The Thermodynamic Solar Project

Augusto Maccari

Since 2001, a vigorous ENEA programme has been launched on two main subjects. Both activities are suitably funded and organised as large projects:

- Medium temperature (about 550°C) heat collection and storage, primarily intended for electricity production.
- High temperature (greater than 850°C) heat collection for direct hydrogen production.

Actually 75 researchers are involved in the program, the budget until now has been 17 MI €.

The parabolic trough technology

The innovations in trough technology introduced by ENEA

ENEA design introduces relevant improvements to the current technology

- The introduction of an adequate energy storage
- The use of an alternative transfer fluid
- A new solar collector design
- An innovative receiving tube design

The thermal storage

With

- Any mature energy producing technology must be available according to demand.
- In the ENEA system two thermal tanks are included to completely separate the heat collection phase from the heat usage phase.
- Thermal storage process is very efficient (less than 1% loss per day).
- With molten salt mixture between 290 and 550 °C, 5 m³/MWh are required

Discontinuity	Compensation	
Short term clouds	Yes	
Night time	Yes	
Bad days	Partially	
Seasonal variations	No	

Current technology:

Mineral oil at medium operating temperature (up to 390°C). High costs, high environmental impact and easily flammable. Not good as thermal storage media.

ENEA choice:

Molten salt mixture (KNO₃ - NaNO₃) at high operating temperature (290 -550°C). Low costs and environmental friendly (used in agriculture as fertilizer). Very good as thermal storage media.

Supporting structure design concepts

Main beam: single tube Supporting arms: precise parabolic shape Simple on field regulation Design suitable for COR-TEN steel (no hot deep galvanization required) Limited number of assembling parts (Manufacture and installation reduced costs)

Reflecting panels

Composite material panels

- →Large size (an half parabola each)
- → Easy to assemble
- → Excellent mechanical properties
- → Very good optical performances

Reflecting panels: honeycomb sandwich

The ENEA receiving tube

The road toward the ENEA industrial plant

PCS: Solar Collector Assembly Test Loop

Main objectives

- Test the optical and thermal efficiency of the new solar collector assembly developed in ENEA
- Analyze the behavior of the process components (pump, valves, piping...) with molten salt as heat transfer fluid
- Verify the instrumentation, control system and operating procedures (molten salt management)

All the tests are performed with the same operating parameters (flow, temperature) of the power plant.

The "Archimede" project

A traditional oil electric generation plant was here recently converted in a modern combined cycle plant The plant will be located nearby Siracusa, one of the most insolated Sicilians areas: 1725 kWh/m2 year

"Archimede" project: the solar field

"Archimede" project: photographic reconstruction

Collectors orientation		NS
Number of collectors		318
Thermal energy collected	GWh/y	156.5
Storage capacity	MWh	500
Thermal energy stored	GWh/y	149.9
Nominal electric power	MWe	28.1
Gross plant efficiency	%	43.6
Delivered electric energy	GWh/y	55.9
Primary energy savings	TEP	11,835
CO ₂ emission avoided	ton/y	36,306

Hydrogen: a great opportunity for the future

ENEA

Hydrogen production methods

Hydrogen production using solar heat

- A number of interesting processes have been reported in the literature and are under a deep investigation by ENEA:
 - →UT-3 Process(760 °C)
 - →Sulphur-Iodine GA(850 °C)
 - →Metal oxides (1000 °C)
 - →Zinc-oxidation(2000 °C)

Sulphur-Iodine process

Conclusion

- Solar energy has to play an important role in the future energy supply scenario particularly for the countries in the "sun belt"
- ENEA has launched a vigorous research, development and demonstration program on concentrating solar energy in order to prepare the basis for solar energy massive utilization
- The operation of the real scale test circuit is demonstrating the achievement of the main targets of the project
- The "Archimede" project will hopefully start the realization of a number of solar systems using the ENEA technology
- Solar Hydrogen production is really promising and the reasearch activity curried on in ENEA is creating the basis for the design and realization of the first pilot plant

