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INTRODUCTION 
 
The purpose of this paper is to gather and review the different methods of transforming 
geocentric coordinates to geodetic coordinates. The direct procedure is fairly simple and 
straightforward.  Formulas for this transformation will be given in the next section.  
Problems exist for the reverse transformation since no pure inverse relationship exists.  
The methods presented can be broken down into two general categories: iterative and 
direct or non-iterative methods. 
 
 

BASIC CONCEPTS 
 
Before beginning the evaluation, some basic concepts of geometric geodesy are 
presented.  For a comprehensive treatment of the topic the readers are encouraged to read 
Rapp [1998], Torge [2001], Vanicek and Krakiwsky [1991], or a number of other 
introductory geodesy textbooks.  The following definitions will be used. 
 
a = semi-major axis of the ellipse (equatorial axis) 
b = semi-minor axis of the ellipse (polar axis) 
C = center of curvature of the meridian ellipse 

f = flattening: 
a

baf −
=  

e = first eccentricity:  2

22
2

a
bae −

=  

e’ = second eccentricity:  2

22
2'

b
bae −

=   

Eh = error in height 
Eϕ = error in latitude 
h = geodetic height  

                                                 
1 Paper presented at the ACSM Annual Conference and Technology Exhibition, Orlando, FL, April 21-26, 
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M = radius of curvature in the meridian: ( )
( )

( )
3

2

2
322

2 1

sin1

1
W

ea

e

eaM −
=

−

−
=

ϕ
 

N = radius of curvature in the prime vertical: 
W
a

e
aN =

−
=

ϕ22 sin1
 

p = distance from the polar axis to the point:  ϕcos)(22 hNYXp +=+=  

R = distance from the origin to the point: 222 ZYXR ++=  
W = constant:  ϕ222 sin1 eW −=
X, Y, Z = Cartesian, geocentric coordinates of a point 
β = reduced or parametric latitude (sometimes referred to as eccentric latitude) 
λ = geodetic longitude 
ϕ = geodetic latitude 
Ψ = geocentric latitude 
 
Looking at the meridional ellipse, one can see that three different latitudes can be 
displayed as shown in figure 1 [Rapp, 1989].  The geodetic latitude, ϕ, is the angle 
formed in the meridional plane where the normal to the ellipsoid intersects the equatorial 
axis.  Note that this point is generally not at the center of the ellipse.  The reduced 
latitude, β, is the angle measured at the center of the equivalent circle from the equatorial 
plane to point P’ on the circumference of the circle (line OP’ in figure 1).  The reduced 
latitude is frequently referred to as the parametric latitude.  Finally, the geocentric 
latitude, ψ, is the angle measured at the center of the ellipse from the equatorial axis to 
the point on the ellipse (line OP in figure 1).  From Rapp [1989] numerous mathematical 
relationships between these latitudes can be developed.  For example, one can write 
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CARTESIAN-GEODETIC COORDINATE RELATIONSHIPS 
 
The direct problem involves the computation of the X-, Y-, and Z-coordinates of a point 
given the latitude, longitude, and height.  These relationships are well known and can be 
derived with the help of the relationships shown in figure 1.  The direct problem is solved 
using: 
 

( )
( )
( )[ ] ϕ

λϕ
λϕ

sin1
sincos
coscos

2 heNZ
hNY
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+=
+=
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Figure 1.  Meridional Ellipse. 

 
 
The inverse association is not that easy, especially when solving for the latitude.  The 
longitude can be easily computed by dividing Y by X.  Hence, 
 

( )
( ) λ

λϕ
λϕ tan

sincos
coscos

=
+
+

=
hN
hN

X
Y  

 
Therefore, 

⎟
⎠
⎞

⎜
⎝
⎛= −

X
Y1tanλ  

 
The complexity of the latitude computation lies in the fact that the radius of curvature in 
the prime vertical contains the latitude and one cannot easily isolate that variable without 
making some simplification of the formula.  Because of this, two approaches have been 
devised.  The first is an iterative approach while the second uses a direct solution. 
 
 

ITERATIVE METHODS 
 
Borkowski’s Iterative Method 
 
Borkowski [1989] presented an iterative approach where the successive approximations 
are performed on the reduced latitude (see also Gerdan and Deakin [1999] for a detailed 
description).  Beginning with 
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Rewrite these equations in terms of the height and geodetic latitude terms then divide the 
second with the first equation.  Recognizing the relationship for the geodetic latitude in 
terms of the reduced latitude, we have 
 

β
ββ

cos
sintan

ap
bZ

b
a

−
−

=  

 
Eliminating the denominator and multiplying the expression by 2, 
 

( ) 0sincos2cos2sin2 22 =−−− ββββ babZap  
 

Borkowski defines ⎟
⎠
⎞⎜

⎝
⎛=Ω −

ap
bZ1tan  and 

( ) ( )22

22

bZap

bac
+

−
= .  Substitute 

( ) ( )22
cos

bZap +
Ω  for ap and 

( ) ( )22
sin

bZap +
Ω  for bZ (Note the Gerdan and 

Deakin [1999] designate the denominator of both of these substitutions as q), we arrive at 
 

( ) ( ) ( ) )1(02sinsin2 =−Ω−= βββ cf  
 
Solve this equation using the Newton-Raphson iterative technique.  The first derivative of 
the function is 
 

( ) ( ) ( )[ ] )2(2coscos2' βββ cf −Ω−=  
 
For an initial estimate of the reduced latitude, Borkowski suggests using 
 

)3(tan 1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≅ −

bp
aZ

oβ  

 
For points on the surface of the ellipsoid, (3) is exact.  Evaluate the original function and 
the first derivative, equations (1) and (2), to arrive at the new estimate of the reduced 
latitude. 
 

( )
( ) )4(

'1 β
βββ

f
f
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If the second term on the right hand side of (4) is sufficiently small 
( )

( ) ⎟
⎠
⎞⎜

⎝
⎛ ≤ criteria' β

β
f

f then the reduced latitude is β1 as shown in (4).  Otherwise, 

recalculate (1) and (2) again, this time using the updated value for β to arrive at a new 
estimate for β.  Continue to iterate until the criteria is met.  Once determined, the 
geodetic latitude is found using the formula 
 

( )5tantan 1
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= − βϕ

b
a  

 
Although the height can be determined using a number of different formulae, Borkowski 
suggests using the next formula because its accuracy over all ranges of latitudes. 
 

( ) ( ) ( )6sinsincoscos ϕβϕβ bZaph −+−=  
 
Borkowski [1989] claims that accuracies for the geodetic latitude at the 1 x 10-9 rad 
(0.0002”) can be achieved in just two iterations for points that are over 1,000 km from the 
origin of the coordinate system.  The results of his comparison with other methods are 
shown in figure 2.  Note that the method identified at Heiskanen and Moritz [1967] is 
referred to as the Hirvonen and Moritz method in this paper and acknowledged as such 
by Heiskanen and Moritz (see also Rapp [1989]).  Other methods mentioned here that 
will be discussed in this paper are those by Long [1975], Pick [1985], Heikkinen [Rapp, 
1989], and Borkowski’s exact method [1989]. 
 
Bowring’s Iterative Method 
 
Bowring [1976] presented an iterative procedure which has been described as a standard 
upon which other methods have been based.  The principles are succinctly described in 
Rapp [1989].  Figure 3 shows the meridian ellipse.  Point P is the location of the point 
and P” is the corresponding point located at the intersection of the ellipsoid with the 
spheroidal normal.  M is the radius of curvature in the meridian and C is the center of 
curvature of the meridian ellipse. 
 
From figure 3, 

)7(cos" ϕMxx PC −=  
 
From Rapp [1989], equation (3.42) 
 

ϕ

ϕϕ
22"

sin1
coscos
e

a
W

axP
−

==  

 
Substitute the value of xP” into (7) and recalling the equation for the radius of curvature in 
the meridian, 
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Figure 2.  Results from Borkowski's evaluation of transformations from Cartesian to geodetic 

coordinates [Borkowski,  1989, p.53]. 
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Figure 3.  Meridian ellipse showing the relationship between the center of curvature in the meridian. 
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Again from Rapp, equation (3.66) 
 

βϕ coscos W=  
 
Then, substitute this into (8) will give us the x-coordinate of the center of curvature of the 
meridian ellipse. 
 

)9(coscos 32
3

332

ββ ae
W

WaexC ==  

 
From figure 3, we can develop a similar formula for the z-coordinate of C.  Write 
 

)10(sin" ϕMzz PC −=  
 
From Rapp, equation (3.43) 
 

( ) ( )
ϕ

ϕϕ
22

22

"
sin1
sin1sin1

e
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W
eazP

−

−
=

−
=  

 
which, when substituted into (10) yields 
 

( ) ( )

( ) )11(11sin1

sin1sin1

2
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3
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In Rapp, equation (3,41), W2 can be expressed as 
 

β22
2

sin'1
1

e
W

+
=  

 
Substitute into (11) yields 
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But, Rapp shows that βϕ sinsin V=  in (3.65), where ( ) 2

122 cos'1 ϕeV +=  as shown in 
(3.40).  This means 
 

( ) ( ) )12(sin'sin1 22
2

ββ e
W

VeazC −
−

=  

 

Rapp shows in (3.49) that 
b
a

W
V

= .  Substitute this into (12) yields the formula for the z-

coordinate for the center of curvature of the meridian ellipse. 
 

)13(sin' 32 BbezC −=  
 
From figure 3, one can write the following relationship for the geodetic latitude. 
 

)14(tan
CP

CP

xx
zz

−
−

=ϕ  

 
Substitute the values of xC and zC in equations (9) and (13) respectively which yields 
 

β
β

ϕ 32

32

cos
sin'tan

aex
bez

P

P

−
+

=  

 
Express the values for xP and zP in terms of the Cartesian coordinates of the point.  The 
solution for the latitude then can be expressed as [see Bowring equation (4)]: 
 

)15(
cos
sin'tan 32

32

β
βϕ

aep
beZ

−
+

=  

 
This formula is clearly iterative since both the geodetic and the reduced or parametric 
latitude are unknown.  Bowring suggests using the next formula to determine the initial 
estimate of β. 
 

)16(tan ⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
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Thus, once (16) is computed, the value for β is substituted into (15) to arrive at the 
geodetic latitude.  If a new value for the reduced latitude is needed then Rapp [1989] 
shows that it can be computed as 
 

( ) )17(tantan1tan ϕϕβ
a
bf =−=  

 
where φ is determined from (15).  This value for β is then inserted into (15) to compute a 
new estimate of φ.  Once the latitude is determined, the height can be computed from one 
of the following [see Bowring (8) and Rapp (6.98) and (6.99)]. 
 

)18(
sincos

2 NeNZNph +−=−=
ϕϕ

 

 
As both Bowring [1976] and Rapp [1989] point out, this method is very accurate for most 
terrestrial points.  For example, Bowring shows that the error in latitude using his method 
can be defined as (Bowring’s equation 6) 
 

( )
)19(cossin

2
3 33

3

2
6 ϕϕϕ ⎥

⎦

⎤
⎢
⎣

⎡

+
=

ha
aheE  

 
Then, for earth-based points, the main error will be 0.000 000 030” for a single iteration.  
The maximum latitude error is shown to be 0.0018” when h = 2a.  As Rapp points out, 
the error in height using the Bowring method is around 39 mm, at a height of 5,000 km.  
As Bowring [1985] states, the error in his method is not appropriate for outer-spaced 
scenarios.  He identified the error in height to be 
 

)20(sincos'
cos2 ϕϕϕ

ϕ
∆⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= MepEh  

 
Then, at the maximum latitude error of 0.0018”, the error in height is 17 cm.  To alleviate 
this large of discrepancy, Bowring [1985] suggests using the following formula to 
calculate the height. 
 

( )
)21(
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sincos

2

2

⎪
⎪
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⎪
⎪
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⎫
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where p

Z=θtan . 
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Despite the fact that the latitude is a part of equation (21), Bowring shows that the error 
in height is insensitive to any error in latitude to the first order differential.  In fact, he 
also shows that the worst case scenario for error is when h = 4a and even then the error is 
-9.1 x 10-10 m.  Bowring also addressed refining the algorithm for computing the latitude.  
In his 1976 paper, the initial estimate of the reduced latitude is as shown in (16).  For a 
better approximation, Bowring [1985] suggests 
 

)22('1tan ⎟
⎠
⎞

⎜
⎝
⎛ +=

R
be

ap
bZβ  

 
Then using (15) solve for the geodetic latitude.  This algorithm is estimated to be accurate 
to 0.000 000 1” for any point, either terrestrial or outer space. 
 
Rapp [1989] presents an alternative formula for the computation of height, which was 
developed by Bartelme and Meissl.  The height is shown as 
 

( ) ( ) )23(sincos 222 ββ bZaph −+−=  
 
This formula is stable, although it does fail at the poles. 
 
Fukushima’s Iterative Method 
 
As will be describe later in the section on closed form methods, Borkowski [1987, 1989] 
presents an alternative to the iterative method already discussed.  He shows that the 
solution involves finding roots of a quartic equation shown as (see later section for what 
the variables represent): 
 

)24(0122 34 =−++ FtEtt  
 
His solution was to employ Ferrari’s formula.  But, as Fukushima [1999] points out, the 
distance from the polar axis, p, which is a part of E and F, is ill-conditioned as p gets 
smaller.  As the co-latitude tends towards zero, the error grows significantly.  To solve 
the problem, Fukushima offers a different form for equation (24).  We can write 
 

)25(0)( 34 =−++≡ pvtutpttf  
 

where: ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
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ϕ
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2
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24
tan 1

e
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  ( )cZpEu −=≡ '22
  ( )cZpFv +=≡ '22
  2aec ≡
  ZeZ ''≡
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The solution is referred to as an iterative trigonometric procedure performed using the 
Newton-Raphson method.  Like any iterative approach, convergence can be accelerated 
by selecting a better estimate of the unknown parameters.  Here, as in Borkowski, the 
evaluation is based on t which is the tangent of half the complement of the reduced 
latitude to 90º.  Fukushima evaluates the first and second derivatives of (25), which 
yields (Fukushima equations 11 and 12) 
 

utpttf
vutpttf

612)("
34)('

2

23

+=

++=
 

 
From this, it can be explicitly shown that the zeros for the second derivative are 
(Fukushima equation 12) 
 

p
Zc

p
uttt M

'
2

,0 −
=

−
≡==  

 
Then, three different cases were identified depending upon TM.  In most cases, 0≤Mt .  
In this case, the upper bound can be used as the initial estimate for t in the Newton-
Raphson iteration.  The initial estimate for t then becomes (Fukushima equation 13) 
 

)26(
'2

'
Zcp
Zcpt

+−
+−

=  

 
To look at the initial estimates for the other cases the reader is referred to Fukushima 
[1999], p.605. 
 
The new estimate of t is 
 

)27(ttt ∆+≡  
 

where ( )
vutpt
vtutptp

tf
tft

++
++−

=
−

≡∆ 23

34

34)('
)( .  Equation (27) is iterated until ∆t is sufficiently 

small for the problem.  Then, the latitude is found using: 
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and the height is given as (Fukushima equation 9): 
 

( ) ( )
( )

)29(
41

1'1'2
2222

22

tet

taetZtpeh
−+

+−−+
=  

 
or by using one of the forms of the height equation (21) given earlier. 
 
Fukushima [1999] explains that the approach has several advantages to both the 
Borkowski and Bowring methods used in the comparison.  First, the approach is faster 
than Bowring’s despite the fact that it requires a few iterations to complete while 
Bowring’s method needs, for all practical purposes, only a single iteration to find the 
latitude and height.  A big part of the reason is that Fukushima requires no calls for 
transcendental functions in the iteration while Bowring requires 8-9 calls, including atan, 
tan, sin/cos, and sqrt.  Secondly, Fukushima’s method is reportedly accurate to 10-15 or 10 
nm on the surface of the earth.  Finally, this method is very stable for all types of inputs, 
from heights close to the geocenter to satellite altitudes, such as the Global Positioning 
Satellite constellation. 
 
Hirvonen and Moritz Iterative Method2
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Figure 4.  Meridian section showing the radius of curvature in the prime vertical (adapted from 

Rapp, 1989 and Pollard, 2002). 

                                                 
2 Many authors refer to this as the Heiskanen and Moritz algorithm or method because it appears in their 
book.  The authors themselves refer to the work by Hirvonen and Moritz within the textbook. 
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The iterative solution by Hirvonen and Moritz is described in Heiskanen and Moritz 
[1967] and Rapp [1989] and the geometry is presented in figure 4.  From basic 
trigonometry we can write [Rapp, equation 6.94]: 
 

( ) )30(sintan
p
hN ϕϕ +

=  

 
Recall earlier that it was shown that ( )[ ] ϕsin1 2 heNZ +−= , which, after  rearranging, 
yields 
 

( ) ϕϕ sinsin 2 NeZhN +=+  
 
Substitute this into (30) gives us 
 

)31(sintan
2

p
NeZ ϕϕ +

=  

 
This is the basic equation to iterate.  Heiskanen and Moritz [1967] and Torge [2001] 
show the equation in a slightly different form: 
 

)32(1tan
1

2
−

⎟
⎠
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⎜
⎝
⎛

+
−=

hN
Ne

p
Zϕ  

 
In (32), both φ (which is imbedded in N) and h are unknowns on the right hand side of 
the equation.  By setting h = 0, (32) becomes 
 

)33(
1

1tan 20 ⎟
⎠
⎞

⎜
⎝
⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ep
Zϕ  

 
Here, φ0 indicates the initial estimate of the latitude.  Use this value for the latitude to 
find the radius of curvature in the prime vertical.  Then upgrade the estimate of the 
geodetic latitude using (31).  If using the Heiskanen and Moritz form of the tan φ, one 
needs to calculate the geodetic height using (18) [Heiskanen and Moritz give the first 

form of (18), namely ⎥
⎦

⎤
−= Nph

ϕcos
.  Evaluate ϕϕϕ −=∆ 0 .  If ∆φ is less than the 

desired criteria, the last value of the latitude is the correct value and a new value for the 
elevation is determined using (18).  Otherwise, φ0 is replaced by φ and the process 
continues. 
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From Rapp (equation 3.18) we can write ( ) ( ) 2
122

12 '11 −
+=− ee .  Therefore, (33) can also 

be written as (see Gerdan and Deakin, 1999, equation 3.1): 
 

( )
p

eZ 2

0
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Lin and Wang Iterative Method 
 
Like Fukushima and others, Lin and Wang [1995] recognized the computation burden 
that the Bowring method requires due to the use of trigonometric and inverse functions.  
Thus, they presented a more efficient method based employing the Newton-Raphson 
iterative procedure.  The Lin and Wang approach also involves solving a quartic equation 
like Fukushima and Borkowski [Pollard, 2002].  To begin, the ellipsoid is modeled using 
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where XP”, YP”, ZP” are the geocentric coordinates of point P on the ellipsoid.  The 
coordinates of any point on the normal to the ellipse passing through point P can be 
described from the parametric equation as: 
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where m is a parameter that describes where along the normal the point (x, y, z) is 
located.    For example, when m = 0, x = X, y = Y, and z = Z.  Lin and Wang describe the 
problem as one of finding that value of m where (x, y, z) = (XP”, YP”, ZP”).  Substitute the 
values for x, y, z into (34) gives us 
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Equation (35) is solved iteratively using the Newton-Raphson method.  An initial 
estimate for m is given by Lin and Wang as 
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To begin the iteration process take the derivative of (35). 
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Compute a new estimate of m. 
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Equations (35), (37) and (38) are solved for iteratively until f(m) converges towards zero 
(the criteria established by the user).  Then, using the most current value for m, compute 
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The latitude is found using 
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and the height is 
 

( ) ( ) )42(2
"

2
" PP ZZpph −+−=  

 
According to Lin and Wang, the error in their algorithm has the same magnitude as the 
error found in Bowring’s approach.  Both methods also converge at about the same rate, 
but the algorithm here is a bout 50% faster than Bowring’s approach.  Gerdan and Deakin 
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[1999] conclude that from the methods they tested, the Lin and Wang approach was the 
most efficient method in terms of execution time. 
 
Pollard’s Height First Iterative Method 
 
Pollard [2002] presented two vector methods from converting Cartesian coordinates to 
geodetic coordinates.  As he points out that while the vector method is simple to follow 
because it does not require the solution of a quartic equation, it does require the 
separation of the height from the latitude determination thus making this approach 
iterative.  The first method presented is based on the computation of the height first 
through an iterative process and, once determined, to compute the latitude directly.   
 
The theory of Pollard’s method begins with the general equation of an ellipse of 
revolution for the earth, written in general form as [note that this is a slightly different 
form of equation (34)] 
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Designate ( )2" b
akP = .  Then differentiate the general ellipsoid formula and substitute  

into the results the coordinates of point P”, which lies on the surface of the ellipsoid.  
This yields the direction numbers of the normal at P” [Pollard, 2002].  Then, from figure 
4, the distance  and "" PP ZkQO =ϕ
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The unit normal rectangular coordinates, designated by Pollard as l, m, and n, are found 
using the following relationships 
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The coordinates of P” can then be shown in terms of the height, h, to be 
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Write the equation of the ellipse in terms of the coordinates of P”. 
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Substitute the values of XP”, YP”, and ZP” yields 
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This can be shown in a quadratic form as 
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Pollard [2002] defines r, s, and t as 
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Thus, the height can be found as 
 

r
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=
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As Pollard point out, the root with the minus sign yields the right answer. 
 
The algorithm employed by Pollard can be outlined in the following steps.  The problem 
is to find a solution to ZP” for the point on the ellipsoid where the normal to the ellipsoid 
passing through point P intersects the ellipsoid.  For most points on the earth’s surface, 
the ZP” coordinate can be approximated by the Z-coordinate of the point in question.  For 
other points located farther away from the ellipsoid, Pollard recommends scaling the Z-
coordinate and using an initial value of 
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Make the initial value of Z on the ellipse, "" PP ZZ
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= . 
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The estimated distance from P” to Oφ is found using 
 

( ) )44('" 2
"

222
PZeZYXOP +++=ϕ  

 

)45(
"
'

""
"

2

ϕϕϕ OP
ZeZn

OP
Ym

OP
Xl P+

===  

A Comparison of Methods Used in Rectangular to Geodetic Coordinate Transformations Page 17 



 

)46(
22

"
22

"

2
"

22

⎪
⎭

⎪
⎬

⎫

−++=
++=
++=

aZkYXt
ZkmYlXs

nkmlr

P

P

P

 

 

)47(
2

r
rtssh −−

=  

 
)48(" nhZZP −=  

 
Compare this new estimate for the Z-coordinate for point P” with the initial estimate.  If 
the difference is within the desired criteria, then the geodetic height is as determined in 
(46).  Otherwise, using the new estimate for ZP” and recalculate the variables in equations 
(43) – (47).  This iterative process is continued until the solution converges.  Then, once 
the geodetic height has been finalized, compute the geodetic latitude using the algorithm 
as follows.  Calculate the coordinates of the point of intersection of the normal to the 
ellipse passing through the point P with the ellipse (XP” and YP”). 
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Next, compute the length of the normal, N, using 
 

hOPN −= ϕ"  
 
Then, the latitude is found using  
 

)49(
'

tan "
2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
= −

p
ZeZ Pϕ  

 
 
Pollard’s Latitude First Iterative Method 
 
Pollard [2002] presented an alternative iterative vector approach to finding the geocentric 
to geodetic coordinate transformation where the latitude is created first.  The algorithm 
presented by Pollard is as follows.  Begin by computing the initial value of the Z-
coordinate along the normal at the ellipsoid (43).  Then compute the tangent of the 
parametric latitude, t. 
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Update the estimate of ZP”. 
 

)51(
1 2"

t

tbZ P
+

=  

 
Iterate on ZP” using either a simple iteration or, as recommended by Pollard, a Newton-
Raphson method were the new estimate of ZP” is found by 
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where, 
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Iterate until the discrepancy between the estimate on the right hand side of (52) for ZP” 
and the new value for ZP” on the left hand side are sufficiently small.  Once done, 
compute the latitude and height using: 
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Pollard [2002] compared his methods with Bowring’s approach in terms of errors and 
speed.  For terrestrial points, the error in latitudes are comparable.  In terms of height 
errors, Pollard found the errors in  his approach are lower than those found in Bowring’s 
formulas.  In terms of execution time, all algorithms had similar levels of performance.  
Pollard’s vector methods were slightly better when the programs were optimized. 
 
Barteleme and Meissl’s Iterative Method 
 
Rapp [1976], in his documentation for the Fortran program XYZ2PLH, gives a concise 
overview of the algorithm attributed to Barteleme and Meissl3.  The basic equation to 
iterate is 
 

                                                 
3 Although not identified specifically, it is believed that the reference is (see for example the references in 
Sjöberg [1999]): Bartelme, N., and P. Meissl, 1975.  “Ein einfaches, rasches und numerisch stabiles 
Verfahren zur Bestimmung des kürzesten Abstandes eines Punktes von einem sphäroidischen 
Rotationsellipsoid”, Allg. Verm. Nachr., 12: 436-439. 
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Iterations begins with .  Rapp states that the speed of the convergence depends on 
the selection of R.  The method for calculating R from Bartelme and Meissl is 
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or using the approximation 
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Rapp states the Vincenty offers an alternative form that speeds up the convergence.  This 
is 
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Once the algorithm converges, then the geodetic height is found using 
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Finally, the geodetic latitude is found using 
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Sjöberg’s Iterative Method 
 
The iterative method developed by Sjöberg [1999] begins in a similar fashion as that  by 
Hirvonen and Moritz.  He begins by expressing equation (31) in the following form 
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Squaring both sides of (61) and making the following substitutions 
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We can, after some manipulation, arrive at Sjöberg’s equation (7): 
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Sjöberg acknowledges that equation (62) does become unstable in polar regions.  In those 
cases, he suggests making the following substitutions: 
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Then, (62) can be shown as 
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Sjöberg’s method is iterative in finding an acceptable value for either α or β.  For non-
polar regions, an initial estimate for α is found using equation (33) noting that Sjöberg’s 
notation denotes α = tan φ.  Then, the iteration is shown as 
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where αoo and δ are given above and A = 1 – e2.  The main difference between (63) and 
(32) is that Sjöberg’s method does not require iterations involving transcendental 
functions, like the arctangent.  Instead, each iteration uses the tangent value for the 
latitude and only at the end does one find the actual angular value for the latitude.  This 
speeds up the algorithm processing and Sjöberg [1999] indicates that this new method 
performed faster than the Hirvonen and Moritz method. 
 
For the polar regions, Sjöberg suggests using 
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which is the cotangent of φ0 as identified earlier in equation (33).  Then the equation to 
iterate is 
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where the variables have been defined above.  Sjöberg [1999] tested this method with 
those iterative methods identified in Borkowski [1989] and found that his method 
performed better.  It works for all latitudes and heights close to the surface of the earth.  
He also compared his iterative method to the two closed methods developed by Fotiou 
[1998], which will be presented later.  He found the height method performed much 
better than the distance method and recommends the height method as a possible 
alternative approach to the method he presented. 
 
Seemkooei’s Iterative Method 
 
Seemkooei [2002] presented an iterative method that is very similar to that of Hirvonen 
and Moritz.  Recall from (31) that 
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This can be rewritten as (Seemkooei equation 11) 
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Equation (67) is solved iteratively.  An initial estimate of the latitude is given in equation 
(33).  Note that this equation can be easily transformed into the form depicted by 
Hirvonen and Moritz. 
 
Seemkooei [2002] compared his method with those of Bowring, Borkowski (iterative), 
Lin and Wang, and Hirvonen and Moritz, along with a closed form where he solves the 
quartic equation.  The accuracy, as measured in terms of the latitude, were slightly better 
using Seemkooei’s method, but not significantly.  He did find in his experiments that the 
closed form was considerably less precise than the iterative methods tested.  In terms of 
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speed in calculations4, Seemkooei found that Bowring’s method only required one 
iteration and was the fastest algorithm employed, about 35% faster than his own method 
(using average times).  The next fastest was Seemkooei, which required 2.3 iterations on 
average, followed by Borkowski, which averages 2 iterations, followed by the closed 
form solution, then Hirvonen and Moritz, which required about 3.2 iterations as an 
average, with Lin and Wang’s algorithm being the slowest, requiring only about 1.4 
iterations on average. 

 
CLOSED FORM METHODS 

 
Borkowski’s Direct Method 
 
In addition to the iterative solution, Borkowski [1987, 1989] developed a closed or direct 
solution to the conversion of Cartesian to geodetic coordinates.  It was shown in 
Borkowski’s Iterative Method section in equation (1) that 
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Expressing this equation in terms of t≡⎟
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biquadratic equation can be developed.  This is shown as 
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Using Ferrari’s formula for the solution, we have 
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4 See Seemkooei [2002] for specifics on experimentation he performed. 
5 This is a tangent function of half the complement of the reduced latitude to 90o. 
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It is clear from the ± in (70) and (71b) that the quartic solution contains four solutions.  
While not significant, if D < 0, which occurs when the point is less than about 45 km 
from the center, Bowkowski does suggest using the following equation for v: 
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The final solution for the latitude and height can be found using: 
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Borkowski states that using the positive square roots in (70) and (71b) will give the 
desired answer for most applications provided that a > b and φ > 0º.  The algorithm does 
not work when φ = 90º.  For latitudes in the southern hemisphere the user must apply a 
negative value to the semi-minor axis (i.e., -b).  Another weakness in the algorithm is the 
cube root required in (53a).  The approach by Borkowski found round-off problems close 
to the Z-axis.  He points out that Heikkinen’s approach is free from this problem, even 
though the cube root is used in Heikkinen’s method, but the trade-off is that Heikkinen’s 
algorithm cannot be used when D < 0.  To solve Borkowski’s problem, he suggests using 
the cubic resolvent, v’ (one of the three roots) to compute v as 
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CONCLUSION 
 

This paper presents a general overview of some methods used in the transformation from 
Cartesian coordinates to geodetic coordinates.  Two general approaches are employed in 
these types of transformations: iterative or direct.  The latter approaches employ some 
form of approximation to arrive at the desired solution.  
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