires
8044	coordination among several agencies, including EPA (protecting the environment),
8045	USACE (shore protection), Department of Interior (managing conservation lands), and
8046	FEMA (flood hazard management). State and local governments generally have
8047	comparable agencies that work with their Federal counterparts. No single agency is in
8048	charge of developing a response to sea-level rise as it affects the missions of many
8049	agencies.
8050	
8051	The decisions that these agencies and the private sector make regarding how to respond
8052	to level rise are interdependent. From the perspective of one decision maker, the fact that
8053	others have not decided on their response is a distinct barrier to preparing their own
8054	responses. One of the barriers of this type is the uncertainty whether the response to sea-
8055	level rise in a particular area will involve shoreline armoring, elevating the land, or
8056	retreat.
8057	
8058	11.2.1 Definition of Three Fundamental Pathways: Armor, Elevate, or Retreat
8059	Long-term approaches for managing low coastal lands as the sea rises can be broadly
8060	divided into three pathways:
8061	• <i>Protect</i> the dry land with seawalls, dikes, and other structures, eliminating wetlands
8062	and beaches (also known as shoreline armoring)
8063	• <i>Elevate the land</i> , and perhaps the wetlands and beaches as well, enabling them to
8064	survive
8065	• <i>Retreat</i> by allowing the wetlands and beaches to take over land that is dry today.

396 of 800

8066	
8067	Combinations of these three approaches are also possible. Each approach will be
8068	appropriate in some locations and inappropriate in others. Shore protection costs,
8069	property values, the environmental importance of habitat, and the feasibility of protecting
8070	shores without harming the habitat all vary by location. Deciding how much of the coast
8071	should be protected may require people to consider social priorities not easily included in
8072	a cost-benefit analysis of shore protection.
8073	
8074	11.2.2 Decisions That Cannot Be Made Until the Pathway Is Decided
8075	Rising sea level has numerous implications for current activities. Nevertheless, in most
8076	cases, the appropriate response depends on whether and which of these three courses of

- 8077 action a particular community intends to follow. Six examples are summarized in Table
- 8078 11.1, discussed below.

397 of 800

	Pathway for responding to sea-level rise		
Activity	Shoreline armoring (<i>e.g.</i> , dike or seawall)	Elevate land	Retreat/wetland migration
Rebuild drainage systems	Check valves, holding tanks; room for pumps	No change needed	Install larger pipes, larger rights of way for ditches
Replace septics with public sewer	Extending sewer helps improve drainage	Mounds systems; elevate septic system; extending sewer also acceptable	Extending sewer undermines policy; mounds system acceptable
Rebuild roads	Keep roads at same elevation; owners will not have to elevate lots	Rebuild road higher; motivates property owners to elevate lots	Elevate roads to facilitate evacuation
Location of roads	Shore-parallel road needed for dike maintenance	No change needed	Shore parallel road will be lost; all must have access to shore-perpendicular road
Setbacks/subdivisions	Setback from shore to leave room for dike	No change needed	Erosion-based setbacks
Easements	Easement or option to purchase land for dike	No change needed	Rolling easements to ensure that wetlands and beaches migrate

Table 11.1 The best way to prepare for sea-level rise depends on whether (and how) a community intends to hold back the sea.

8080

8081 Coastal Drainage Systems. Sea-level rise slows natural drainage and the flow of water

8082 through drain pipes that rely on gravity. If an area will not be protected from increased

8083 inundation, then larger pipes and pumping may be necessary. If an area will be protected

8084 with a dike, then larger pipes are less important than underground storage, check valves,

and ensuring that the system can be retrofitted to allow for pumping (Titus *et al.*, 1987).

8086 If the land surfaces are going to be elevated, then sea-level rise will not impair drainage.

8087

8088 Septics and Sewer. Rising sea level can elevate the water table to the point where septic

8089 systems no longer function properly (U.S. EPA, 2002).⁴⁴ If areas will be protected with a

Do Not Cite or Quote

398 of 800

⁴⁴. "Most current onsite wastewater system codes require minimum separation distances of at least 18 inches from the seasonally high water table or saturated zone irrespective of soil characteristics. Generally, 2- to 4-foot separation distances have proven to be adequate in removing most fecal coliforms in septic tank effluent." U.S. EPA (2002).

8090	dike, then all the land protected must eventually be artificially drained and sewer lines
8091	further extended to facilitate drainage. On the other hand, extending sewer lines would be
8092	entirely incompatible with allowing wetlands to migrate inland, because the high capital
8093	investment tends to encourage coastal protection; a mounds-based septic system is more
8094	compatible. If a community's long-term plan is to elevate the area, then either a mounds-
8095	based system or extended public sewage will be compatible.
8096	
8097	Road Maintenance. As the sea rises, roads flood more frequently. If a community plans
8098	to elevate land with the sea, then repaying projects should elevate the roadway
8099	accordingly. If a dike is on the horizon, then repaving projects would consciously avoid
8100	elevating the street above people's yards, lest the projects prompt people to spend excess
8101	resources on elevating their yards when doing so is not necessary in the long run.
8102	
8103	As an example, Ocean City, Maryland, currently has policies in place that would be
8104	appropriate if the long-term plan was to build a dike and pumping system — but the town
8105	intends to elevate instead. Currently, the town has an ordinance that requires property
8106	owners to maintain a 2% grade so that yards drain into the street. The town has construed
8107	this rule as imposing a reciprocal responsibility on the town itself to not elevate roadways
8108	above the level where yards can drain, even if the road is low enough to flood during
8109	minor tidal surges. Thus, the lowest lot in a given area dictates how high the street can be.
8110	As sea level rises, the town will be unable to elevate its streets, unless it changes this rule.
8111	Yet public health reasons require drainage to prevent standing water in which mosquitoes

399 of 800

8112	breed. Therefore, the town has an interest in ensuring that all property owners gradually
8113	elevate their yards so that the streets can be elevated as the sea rises without causing
8114	public health problems. The town has developed draft rules that would require that,
8115	during any significant construction, yards be elevated enough to drain during a 10-year
8116	storm surge for the life of the project, considering projections of future sea-level rise. The
8117	draft rules also state that Ocean City's policy is for all lands to gradually be elevated as
8118	the sea rises (See Appendix E).
8119	
8120	Locations of Roads. As the shore erodes, any home that is accessed only by a road
8121	seaward of the house could lose access before the home itself is threatened, and even
8122	homes seaward of the road might lose access if the road were washed out elsewhere. If
8123	the shore is expected to erode, it is important to ensure that all homes are accessible by
8124	shore-perpendicular roads, a fact that was recognized in the layout of early beach resorts
8125	along the New Jersey and other shores. But if a dike is likely, then a road along the shore
8126	would be useful for dike construction and maintenance. If all land is likely to be elevated,
8127	then sea-level rise may not have any significant impacts on the location of new roads.
8128	
8129	Subdivision and Setbacks. If a dike is likely, then houses need to be set back enough from
8130	the shore to allow room for the dike and associated drainage systems. Setbacks and larger
8131	coastal lot sizes are also desirable in areas where a retreat policy is preferred, for two
8132	reasons. First, the setback provides open lands onto which wetlands and beaches can
8133	migrate inland without immediately threatening property. Second, larger lots mean lower
8134	density and hence fewer structures that would have to be moved — as well as less

Do Not Cite or Quote

400 of 800

8135	justification for investments in central water and sewer. By contrast, in areas where the
8136	plan is to elevate the land, sea-level rise does not alter the property available to the
8137	homeowner, and hence would have minor implication for setbacks and lot sizes.
8138	
8139	Covenants and Easements Accompanying Subdivision. Although setbacks are the most
8140	common way to anticipate eventual dike construction and the landward migration of
8141	wetlands and beaches, a less expensive method would often be the purchase of (or
8142	regulatory conditions requiring) rolling easements, which allow development but prohibit
8143	hard structures that stop the landward migration of ecosystems. The primary advantage is
8144	that society makes the decision to allow wetlands to migrate inland long before the
8145	property is threatened, so people can plan around the assumption of migrating wetlands,
8146	whether that means leaving an area undeveloped or building structures that can be
8147	moved.
8148	
8149	Local governments can also obtain easements for future dike construction. Both of these
8150	types of easements would have very low market prices in most areas, because the fair
8151	market value is equal to today's land value discounted by the rate of interest compounded
8152	over the many decades that will pass before the easement would have any effect. As with
8153	setbacks, a large area would have to be covered if wetlands are going to migrate inland, a
8154	narrow area would be required along the shore for a dike, and no easements are needed if
8155	the land will be elevated in place.
8156	

8157

Do Not Cite or Quote

401 of 800

8158	11.2.3 Opportunities for Deciding on the Pathway
8159	Chapters 5 briefly mentions an ongoing effort to create present maps that distinguish
8160	areas where shore protection is likely from those areas where a retreat is more likely,
8161	given current policies and land use trends (See e.g. Titus 2004). At the local level, one
8162	must make an assumption about which land will be protected to truly understand which
8163	lands will truly become inundated (chapter 1) and how shorelines will actually change
8164	(chapter 2), which existing wetlands will be lost (chapter 3), whether wetlands will be
8165	able to migrate inland (chapter 5), and the environmental consequences (chapter 4); the
8166	population whose homes would be threatened (chapter 6) and the implications of sea-
8167	level rise for public access (chapter 7) and floodplain management. Assumptions about
8168	future shore protection are also necessary to estimate the level of resources that would be
8169	needed to fulfill people's current expectations for shore protection.
8170	
8171	Improving our ability to project the impacts of sea-level rise is not the only reason for
8172	mapping expectations for future shore protection. Another use of such studies has been to
8173	initiate a dialogue about what should be protected, so that state and local governments
8174	can decide upon a plan of what will actually be protected. Just as the lack of a plan is a
8175	barrier to preparing for sea-level rise, the adoption of a plan would remove an important
8176	barrier and signal to many decision makers that the time has come for them to plan for
8177	sea-level rise as well.
8178	
8179	
8180	

402 of 800

8181 8182	CHAPTER 11 REFERENCES	
8183	Crowell, M.H. and T.L. Hayes, 2007: Marine Technology Society Journal, 41(1), 18-27.	
8184	FEMA (Federal Emergency Management Agency), 1984: Elevated Residential	
8185	Structures. FEMA 54, Federal Emergency Management Agency, Washington,	
8186	DC, 144 pp.	
8187	FEMA (Federal Emergency Management Agency), 1994: Mitigation of Flood and	
8188	Erosion Damage to Residential Buildings in Coastal Areas. FEMA 257, Federal	
8189	Emergency Management Agency, Washington, DC, 40 pp.	
8190	FEMA (Federal Emergency Management Agency), 2000: Above the Flood: Elevating	
8191	Your Floodprone House. FEMA 347, Federal Emergency Management Agency,	
8192	Washington, DC, 69 pp.	
8193	FEMA (Federal Emergency Management Agency), 2002: FEMA Notifies Monroe	
8194	County, Florida, of Impending Flood Insurance Probation. Region IV News	
8195	Release Number: R4-02-15. Cited at	
8196	http://www.fema.gov/news/newsrelease.fema?id=4528 February 5, 2008.	
8197	FEMA (Federal Emergency Management Agency), 2006a: Costs and Consequences of	
8198	Flooding and the Impact of the National Flood Insurance Program, 2006. Cited	
8199	http://www.fema.gov/library/viewRecord.do?id=2577 February 1, 2008. 89 pp.	
8200	FEMA (Federal Emergency Management Agency), 2006b: The Role of Actuarial	
8201	Soundness in the National Flood Insurance Program. Federal Emergency	
8202	Management Agency, Washington, DC, 117 pp. Cited at	
8203	http://www.fema.gov/library/viewRecord.do?id=2576 February 1, 2008	
8204	FEMA (Federal Emergency Management Agency), 2007: Public Assistance Guide.	
8205	FEMA 322. Cited at http://www.fema.gov/government/grant/pa/policy.shtm Feb	
8206	1, 2008.	

Do Not Cite or Quote

403 of 800

8207	FEMA (Federal Emergency Management Agency), 2007b: Coastal Construction
8208	Manual. Federal Emergency Management Agency, Washington, DC. Available at
8209	http://www.fema.gov/rebuild/mat/fema55.shtm
8210	FEMA (Federal Emergency Management Agency), 2008a: Severe Repetitive Loss
8211	Program. [Web site] Federal Emergency Management Agency, Washington, DC.
8212	Available at http://www.fema.gov/government/grant/srl/index.shtm, cited Feb 5,
8213	2008.
8214	FEMA (Federal Emergency Management Agency), 2008b: Repetitive Flood Claims
8215	Program: Program Overview. [Web site] Federal Emergency Management
8216	Agency, Washington, DC. Available at
8217	http://www.fema.gov/government/grant/rfc/index.shtm cited Feb 5, 2008.
8218	FEMA (Federal Emergency Management Agency), 2008c: Hazard Mitigation Grant
8219	Program. [Web site] Federal Emergency Management Agency, Washington, DC.
8220	Available at <u>http://www.fema.gov/government/grant/hmgp/</u> cited Feb 5, 2008.
8221	FEMA (Federal Emergency Management Agency), 2008d: Flood Mitigation Assistance
8222	Program [Web site] Federal Emergency Management Agency, Washington, DC.
8223	Available at http://www.fema.gov/government/grant/fma/index.shtm cited Feb 5,
8224	2008.
8225	FEMA (Federal Emergency Management Agency), 2008e: Pre-Disaster Mitigation
8226	Program. [Web site] Federal Emergency Management Agency, Washington, DC.
8227	Available at http://www.fema.gov/government/grant/pdm/index.shtm, cited Feb 5,
8228	2008.
8229	GAO (General Accounting Office), 1992: Coastal Barriers: Development Occurring
8230	Despite Prohibitions Against Federal Assistance. GAO/RCED-92-115, General
8231	Accounting Office, Washington, DC, 71 pp.
8232	Gibbons v. Ogden, 22 U.S. 1, 217-18 (9 Wheat. 1824)

404 of 800

8233	Hayes, T.L., D.R. Spafford, and J.P. Boone. 2006: Actuarial Rate Review. National
8234	Flood Insurance Program, Washington DC, 34 pp. Available at
8235	http://www.fema.gov/library/viewRecord.do?id=2363
8236	The Heinz Center, 2000: Evaluation of erosion hazards. The H. John Heinz III Center
8237	for Science, Economics and the Environment, Washington, DC, 205 pp. Available
8238	at http://www.heinzcenter.org/publications.shtml#erosionhazards
8239	Kunreuther, H.C. and E.O. Michel-Kerjant, 2007: Climate change, insurability of large-
8240	scale disasters, and the emerging liability challenge. University of Pennsylvania
8241	<i>Law Review</i> , 155(6) , 1795-1842.
8242	Lockhart, J. and A Morang, 2002: History of coastal engineering. In: Coastal
8243	Engineering Manual, Part I, [Morang, A. (ed.)]. Engineer Manual 1110-2-1100,
8244	U.S. Army Corps of Engineers, Washington, DC. Cited at
8245	http://chl.erdc.usace.army.mil/chl.aspx?p=s&a=ARTICLES;104 Feb 5, 2008.
8246	Loucks, D.P., J.R. Stedinger, and E.Z. Stakhiv, 2006: Individual and societal responses
8247	to natural hazards. Journal of Water Resources Planning & Management, 132(5),
8248	315-319.
8249	Maryland Department of Natural Resources, 2006: Shore Erosion Control Guidelines
8250	for Waterfront Property Owners. Available at:
8251	http://www.dnr.state.md.us/land/sec/sec_resources.html Accessed 1.18.08
8252	Maryland Department of Natural Resources, 2008: Grants and Loans: Shore Erosion
8253	Control. Cited at http://www.dnr.state.md.us/land/sec/secintro.html accessed
8254	1.18.2008
8255	NFIP, 2007: Fact Sheet: Saving on Flood Insurance Information about the NFIP's
8256	Grandfathering Rule.
8257	Pauly, M.V., 1974: Overinsurance and public provision of insurance: the roles of moral
8258	hazard and adverse selection. Quarterly Journal of Economics, 88(1), 44-62.

Do Not Cite or Quote

405 of 800

CCSP	4.1
	-

8259	Platt, R., 2007: Comments on the National Flood Insurance Program (NFIP) Evaluation
8260	Final Report. Natural Hazards Observer, 32(2) Available at
8261	http://www.colorado.edu/hazards/o/archives/2007/nov07/NovObserver07.pdf.
8262	Tibbetts, J.H., 2006: After the storm. Coastal Heritage, 20(4), 3-11. Available at
8263	http://www.scseagrant.org/Content/?cid=103
8264	Titus, J.G., C.Y. Kuo, M.J. Gibbs, T.B. LaRoche, M.K. Webb, and J.O. Waddell, 1987:
8265	Greenhouse effect, sea level rise, and coastal drainage systems. Journal of Water
8266	Resources Planning and Management, 113(2) , 216–225.
8267	Titus, J.G., 2000: Does the U.S. government realize that the sea is rising? How to
8268	restructure federal programs so that wetlands and beaches survive. Golden Gate
8269	University Law Review, 30(4) , 717-778.
8270	Titus, J.G., 2004: Maps that depict the business-as-usual response to sea level rise in the
8271	decentralized United States of America. Presented at the Global Forum on
8272	Sustainable Development, Paris, 11-12, November 2004.
8273	U.S. EPA, 2002: Onsite Wastewater Treatment Systems Manual. EPA/625/R-00/008,
8274	EPA Office of Water and Office of Research and Development, Washington, DC.
8275	Available at http://purl.access.gpo.gov/GPO/LPS21380
8276	USACE (U.S. Army Corps of Engineers), 2000: Planning Guidance Notebook.
8277	Document ER 1105-2-100, U.S. Army Corps of Engineers, Washington, DC.
8278	Available at http://www.usace.army.mil/publications/eng-regs/er1105-2-100/
8279	U.S. Fish and Wildlife Service, 2002: The Coastal Barrier Resources Act: Harnessing
8280	the Power of Market Forces to Conserve America's Coasts and Save Taxpayers'
8281	Money. Division of Federal Program Activities, U.S. Fish and Wildlife Service,
8282	34 pp. Available at
8283	http://www.fws.gov/habitatconservation/TaxpayerSavingsfromCBRA.pdf

406 of 800

- 8284 Viscusi, W.K. and R.J. Zeckhauser, 2006: National survey evidence on disasters and
- relief: risk beliefs, self-interest, and compassion. *Journal of Risk & Uncertainty*,
 33(1/2), 13-36.
- 8287 Zabel v. Tabb, 430 F.2d 199, 215 (5th Cir. 1970)

407 of 800

8288 8289	Part IV. Sensitivity to Sea-Level Rise at the Local Scale
8290	Author: James G. Titus, EPA
8291	
8292	Previous chapters have provided region-wide perspectives on different effects, social
8293	impacts, and components of society's response to sea-level rise. The issue-by-issue
8294	presentation closely matches the separate professions involved in studying the effects and
8295	developing options for adapting to sea-level rise.
8296	
8297	Many decisions, however, concern a specific location and require local andregional
8298	perspectives and information. Fortunately, much of the information that the previous
8299	chapters presented at the regional scale is also available at the state and local scale.
8300	Moreover, some information that is not available region-wide is available for some
8301	locations: For example, previous chapters did not look at the impacts of increased salinity
8302	on drinking water, but such information is available for the Philadelphia and New York
8303	metropolitan areas, which appear to be the primary areas where sea-level rise could harm
8304	water supplies.
8305	
8306	This report does not recommend specific policies or actions in response to sea-level rise.
8307	Instead, it summarizes information on the options that are available. Impacts of sea-level
8308	rise on any specific community or local area will depend upon many factors and need to
8309	be carefully assessed as policy options and mitigation alternatives are examined.
8310	Part IV is an overview of Appendices A-G, which provide state and local information
8311	similar to chapters 1-5 and 7, as well as information on some aspects of the effects of sea-
	Do Not Cite or Quote 408 of 800 Public Review Draft