317 **Preface**

318

319	The U.S. Climate Change Science Program (CCSP) was launched in February 2002 as a
320	collaborative interagency program, under a new cabinet-level organization designed to
321	improve the government-wide management of climate science and climate-related
322	technology development. The mission of the CCSP is to "facilitate the creation and
323	application of knowledge of the Earth's global environment through research,
324	observations, decision support, and communication." As part of this mission, this report
325	is one of twenty-one synthesis and assessment products (SAPs) identified in the Strategic
326	Plan for the U.S. Climate Change Science Program (CCSP, 2003). The SAPs are
327	intended to support informed discussion and decisions by policymakers, resource
328	managers, stakeholders, the media, and the general public. The products help meet the
329	requirements of the Global Change Research Act of 1990, which directs agencies to
330	"produce information readily usable by policymakers attempting to formulate effective
331	strategies for preventing, mitigating, and adapting to the effects of global change" and to
332	undertake periodic scientific assessments. This SAP (4.1) on Coastal Sensitivity to Sea-
333	Level Rise: A Focus on the Mid-Atlantic Region provides a detailed assessment of the
334	effects of sea-level rise on coastal environments and presents some of the challenges that
335	will need to be addressed to adapt to sea-level rise while protecting environmental
336	resources and sustaining economic growth.
337	
338	A large and expanding proportion of the U.S. population and associated urban

development is located along the coasts of the United States and is increasingly affected

Do Not Cite or Quote

8 of 800

	<u>CCSP 4.1</u> February 12, 2008
340	by the natural processes associated with coastal change from storms and sea-level rise.
341	Recent international assessments of climate change and related impacts indicate that the
342	rate of sea-level rise is increasing in association with a warming ocean and melting ice
343	caps and glaciers. Future sea-level rise is expected to increase at rates exceeding those
344	observed over the last century, and the rise could be exponential rather than linear as it
345	has been (Bindoff et al., 2007; Meehl et al., 2007). Rising sea levels will potentially
346	affect large portions of the U.S. coast, presenting challenges to those residing at and
347	using the coast, as well as to the sustainability of critical coastal habitats and ecosystems.
348	
349	P.1 SCOPE AND APPROACH OF THIS REPORT
350	The focus of this report is to review and identify the potential impacts of future sea-level
351	rise based on the state of our present scientific understanding. To do so, this report
352	evaluates several aspects of sea-level rise impacts to the natural environment and also
353	examines the impact to human development. In addition, the report addresses the
354	interplay between sea-level rise impacts and human adaptation measures, and assesses the
355	role of the existing coastal management infrastructure in identifying and responding to
356	potential challenges.
357	
358	The report focuses on the mid-Atlantic coast of the United States which consists of the
359	region between Montauk, New York and Cape Lookout, North Carolina. While other
360	regions in the U.S. such as the Gulf coast are potentially as or more vulnerable to sea-
361	level rise, the Mid-Atlantic is also a region where high population density and extensive
362	coastal development could be at risk. In addition, there is substantial scientific research

9 of 800

363	on the mid-Atlantic coast, as well as recent studies of this region by EPA and NOAA, as
364	listed in the Strategic Plan for the U.S. Climate Change Science Program (CCSP, 2003).
365	
366	The development of this report was guided by ten prospectus questions, focusing on
367	different aspects of future sea-level rise and the impact to the coastal environment. The
368	first four prospectus questions focus on evaluating the impact to and vulnerability of the
369	natural environment. Specifically, these questions are:
370	1. Which lands are currently at an elevation that could lead them to be inundated
371	without shore protection measures? (Chapter 1)
372	2. How does sea-level rise change the coastline? Among those lands with sufficient
373	elevation to avoid inundation, which land could potentially erode in the next
374	century? Which lands could be transformed by related coastal processes? (Chapter
375	2)
376	3. What is a plausible range for the ability of wetlands to vertically accrete, and how
377	does this range depend on whether shores are developed and protected, if at all?
378	That is: will sea-level rise cause the area of wetlands to increase or decrease?
379	(Chapter 3)
380	4. Which lands have been set aside for conservation uses so that wetlands will have
381	the opportunity to migrate inland; which lands have been designated for uses
382	requiring shore protection; and which lands could realistically be available for
383	either wetland migration or coastal development requiring shore protection?
384	(Chapter 5)

CCSP 4.1

10 of 800

385	The remaining prospectus questions focused on the societal impacts expected with future
386	sea-level rise. These questions are:
387	5. What are the potential impacts of sea-level rise on coastal floodplains? What issues
388	would FEMA, coastal floodplain managers, and coastal communities face as sea level
389	rises? (Chapter 8)
390	6. What are the population, infrastructure, economic activity, and value of property
391	within the area potentially inundated by rising sea level given alternative levels of
392	shore protection? (Chapter 6)
393	7. How does sea-level rise affect the public's access to, and use of, the shore?
394	(Chapter 7)
395	8. Which species depend on habitat that may be lost due to sea-level rise given
396	various levels of shore protection and other response options? (Chapter 4)
397	9. Which decisions and activities (if any) have outcomes sufficiently sensitive to sea-
398	level rise so as to justify doing things differently, depending on how much the sea is
399	expected to rise? (Chapter 9)
400	10. What adaptation options are being considered by specific organizations that
401	manage land or regulate land use for environmental purposes? What other adaptation
402	options are being considered by federal, state or local governments? What are the
403	specific implications of each option? What are the institutional barriers to preparing
404	for sea-level rise? (Chapters 10 and 11)
405	
406	The first four questions are addressed for the entire mid-Atlantic study area, whereas our

407 answers to most of the latter questions are focused on sub-regions, based on site-specific

Do Not Cite or Quote

11 of 800

	<u>CCSP 4.1 February 12, 2008</u>
408	examples, direct observations, stakeholder input, or case studies. During the preparation
409	of this report, three regional stakeholder meetings were held between the author team and
410	representatives from local, county, and state agencies, other federal agencies and non-
411	governmental organizations. Many of the prospectus questions were discussed in detail
412	with the audience and the feedback was incorporated into the report.
413	
414	Many of the findings expressed in this report are expressed using common expressions of
415	likelihood as in the most recent Intergovernmental Panel on Climate Change (IPCC)
416	Assessment. These likelihood determinations were established by the report authors and
417	modeled after other CCSP SAPs (e.g. Karl et al., 2006) (Figure P1). These

- 418 determinations are based on the judgment of authors and the published uncertainties in
- 419 literature cited.
- 420

423

424 In some cases, specific chapters may incorporate more quantitative assessment of

425 uncertainty related to a specific analysis conducted to address a specific question in the

- 426 report.
- 427

Do Not Cite or Quote

12 of 800

428

429	P.2 FUTURE SEA LEVEL SCENARIOS ADDRESSED IN THIS REPORT
430	In this report, the term "sea level" refers to mean sea level or the average level of tidal
431	waters, generally measured over a 20-year period (See Glossary). These measurements
432	generally indicate the water level relative to the land, and thus incorporate changes in the
433	elevation of the land as well as absolute changes in sea level (e.g., relative sea level). For
434	clarity, scientists often use two different terms:
435	• "Global sea-level rise" is the worldwide increase in the volume of the world's
436	oceans that occurs due to a range of factors with the most significant being 1) the
437	thermal expansion of the oceans surface layers and 2) the melting of land-based
438	ice sheets, ice caps, and glaciers.
439	• "Relative sea-level rise" refers to the change in sea level relative to the elevation
440	of the land, which can also rise or subside. Relative sea-level changes include
441	both global sea-level rise and changes in the vertical position of the land surface.
442	
443	In this report, the term "sea-level rise" refers to "relative sea-level rise."
444	
445	This report does not provide a forecast of future rates of sea-level rise. Instead, it
446	evaluates the implications of three sea-level rise scenarios:
447	• Scenario 1: the 20th century rate, which is generally 3-4 mm/yr in the mid-
448	Atlantic region
449	• Scenario 2: the 20th century rate + 2 mm/yr acceleration (up to 50 cm by the year
450	2100)

Do Not Cite or Quote

13 of 800

451

452	
453	The 20th century rate of sea-level rise refers to the local long-term rate of sea-level rise
454	that has been observed at tide gauges in the mid-Atlantic study region. Scenario 1 thus
455	assesses the impacts if future sea-level rise occurs at the same rate as was observed over
456	the last century at a particular location. Scenarios 1 and 2 are within the range of those
457	reported in the recent IPCC report (Bindoff et al., 2007), while Scenario 3 exceeds this
458	range by up to 40 cm by 2100. Scenario 3 reflects concerns that the IPCC values might
459	be conservative and are less than high estimates suggested by more recent publications.
460	In addition to these three scenarios, some chapters refer to higher sea-level rise scenarios,
461	such as a 2 m rise over the next few hundred years (a conservative estimate if ice sheet
462	melting on Greenland and Antarctica exceeds IPCC model estimates).
463	
464	P.3 REPORT ORGANIZATION
465	This report first provides context and then presents the results of our synthesis and
466	assessment in six parts and eight appendices:
467	
468	Part I analyzes the effects of sea-level rise on the physical environment. Chapters in Part
469	I discuss (1) the extent of low-lying land that occurs below future sea-level rise scenarios
470	(Chapter 1); (2) the physical changes at the coast that will result in changes to coastal
471	landforms (e.g. barrier islands) and shoreline position in response to sea-level rise
472	(Chapter 2); (3) the ability of wetlands to accumulate sediments and survive in response

• Scenario 3: the 20th century rate + 7 mm/yr acceleration (up to 100 cm by 2100)

Do Not Cite or Quote

14 of 800

	<u>CCSP 4.1</u> February 12, 2008
473	to rising sea level (Chapter 3); and (4) the habitat and species that will be vulnerable to
474	sea-level rise related impacts (Chapter 4).
475	
476	Part II describes the societal impacts and implications of sea-level rise. Chapter 5
477	provides a framework for assessing shoreline protection options in response to sea-level
478	rise. Chapter 6 discusses the extent of vulnerable population and infrastructure, and
479	Chapter 7 addresses the implications for public access to the shore. Chapter 8 reviews the
480	impact of sea-level rise to flood hazards.
481	
482	Part III examines strategies for coping with sea-level rise. Chapter 9 outlines key
483	considerations when making decisions to reduce vulnerability. Chapter 10 discusses what
484	organizations are doing now to adapt to sea-level rise, and Chapter 11 examines possible
485	institutional barriers to adaptation.
486	
487	Part IV introduces and highlights some mid-Atlantic local case studies of coastal
488	elevations and sensitivity to sea-level rise, which are then explored further in Appendices
489	A-G.
490	
491	Part V discusses sea-level rise impacts and implications at a national scale and briefly
492	highlights how coasts in other parts of the U.S. are vulnerable to sea-level rise.
493	
494	Part VI presents some recommendations for future effort to reduce uncertainty and close
495	gaps in scientific knowledge and understanding.

15 of 800

496	
497	Appendices A-G provide maps and tables showing coastal elevations, scenarios of
498	flooding and erosion mitigation, and discussions of particular areas of environmental
499	significance that may be vulnerable to sea-level rise. Appendix H reviews some of the
500	basic approaches that have been used to conduct shoreline change or land loss
501	assessments in the context of sea-level rise and some of the difficulties that arise in using
502	these methods.
503	
504	While the authors strove to limit technical jargon in the report, technical and scientific
505	terms occur throughout the report. To aid readers with some of these terms, a Glossary is
506	included at the end of this Report.
507	
508	PREFACE REFERENCES
509 510	Bindoff N.L. <i>et al.</i> (2007) Observations: Oceanic Climate Change and Sea Level. In:
511	Climate Change 2007: The Physical Science Basis. Contribution of
512	Working Group I to the Fourth Assessment Report of the Intergovernmental
513	Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M.
514	Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University
515	Press, Cambridge, United Kingdom and New York, NY, USA.
516	CCSP, 2003: Strategic Plan of the U.S. Climate Change Science Program. A Report by
517	the Climate Change Science Program and the Subcommittee on Global Change
518	Research. CCSP Coordination Office, Washington, DC, 202.
519	Karl, T.R., S.J. Hassol, C. D. Miller, and W. L. Murray, eds, 2006: Temperature Trends
520	in the Lower Atmosphere: Steps for Understanding and Reconciling Differences.

16 of 800

	<u>CCSP 4.1</u> February 12, 2008
521	A Report by the Climate Change Science Program and the Subcommittee on
522	Global Change Research, Washington, DC.
523 524	Meehl, G.A. et al. (2007) Global Climate Projections. In: Climate Change 2007: The
525	Physical Science Basis. Contribution of Working Group I to the Fourth
526	Assessment Report of the Intergovernmental Panel on Climate Change
527	[Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt,
528	M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge,
529	United Kingdom and New York, NY, USA.

17 of 800

530	Executive Summary
531	
532	Authors: K. Eric Anderson, USGS; Donald R. Cahoon, USGS; Stephen K. Gill, NOAA;
533	Benjamin T. Gutierrez, USGS; E. Robert Thieler, USGS; James G. Titus, EPA; S.
534	Jeffress Williams, USGS
535	
536	Editor: Anne M. Waple, STG Inc.
537	
538	1. SEA-LEVEL RISE IN THE MID-ATLANTIC
539	Global sea level is rising and is expected to accelerate. Global sea level is primarily
540	affected by the proportion of water that exists in ocean basins and the amount that is held
541	in glaciers and ice sheets. Sea level has risen and declined as the climate has cooled
542	(producing ice ages) and warmed (melting ice sheets) over the past several million years.
543	Sea level has risen about 120 m (390 ft) since the peak of the last ice age approximately
544	21,000 years ago. During the last 10,000 years, by contrast, global sea level has been
545	relatively stable, enabling development of human civilization along the coasts.
546	
547	Recent assessments have indicated that the rate of sea-level rise increased between the
548	mid-19th and mid-20th centuries. Global sea level rose at an average rate of 1.7 mm/yr
549	over the 20th century, with an increased rate of 3.1 mm/yr from 1993 to 2003. In the mid-
550	Atlantic region from New York to North Carolina, tide gauge observations indicate that
551	relative sea-level rise rates have exceeded the global rate due to a combination of land

18 of 800