8611	Part V. Implications of Sea-Level Rise to the Nation
8612	
8613	Authors: S. Jeffress Williams, USGS; Benjamin A. Gutierrez, USGS; James G. Titus,
8614	EPA; Eric Anderson, USGS; Stephen Gill, NOAA; Donald R. Cahoon, USGS
8615	
8616	A large and expanding proportion of the United States population and related urban
8617	development are located along the Atlantic, Gulf of Mexico, and Pacific coasts and
8618	increasingly come into conflict with the natural processes associated with coastal change
8619	from extreme storms and sea-level rise. Currently the majority of the population lives in
8620	the coastal zone and movement to the coast and development continues in spite of the
8621	growing vulnerability. Fourteen of the Nation's 20 largest urban centers are located along
8622	the coast, most of which were historically sited on or near the coast to serve as
8623	commercial ports and for defense. Coastal populations have increased dramatically over
8624	the past 60 years as these urban centers have expanded. In addition, these economic and
8625	population pressures have transformed sparsely developed coastal areas into high-density
8626	year-round urban complexes. The growth in coastal development has been spurred too by
8627	purchase of vacation homes for recreation and retirement. With the very likely
8628	accelerated rise in sea level and increased storminess, the conflicts between people and
8629	development at the coast and the natural processes will increase dramatically. Sea-level
8630	rise associated with climate change will increase erosion and the frequency of flooding
8631	and many more coastal areas will become vulnerable. For some regions, mitigation and
8632	adaptation may be successful, but for other coastal areas, relocation landward to higher
8633	ground may be the only economic means to ensure long term sustainability.

427 of 800

8634	
8635	Coastal landforms reflect a complex interaction between the natural physical processes
8636	that act on the coast, the geological characteristics of the coast, and human activities that
8637	alter coastal landforms and processes. Spatial and temporal variations in these physical
8638	processes and the geology along the coast are responsible for the wide variety of
8639	landforms around the United States (Williams, 2003). With future sea-level rise, it is very
8640	likely that the majority of the U.S. ocean coast will undergo long-term net erosion,
8641	probably at rates higher than those that have been observed over the past century (Figure
8642	V.1). The exact manner and the rates at which these changes are likely to occur depend
8643	on the character of coastal landforms and the physical processes, as discussed here and in
8644	earlier chapters of this report. Regions of low relief, undergoing land subsidence, and
8645	subject to frequent storm landfalls, such as the south-central Gulf of Mexico, Florida, and
8646	the Mid-Atlantic are particularly vulnerable.
8647	

Do Not Cite or Quote

428 of 800

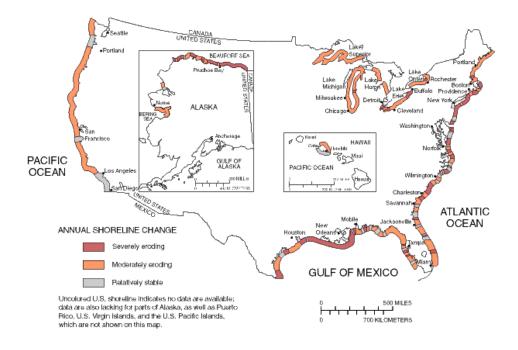


Figure V.1 Map of historic annual ocean shoreline change around the U.S. All 30 coastal states are
 undergoing erosion at highly variable rates due to natural and human factors (USGS National Atlas, 1985).

8652 V.1 TYPES OF COASTS

- 8653 Coasts are dynamic junctions of water and land. Winds and waves, tides and currents,
- 8654 migrating sand dunes and mud flats combine to form ever-changing shorelines. The main
- 8655 coastal types found in the mid-Atlantic region as well as the rest of the U.S. are described
- 8656 below. With future sea-level rise, all of these landforms will become more dynamic, but
- 8657 predicting and quantifying change with high confidence will be scientifically challenging.
- 8658

8659 V.1.1 Cliff and Bluff Shorelines

- A portion of the U.S. coast is comprised of coastal cliffs and bluffs (see Chapter 2).
- 8661 These occur predominantly along the Pacific coast, northern New England, and the
- 8662 Alaskan coast where rock intersects the shore and cliffs have formed in ancient marine

Do Not Cite or Quote

429 of 800

8663	terraces that have been uplifted (Hampton and Griggs, 2004; Hapke et al., 2006). Active
8664	tectonic environments, such as the Pacific coast, produce rocky coasts as a result of
8665	mountain-building processes, faulting, and earthquakes. Rocky coasts, such as parts of
8666	Massachusetts, New Hampshire, and Maine, form where glacial ice has scoured the land
8667	surface and strong waves and currents have winnowed and reworked the glacial
8668	sediment. In Alaska, glaciers continue to scour and transport sediment from the land to
8669	the shore. Because rocky coasts are composed of resistant rock, erosion is slow and
8670	inundation will be a primary response to sea-level rise.
8671	
8672	V.1.2 Sandy Shores and Barrier Beaches, Spits, and Dunes
8673	As described in Chapter 2, sandy beaches can be categorized into three types: mainland,
8674	pocket, and barrier beaches. Mainland beaches stretch unbroken for many miles along the
8675	edges of major landmasses. Some are low relief and prone to flooding; others are backed
8676	by steep headlands. They receive sediment from nearby rivers and eroding bluffs.
8677	Examples of mainland beaches include northern New Jersey, parts of Delaware and
8678	Maryland, and southern California. Pocket beaches form in small bays and are often
8679	surrounded by rocky cliffs or headlands. Pocket beaches are common in New England,
8680	the Pacific Northwest, and Hawaii. Barrier beaches and spits are the most abundant
8681	coastal landform along the Atlantic and Gulf of Mexico coasts. Sandy shores are
8682	particularly vulnerable to storms and sea-level rise due to their low elevations and sandy
8683	composition and their sensitivity to these processes are very likely to increase in the
8684	future.
0 40 -	

Do Not Cite or Quote

430 of 800

8686	V.1.3 Coastal Wetlands
8687	Coastal wetlands include swamps and tidal flats, coastal marshes, and bayous. They form
8688	in low-relief, low-energy sheltered coastal environments, often in conjunction with river
8689	deltas, landward of barrier islands, and along the flanks of estuaries (e.g., Delaware Bay,
8690	Chesapeake Bay, Everglades, San Francisco Bay). Most coastal wetlands of the U.S. are
8691	in Louisiana, North and South Carolinas, Florida, and Alaska. Wetlands are extremely
8692	vulnerable to sea-level rise and can maintain their elevation and viability only if
8693	sufficient sediment (both mineral and organic) is available and if terrestrial
8694	accommodation space is available for migration landward (see Chapter 3, Wetlands
8695	Accretion). Under the highest projected rates of future sea-level rise, most wetlands are
8696	likely to drown and convert to estuarine and open-water environments.
8697	
8698	V.1.4 Coral Reef Coasts
8699	Coral reefs in the U.S. are most common along the southeastern coast of Florida, the
8700	Keys and around the Hawaiian Islands, Puerto Rico, and the Virgin Islands. In tropical
8701	isles, living coral organisms build reefs that provide important wildlife habitats and
8702	buffer coasts from waves and storms. Healthy coral reefs are also an important source of
8703	carbonate sandy sediment for tropical beaches. Most corals are able to accommodate low
8704	to moderate rates of sea-level rise, but warming of the oceans and increased sediment
8705	
	turbidity from storms may have detrimental effects on many coral reef ecosystems.
8706	turbidity from storms may have detrimental effects on many coral reef ecosystems.
	turbidity from storms may have detrimental effects on many coral reef ecosystems.

431 of 800

8709	V.1.5 Mudflat Shores
8710	Mudflat shorelines are in the minority for U.S. coasts, are frequently associated with
8711	wetlands, and occur predominately in low-energy regions with high inputs of fine-grained
8712	sediments and organic materials. These shoreline types are common to the western
8713	Louisiana and along the northeastern part of the Gulf Coast of Florida.
8714	
8715	V.2 SHORELINE SETTINGS AROUND THE UNITED STATES
8716	Very marked differences in geological character and processes and climatic settings
8717	produce a diverse array of coastal landforms described above occur in the U.S. The three
8718	major regions- the Atlantic coast, Gulf of Mexico coast, and Pacific coast exhibit all of
8719	these landforms.
8720	
8721	V.2.1 Atlantic Coast
8722	The Atlantic coast is a low-relief passive margin comprised of river deposits derived
8723	from the erosion of the Appalachian Mountains (Walker and Coleman, 1987). From Long
8724	Island and Cape Cod northward, glaciations scoured the landscape leaving glacial
8725	deposits that give the coastal landscape its unusual character. From New York to southern
8726	Florida, the coast consists almost exclusively of barrier islands, spits and dunes. Along
8727	the New England coast, barriers are also present but are shorter, often extending between
8728	headlands composed of glacial sand and gravel deposits (FitzGerald et al., 1994). Pocket
8729	beaches, coastal cliffs, and bluff coasts occur in a number of places, but these are found
8730	mostly in the northeast as a result of the glacial landscape.
8731	

432 of 800

8732	V.2.2 Gulf of Mexico Coast
8733	The Gulf coast, like the Atlantic, is classified as a passive margin consisting of a gently
8734	sloping coastal plain that has been built by the deltas of large river systems. Eroding
8735	mainland shores and the continental shelf are the main sources of sand that maintain the
8736	Gulf coast barriers and beaches since the region's rivers contribute minor amounts of
8737	sediment to the coast (Morton et al., 2004). Barrier islands are the dominant coastal
8738	landform of this region. Mainland beaches and Chenier plain coasts also occur along
8739	minor portions of the coast. Along the shores of southwestern Florida rarer shoreline
8740	types can be found, which include mangrove swamps, irregular drowned karst features,
8741	and marshes.
8742	
8743	V.2.3 Pacific Coast
8744	The tectonic activity from the collision of tectonic plates on the west coast of the U.S. has
8745	influenced the development of the coastal landforms (Komar, 2004; Hapke et al., 2006).
8746	Because of the active tectonic environment, some portions of the coast are being uplifted
8747	at different rates. Uplifting of the crust contributes to the development of steep gradients
8748	in the landscape as well as variations in rates of relative sea-level rise along the coast.
8749	This is evident from the marine terraces, rock outcrops, and mountain ranges that
8750	comprise the coastal landscape. The steep slopes close to the coast contribute to high
8751	sediment supplies to coastal rivers. High amounts of sediment in coastal rivers on the
8752	Pacific margin provide some of the material that sustains the sandy shores. In addition,
8753	erosion of coastal cliffs also contributes a significant amount of sandy material to Pacific
8754	coast beaches (Hampton and Griggs, 2004; Hapke et al., 2006). The majority of the ocean

433 of 800

- 8755 coast consists of beaches which front coastal cliffs. Pocket beaches, barrier spits, and
- barrier islands, which extend between coastal headlands or bays, are also found along the
- 8757 Pacific coast (Komar, 2004; Hapke et al., 2006).
- 8758

8759 V.3 PREDICTING FUTURE SHORELINE CHANGE

8760 During the last century that scientists have studied shoreline changes, sea-level changes 8761 have been relatively small. During this time variations in shoreline position that have 8762 occurred reflect perturbations due to storms and sediment supply, as well as changes in 8763 sea level (Morton et al., 1994; Douglas et al., 1998; Honeycutt et al., 2001; Zhang et al., 8764 2004). While it is well accepted that sea-level changes can also contribute to this change, 8765 the extent has been subject to debate. Because of this complexity, it has been difficult for 8766 researchers to reach consensus on a more exact importance and role of sea-level rise in 8767 driving shoreline change. 8768 8769 While the factors that influence coastal change in response to sea-level rise are well 8770 known, our ability to incorporate this understanding into quantitative models that can be 8771 used to predict shoreline change over long time periods is limited. Part of the reason for 8772 this is the complexity of quantifying the effect of these factors on shoreline change. The 8773 most easily applied models incorporate relatively few factors that influence shoreline

- change and rely on assumptions that do not always apply to real-world settings. In
- addition, these assumptions apply best to present conditions, not necessarily those that
- 8776 may exist in the future. Those that do incorporate many of the key factors (e.g., the
- 8777 geological framework and sediment budget) require a precise knowledge on a local scale.

Do Not Cite or Quote

434 of 800

- 8778 To apply over larger coastal regions, information regarding the model boundary
- 8779 conditions is not readily available.

8781 V.3.1 Coastal Vulnerability to Sea-Level Rise

- 8782 One approach applied to assess the sea-level rise risks and vulnerability of the Nation's
- 8783 ocean coasts involves the use of a Coastal Vulnerability Index (CVI) (Gornitz et al.,
- 8784 1989; Thieler and Hammar-Klose, 1999). This technique was first applied by Gornitz et
- al. (1989; 1990; 1994) to evaluate coastal hazards along portions of the U.S. open coast.
- 8786 The USGS application of this method relies upon a quantitative ranking scheme to
- 8787 categorize risks due to sea-level rise for the U.S. Atlantic, Pacific, and Gulf of Mexico
- 8788 coasts (Figure V.2, Thieler and Hammar-Klose, 1999). The CVI does not apply to
- 8789 wetlands, but a full discussion of the vulnerability of wetlands to sea-level rise is
- 8790 included in Chapter 3. A total of six geologic and oceanographic variables are used to
- 8791 calculate the CVI for each coastal region: tidal range, wave height, coastal slope,
- shoreline change, geomorphology, and historical rate of relative sea-level rise. Initially,
- 8793 CVI was applied on a national scale. More recently, the USGS has applied CVI
- assessments to 25 coastal National Park units to serve as a tool for planning for
- 8795 mitigating or adapting to accelerated sea-level rise (Pendleton et al., 2004).

8796

Do Not Cite or Quote

435 of 800

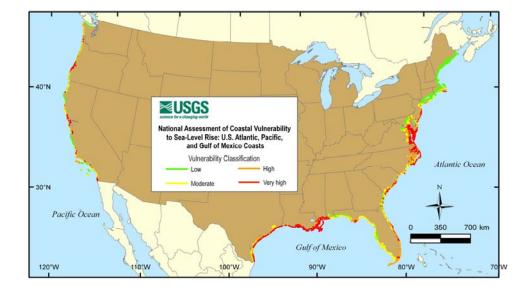


Figure V.2 Map of the Coastal Vulnerability Index (CVI) for the U.S. showing the relative vulnerability of the ocean coast to changes due to future rises in sea level. Segments of the coast are assigned a ranking from low to very high based on the analysis of geologic and oceanographic variables that contribute to coastal change. From Thieler and Hammar-Klose (2000).

8	802	
8	803	In the national assessment, CVI estimates indicated regions of high vulnerability along
8	804	each coast, particularly the Atlantic and Gulf coasts. On the Atlantic coast, the high-
8	805	vulnerability areas are typically barrier islands with small tidal ranges, large waves, a low
8	806	coastal slope and high historical rates of sea-level rise. In contrast, rocky, cliff coasts,
8	807	such as most of the Maine shoreline, with large tidal ranges, steep coastal slopes, and
8	808	lower historical rates of sea-level rise are represented as the least vulnerable. On the Gulf
8	809	coast, high vulnerabilities are also associated with low energy, beach and barrier island
8	810	settings where the tidal range is low and erosion rates are relatively high. But this
8	811	vulnerability is enhanced by the highest rates of relative sea-level rise along the U.S.
8	812	coasts. Along the Pacific coast, there are also many areas of high vulnerability, but these
8	813	are less extensive than the other coasts. Here, the high-vulnerability areas occur typically

Do Not Cite or Quote

436 of 800

8814	along the high energy coast, where pocket beaches are sandwiched between rocky
8815	headlands.
8816	
8817	V.3.2 Potential for Future Shoreline Change
8818	Space does not permit detailed discussion of the national implications for all of the key
8819	questions, but the following addresses potential implications for the physical environment
8820	and society as framed by the five main questions:
8821	• Which lands are currently at an elevation that could lead them to be inundated by the
8822	tides without shore protection measures?
8823	• How does sea-level rise change the coastline? Among those lands with sufficient
8824	elevation to avoid inundation, which land could potentially erode in the next century?
8825	Which lands could be transformed by related coastal processes?
8826	• What is a plausible range for the ability of wetlands to vertically accrete, and how
8827	does this range depend on whether shores are developed and protected, if at all? That
8828	is, will sea-level rise cause the area of wetlands to increase or decrease?
8829	• Which lands have been set aside for conservation uses so that wetlands will have the
8830	opportunity to migrate inland; which lands have been designated for uses requiring
8831	shore protection; and which lands could realistically be available for either wetland
8832	migration or coastal development requiring shore protection?
8833	• What are the potential impacts of sea-level rise on coastal floodplains? What issues
8834	would FEMA, coastal floodplain managers, and coastal communities face as sea level
8835	rises?
8836	

437 of 800

8837	Over the next century, with an acceleration in sea-level rise, the potential for coastal
8838	change is very likely to increase and be much more variable than has been observed in
8839	historic past. The potential changes include increased coastal erosion, more frequent tidal
8840	and storm surge flooding of low-relief areas, and wetland deterioration and losses. Many
8841	of these changes will occur in all of the 30 coastal states. These changes to the coastal
8842	zone will have especially large impacts to developed areas. Relatively minor portions of
8843	the U.S. coast, however, will be subject solely to inundation from sea-level rise over the
8844	next century. Inundation will be limited to the bedrock coasts such as those in New
8845	England and along the Pacific which are resistant to erosion; and, low-energy/low-relief
8846	coasts such as upper reaches of bays and estuaries (e.g., Chesapeake and Delaware Bays,
8847	Tampa Bay, Lake Pontchatrain, San Francisco Bay). The presence of sandy barrier
8848	islands and beaches along the majority of the U.S. coastline indicates that erosion, sand
8849	transport and deposition are active processes and will modify coastal environments in
8850	response to future sea-level rise.
8851	
8852	It is very likely that coastal landforms will become even more dynamic and that erosion
8853	will dominate changes in shoreline position over the next century and beyond. Wetlands
8854	with sufficient sediment supply and available land for inland migration may be able to
8855	maintain elevation keeping pace with sea-level rise, but sediment starved wetlands and
8856	those constrained by engineering structures or steep uplands are likely to deteriorate or
8857	convert to open water. On barrier island shores, erosion will very likely occur on both the
8858	ocean front and the back-barrier shorelines due to a combination of storm activity,
8859	sediment starvation, more frequent tidal flooding, and rising water levels.

438 of 800

8860	
8861	It is very likely that many coastal areas in the U.S. will experience an increased
8862	frequency and magnitude of storm-surge flooding and erosion due to storms over this
8863	time period as part of the response to sea-level rise. It is likely that the impacts from these
8864	storm events will extend farther inland than those that would be affected by sea-level rise
8865	alone.
8866	
8867	It is likely that significant portions of the U.S. will undergo large changes to the coastal
8868	system such increased rates of erosion, landward migration, and potential barrier island
8869	collapse (see Chapter 2 for discussion of thresholds). The likelihood of crossing
8870	thresholds leading to barrier collapse will increase with higher rates of sea-level rise. The
8871	barrier coasts of Virginia, North Carolina, and Louisiana are more likely to experience
8872	evidence of collapse prior to other regions of the U.S. Use of "soft" coastal engineering
8873	mitigation activities, such as beach nourishment on large scales using sand dredged from
8874	offshore, may reduce the risk of significant erosion or barrier disintegration temporarily,
8875	however, a major challenge that must be addressed is whether or not these practices can
8876	be maintained for the long-term to provide sustainable erosion protection in the face of
8877	high costs and limited offshore sand resources. There are regions now where high quality
8878	offshore sand is so limited that continued beach nourishment is in question (e.g., Miami
8879	Beach, Outer Banks, NC). The use of "hard" engineering structures (e.g., seawalls,
8880	breakwaters) to mitigate erosion and flooding may be economically justified for urban
8881	coasts, but their use on sandy shores can further exacerbate erosion over time due to
8882	disruption of sediment transport processes. More aggressive alternatives, such as

439 of 800

8883 relocation landward, strategic removal of development or limiting redevelopment

following storm disasters from highly vulnerable parts of the coast may be considered,

8885 especially if the higher, more rapid predicted rates of sea-level rise are realized. If coastal

8886 development is removed or not replaced along the shore, those areas could be converted

to open-space conservation lands that would buffer sea-level rise effects and also provide

8888 recreation and wildlife habitat values.

8889

8890 V.4 PREVIOUS SEA-LEVEL RISE IMPACT ASSESSMENTS

8891 Over the past 25 years, several studies have examined the potential nation-wide impacts

and costs of sea-level rise (e.g., EPA, 1989). This report does not fundamentally change

8893 our understanding; nevertheless, this report quantifies several impacts using new data for

the mid-Atlantic region. If this revised assessment of the Mid-Atlantic is any indication

8895 of what a revised nationwide assessment would yield, then the impacts of sea-level rise

8896 on the U. S. are more sensitive to the *rate* of sea-level rise than previously assumed.

8897

8898 Previous national assessments estimated that the impact of sea-level rise on the Mid-

8899 Atlantic is roughly proportional to how much the sea rises, with some impacts increasing

8900 more than proportionately and others less than proportionately. This assessment implies

that impacts of sea-level rise on the Mid-Atlantic generally increase proportionately or

8902 more than proportionately with the rate of sea-level rise:

8903

Do Not Cite or Quote

440 of 800

890)4	•	Inundation: The area of dry land vulnerable to a 1 meter rise now appears to be 2
890)5		times the area vulnerable to a 50 cm rise (see Chapter 1), rather than 1.5 times as
890)6		previously estimated in EPA's 1989 Report to Congress.
890)7	•	Ocean Coast: Cost of Shore Protection: Previous assessments assumed that shoreline
890	8		retreat resulting from sea-level rise is proportional to how much the sea rises, and
890)9		thus the nationwide cost of protecting the ocean coast would be proportional to sea-
891	0		level rise. This assessment concludes that shoreline retreat may be a nonlinear
891	1		function of sea-level rise (see Chapter 2), and therefore it may follow that the costs
891	2		associated with shoreline protection and replenishment may also increase nonlinearly.
891	3	•	Loss of Existing Wetlands: This assessment suggests that tidal wetlands may be better
891	4		able to keep pace with rising sea level than assumed by previous national
891	5		assessments. The previous nationwide assessments assumed that most mid-Atlantic
891	6		wetlands are unable to keep pace with the current rate and none of the wetlands
891	7		would be able to keep pace with a 2 mm/yr acceleration. This assessment concludes
891	8		that most mid-Atlantic tidal wetlands can keep pace with today's rate of sea-level
891	9		rise, and that they would be marginal (but not necessarily lost) with a 2 mm/yr
892	20		acceleration (see Chapter 3). Like previous assessments, we conclude that a 7 mm/yr
892	21		acceleration would cause the loss of most existing tidal wetlands in the Mid-Atlantic.
892	22	•	Creation of New Wetlands: This assessment shows that previous nationwide
892	.3		assessments over-estimated the potential for the inland migration of coastal wetlands
892	24		in the Mid-Atlantic, for two reasons. First: this assessment finds that the amount of
892	25		land low enough to convert to sea-level rise is about 15-25 percent of the current area
892	.6		of tidal wetlands, while past assessments found that the area was comparable to the

441 of 800

- 8927 current area of tidal wetlands. Second, it is now better understood that, due to human
- 8928 activities (*e.g.*, shore protection, land use), substantially less land may become
- submerged than previously estimated.
- 8930

8931 V.5 AREA OF LAND VULNERABLE TO TIDAL INUNDATION

8932 The EPA (1989) Report to Congress remains the sole *nationwide* estimate of the dry land

that could be inundated by the tides with a 50 or 100 cm rise in sea level⁴⁵. The report

estimated that a one meter rise in sea level would inundate approximately 20,000 km² of

8935 dry land. This report grouped the sites into seven regions, one of which was New York to

8936 Virginia, which the report defined as "mid-Atlantic." Our new estimate of the land

vulnerable to a 2 m rise is about 30 percent less than the estimate from the 1989 report.

8938 Our estimates of the land vulnerable to a 50 or 100 cm rise, however, are 50-60 percent

less than those of the 1989 study. The key difference is that our newer data suggest that

that dry land is uniformly distributed by elevation below 5 m, although Park *et al.* (1989)

found the dry land to be disproportionately close to sea level. The Report to Congress, in

effect, estimated land to be 30-40 cm lower on average than this study.

8943

8944 V.5.1 Early Cost Estimates of Shore Protection

8945 EPA's 1989 Report to Congress and associated studies estimated the nationwide cost of

- shore protection as sea level rises. More recent studies by Yohe et al. (1996) prepared
- 8947 refined estimates more consistent with economic and decision theory, but relied mostly
- 8948 on the same data. A 1 m rise, EPA estimated, would entail shore protection costs of

Do Not Cite or Quote

⁴⁵ The study excluded Alaska and Hawaii.

8949	\$143-305 billion, mostly for beach nourishment and elevating the land and structures on	
8950	coastal barrier islands. Based on an analysis by Weggel et al., the study estimates that the	
8951	cost of protecting estuarine shores with dikes and bulkheads would be about \$11-33	
8952	billion, with a cost of \$5 billion for the Mid-Atlantic (1985).	
8953		
8954	Weggel et al. (1989) calculated that approximately 9,300 km of shoreline would require	
8955	new or rebuilt shore protection. This number, however, only considers existing	
8956	development-consideration of recent and future development would likely increase	
8957	estimates of total cost of shore protection.	
8958		
8959	The possibility that more shore protection will be undertaken than was estimated in 1989	
8960	is not the only possible source of error in the cost estimates of that study. Other factors	
8961	that could lead to higher costs than previously estimated include:	
8962	• The cost of preserving Louisiana's wetlands and the development behind them were	
8963	not explicitly addressed.	
07.00		
8964	• The assumption that a dike is designed for the 100-year storm may underestimate the	
8965	cost of dike construction if communities decide that a greater degree of protection is	
8966	needed.	
8967	• The possibility of increased storm intensity may require larger dikes, and dikes in	
8968	areas where bulkheads might have otherwise been sufficient.	
8969	• The trend has been away from bulkheads and toward other types of shore structures	
8970	that are more expensive.	

Do Not Cite or Quote

443 of 800

8971	• The estimated costs of shore protection were much greater along estuarine shores
8972	because EPA (1989) assumed that developed barrier islands would be elevated but
8973	that mainland communities would be protected with bulkheads or dikes, which are
8974	less expensive. Some mainland communities where dikes are infeasible or
8975	aesthetically unacceptable might be elevated as well.
8976	
8977	EPA (1989) assumed a gradual increase in sand costs as nearshore supplies were depleted
8978	and it became necessary to add booster pumps to the dredging projects to move sand
8979	increasing distances. The study assumed that all of the required sand would be available
8980	within 10 km of the shore (or available from land sources) at a cost of \$20 per cubic
8981	meter. That assumption may have been too optimistic. Recent offshore mapping studies
8982	and assessments of marine aggregates by USGS suggest that many regions of the U.S.,
8983	including much of the Mid-Atlantic, have limited usable marine sand resources and sand
8984	volumes might not be sufficient to sustain long-term beach nourishment (S.J. Williams,
8985	USGS, personal communication).
8986	
8987	V.5.2 Coastal Wetlands
8988	The change in the area of coastal wetlands would be the net result of the loss of existing
8989	wetlands and the creation of new wetlands as previously dry areas are inundated by the
8990	tides. EPA's 1989 Report to Congress quantified the nationwide loss of coastal wetlands
8991	as sea level rises. That report estimated that if developed areas are protected, then a 50
8992	and 100 cm rise in global sea level would cause the nationwide area of coastal wetlands

Do Not Cite or Quote

444 of 800

to decline by 20-45 and 29-69%, respectively. For the Mid-Atlantic, the correspondingestimates were 27 and 46%.

8995

Our findings on the loss of existing wetlands imply that if sea-level rise accelerates 2
mm/yr, our uncertainty about the net loss of wetlands is much greater than previously
estimated. But with a 7 mm/yr acceleration, the net loss of coastal wetlands is likely to be
more than previously estimated.

9000

9001 V.6 CONCLUSIONS

9002 The scientific evidence observed over the past several decades demonstrates with little 9003 doubt that the global climate is changing, largely due to carbon emissions from human 9004 activities (IPPC, 2007). Sea-level rise is one of the impacts of climate change that will 9005 have profound effects on coastal regions of the United States over the next century and 9006 beyond. The scientific tools and techniques for predicting the effects of future sea-level 9007 rise on coastal systems are superior to what was available just a decade ago, but much 9008 remains to be done in order to make reliable predictions. Improved data collection, 9009 monitoring of coastal change, and improvements in computer modeling will lead to better 9010 understanding and prediction of environmental conditions that are likely to impact the 9011 U.S. in the decades ahead. Planning for near future impacts of sea-level rise and 9012 increased storminess should include evaluation of a number of alternatives, such as shore 9013 protection and strategic relocation of development and population centers. Those 9014 decisions should be based careful consideration of long-term benefits for a sustainable

Do Not Cite or Quote

445 of 800

9015	future and the total economic and environmental costs of various methods of shore
9016	protection and adaptation.
9017	
9018	PART V OVERVIEW REFERENCES
9019	Anders, F.J. and M.R. Byrnes, 1991: Accuracy of shoreline change rates as determined
9020	from maps and aerial photographs. Shore and Beach, 59(1), 17-26.
9021	Braatz, B.V. and D.G. Aubrey, 1987: Recent relative sea-level change in eastern North
9022	America. In: Sea-level fluctuation and coastal evolution [Nummedal, D., O.H.
9023	Pilkey, and J.D. Howard (eds.)]. Society of Economic Paleontologists and
9024	Mineralogists Special Publication Number 41, The Society, Tulsa, OK, pp. 29-48.
9025	Crowell, M., B.C. Douglas, and S.P. Leatherman, 1997: On forecasting future U.S.
9026	shoreline positions: a test of algorithms. Journal of Coastal Research, 13, 1245 -
9027	1255.
9028	Crowell, M. and S.P. Leatherman, 1999: Coastal erosion mapping and management.
9029	Journal of Coastal Research, Special Issue 28, 196 pp.
9030	Dingler, J.R. and H.E. Clifton, 1994: Barrier systems of California, Oregon, and
9031	Washington. In: Geology of Holocene Barrier Island Systems [Davis, R.A. (ed.)].
9032	Springer-Verlag, Berlin and New York, pp. 115-165.
9033	Dolan, R., F. Anders, and S. Kimball, 1985: Coastal Erosion and Accretion: National
9034	Atlas of the United States of America. U.S. Geological Survey, Reston, VA, 1
9035	sheet.
9036	Dolan, R., M.S. Fenster, and S.J. Holme, 1991: Temporal analysis of shoreline recession
9037	and accretion. Journal of Coastal Research, 7(3), 723-744.
9038	Douglas, B.C., M. Crowell, and S.P. Leatherman, 1998: Consideration for shoreline
9039	position prediction. Journal of Coastal Research, 14(3), 1025-1033.

446 of 800

CCSP 4.1	

9040	Environmental Protection Agency, 1989: Potential Effects of Global Climate Change
9041	on the United States: Report to Congress. Appendix B: Sea Level Rise. EPA 230-
9042	05-89-052. Office of Policy, Planning, and Evaluation Washington, DC.
9043	Emery, K.O. and D.G. Aubrey, 1991: Sea Levels, Land Levels, and Tide Gauges.
9044	Springer-Verlag, New York, 237 pp.
9045	FitzGerald, D.M., P.S. Rosen, and S. van Heteren, 1994: New England barriers. In:
9046	Geology of Holocene Barrier Island Systems [Davis, R.A. (ed.)]. Springer-Verlag,
9047	New York, p. 305-394.
9048	Galloway, D., D.R. Jones, and S.E. Ingebritsen, 1999: Land subsidence in the United
9049	States. USGS Circular 1182, [Reston, VA], U.S. Geological Survey, 177 pp.
9050	Available at http://purl.access.gpo.gov/GPO/LPS22430
9051	Genz, A.S., C.H. Fletcher, R.A. Dunn, L.N. Frazer, and J.J. Rooney, 2007: The
9052	predictive accuracy of shoreline change rate methods and alongshore beach
9053	variation on Maui, Hawaii. Journal of Coastal Research, 23(1), 87-105.
9054	Gornitz, V.M. and P. Kanciruk, 1989: Assessment of global coastal hazards from sea
9055	level rise. In: Coastal Zone '89: Proceedings of the Sixth Symposium on Coastal
9056	and Ocean Management, July 11-14, 1989, Charleston, SC. American Society of
9057	Civil Engineers, New York, 1345-1359.
9058	Gornitz, V.M., 1990: Vulnerability of the east coast, USA to future sea-level rise.
9059	Journal of Coastal Research, Special Issue 9, 201-237.
9060	Gornitz, V.M., R.C. Daniels, T.W. White, and K.R. Birdwell, 1994: The development of
9061	a coastal risk assessment database: vulnerability to sea-level rise in the U.S.
9062	southeast. Journal of Coastal Research, Special Issue 12, 327-338.
9063	Hayes, M.O., 1979: Barrier island morphology as a function of tidal and wave regime.
9064	In: Barrier Islands: From the Gulf of St. Lawrence to the Gulf of Mexico
9065	[Leatherman, S.P. (ed.)]. Academic Press, New York, pp. 211-236.

447 of 800

|--|

9066	Hampton, M. and G. Griggs, 2004: Formation, Evolution, and Stability of Coastal
9067	Cliffs: Status and Trends. U.S. Geological Survey Professional Paper 1693, U.S.
9068	Geological Survey, Reston, VA, 129 pp. Available at
9069	http://purl.access.gpo.gov/GPO/LPS61207
9070	Hapke, C.J., D. Reid, B.M. Richmond, P. Ruggiero, and J. List, 2006: National
9071	Assessment of Shoreline Change Part 3: Historical Shoreline Change and
9072	Associated Coastal Land Loss Along Sandy Shorelines of the California Coast.
9073	U.S. Geological Survey Open-File Report 2006-1219, U.S. Geological Survey,
9074	Reston, VA, 79 pp. Available at http://purl.access.gpo.gov/GPO/LPS86269
9075	Hapke, C.J. and D. Reid, 2007: The National Assessment of Shoreline Change Part 4:
9076	Historical Coastal Cliff Retreat Along the California Coast. U.S. Geological
9077	Survey Open-file Report 2007-1133, U.S. Geological Survey, Reston, VA, 51 pp.
9078	Available at http://purl.access.gpo.gov/GPO/LPS87861
9079	The Heinz Center, 2000: Evaluation of Erosion Hazards. The H. John Heinz III Center
9080	for Science, Economics and the Environment, Washington, DC, 203 pp.
9081	Honeycutt, M.G., M. Crowell, and B.C. Douglas, 2001: Shoreline position forecasting:
9082	impacts of storms, rate-calculation methodologies, and temporal scales. Journal of
9083	Coastal Research, 17(3), 721-730.
9084	Kearney, M.S. and J.C. Stevenson, 1991: Island land loss and march vertical accretion
9085	rate evidence for historical sea-level changes in the Chesapeake Bay. Journal of
9086	Coastal Research, 7, 403-415.
9087	Komar, P.D., 1998: The Pacific Northwest Coast, Living with the Shores of Oregon and
9088	Washington. Duke University Press, Durham, NC, 195 pp.
9089	Komar, P.D., 2004: Oregon's coastal cliffs: processes and erosion impacts. In:
9090	Formation, Evolution, and Stability of Coastal Cliffs Status and Trends
9091	[Hampton, M. and G. Griggs (eds.)]. U.S. Geological Survey Professional Paper
9092	1693, U.S. Geological Survey, Reston, VA, pp. 65-80.

448 of 800

CCSP 4.1	

9093	Leatherman, S.P., 1989: National assessment of beach nourishment requirements
9094	associated with accelerated sea level rise. In: Potential Effects of Global Climate
9095	Change on the United States: Report to Congress. Appendix B: Sea Level Rise.
9096	EPA 230-05-89-052, EPA, Office of Policy, Planning, and Evaluation,
9097	Washington, DC, [30 pp.]
9098	Moore, L., P. Ruggiero, and J. List, 2006: Comparing mean high water and high water
9099	line shorelines: should proxy-datum offsets be incorporated in shoreline change
9100	analysis? Journal of Coastal Research, 22(4), 894-905.
9101	Morton, R.A., J. G. Paine, and J.C. Gibeaut, 1994: Stages and durations of post-storm
9102	recovery, southeastern Texas coast, USA. Journal of Coastal Research, 10, 214-
9103	226.
9104	Morton, R.A., and T.L. Miller, 2005: National Assessment of Shoreline Change Part 2:
9105	Historical Shoreline Changes and Associated Coastal Land Loss Along the U.S.
9106	Southeast Atlantic Coast. U.S. Geological Survey Open-File Report 2005-1401,
9107	U.S. Geological Survey, [Reston, VA], 35 pp. Available at
9108	http://purl.access.gpo.gov/GPO/LPS87862
9109	Park, R.A, M.S. Trehan, P.W. Mausel, and R.C. Howe, 1989: The effects of sea level
9110	rise on U.S. coastal wetlands. In: Potential Effects of Global Climate Change on
9111	the United States. Report to Congress. Appendix B: Sea Level Rise. EPA 230-05-
9112	89-052, EPA, Office of Policy, Planning, and Evaluation, Washington, DC, [55
9113	pp.]
9114	Peltier, W.R., 2001: Global glacial isostatic adjustment and modern instrumental records
9115	of relative sea level history. In: Sea Level Rise: History and Consequences.
9116	[Douglas, B.C., M.S. Kearney, and S.P. Leatherman (eds.)]. International
9117	Geophysics Series volume 75, Academic Press, San Diego, CA, pp. 65-95.
9118	Pendleton, E.A., S.J. Williams, and E.R. Thieler, 2004: Coastal Vulnerability
9119	Assessment of Assateague Island National Seashore (ASIS) to Sea-level Rise:

449 of 800

С	CSP	4.1

9120	U.S. Geological Survey Open-File Report 2004-1020, U.S. Geological Survey,
9121	Reston, VA. Available at http://pubs.usgs.gov/of/2004/1020/
9122	Reed, D.J., D.A. Bishara, D.R. Cahoon, J. Donnelly, M. Kearney, A.S. Kolker, L.L.
9123	Leonard, R.A. Orson, and J.C. Stevenson, 2007: Site-Specific Scenarios for
9124	Wetlands Accretion as Sea Level Rises in the Mid-Atlantic Region. Report to the
9125	Climate Change Division, Environmental Protection Agency. University of New
9126	Orleans, New Orleans, LA, 49 pp.
9127	Roberts, H.H., A. Bailey, and G.J. Kuecher, 1994: Subsidence in the Mississippi River
9128	delta - Important influences of valley filling by cyclic deposition, primary
9129	consolidation phenomena, and early diagenesis. Gulf Coast Association of
9130	Geological Societies Transactions, 44, 619-629.
9131	Ruggiero, P., G.M. Kaminsky, and G. Gelfenbaum, 2003: Linking proxy-based and
9132	datum based shorelines on a high-energy coastline: implications for shoreline
9133	change analyses. Journal of Coastal Research, Special Issue 38, 57-82.
9134	Thieler, E.R. and E.S. Hammar-Klose, 1999: National Assessment of Coastal
9135	Vulnerability to Future Sea-level Rise — Preliminary Results for U.S. Atlantic
9136	Coast. U.S. Geological Survey Open-File Report 99-593, U.S. Geological Survey,
9137	[Reston, VA.] Available at http://pubs.usgs.gov/of/1999/of99-593/
9138	Thieler, E.R., E.A. Himmelstoss, J.L. Zichichi, and T.L. Miller, 2005: Digital Shoreline
9139	Analysis System (DSAS) Version 3.0; An ArcGIS© Extension for Calculating
9140	Shoreline Change. U.S. Geological Survey Open-File Report 2005-1304, U.S.
9141	Geological Survey, Reston, VA. Available at http://pubs.usgs.gov/of/2005/1304
9142	Titus, J.G. and M.S. Greene, 1989: An overview of the nationwide impacts of sea level
9143	rise. In: Potential Effects of Global Climate Change on the United States. Report
9144	to Congress. Appendix B: Sea Level Rise. EPA 230-05-89-052, EPA, Office of
9145	Policy, Planning, and Evaluation, Washington, DC, [55 pp.].

450 of 800

9146	Titus, J.G., R.A. Park, S.P. Leatherman, J.R. Weggel, M.S. Greene, P.W. Mausel, M.S.
9147	Trehan, S. Brown, C. Grant, and G.W. Yohe, 1991: Greenhouse effect and sea
9148	level rise: loss of land and the cost of holding back the sea. Coastal Management,
9149	19(2) ,171-204.
9150	Tornqvist, T.E., J.L. Gonzalez, L.A. Newson, K. van der Borg, A. de Jong, and C.
9151	Kurnik, 2004: Deciphering Holocene sea-level history on the U.S. Gulf Coast: a
9152	high-resolution record from the Mississippi Delta. Geological Society of America
9153	Bulletin, 116(7/8), 1026-1039.
9154	U.S. Army Corps of Engineers, 1971: National Shoreline Study, California Regional
9155	Inventory. Corps of Engineers, San Francisco, CA, 106 pp.
9156	Walker, H.J. and J.M. Coleman, 1987: Atlantic and Gulf Coast province. In:
9157	Geomorphic Systems of North America [Graf, W.L. (ed.)]. Geological Society of
9158	America centennial special volume 2, Geological Society of America, Boulder
9159	Colorado, pp. 51-110.
9160	Weggel, J.R, S. Brown, J. C.Escajadillo, P.Breen, and E.L. Doheny, 1989: The cost of
9161	defending developed shorelines along sheltered water of the United States from a
9162	two meter rise in mean sea level. In: Potential Effects of Global Climate Change
9163	on the United States. Report to Congress. Appendix B: Sea Level Rise. EPA 230-
9164	05-89-052, EPA, Office of Policy, Planning, and Evaluation, Washington, DC,
9165	[90 pp.]
9166	Williams, S.J., 2003: Coastal and marine processes, Chapter 1.1.3.2. In: Our Fragile
9167	World: Challenges and Opportunities for Sustainable Development:
9168	Encyclopedia of Life Support Systems (EOLSS), [Cilek, V. (ed.)]. Developed
9169	under the auspices of the UNESCO [http://www.eolss.net], EOLSS Publishers,
9170	Oxford, UK, 13 p.
9171	Yohe, G., J.E. Neumann, P. Marshall, and H. Amaden 1996: The economic cost of
9172	greenhouse induced sea level rise for developed property in the United States.
9173	Climatic Change, 32(4), 387-410.

451 of 800

9174	
9175	Zervas, C., 2001: Sea Level Variations of the United States 1854-1999. NOAA Technical
9176	Report NOS CO-OPS 36, NOAA National Ocean Survey, Silver Spring, MD, 201
9177	pp. Available at http://tidesandcurrents.noaa.gov/publications/techrpt36doc.pdf
9178	Zhang, K., B.C. Douglas, and S.P. Leatherman, 2004: Global warming and coastal
9179	erosion. <i>Climatic Change</i> , 64(1-2) , 41-58.
9180	

Do Not Cite or Quote

452 of 800