
MATH 249 Introductory Calculus

Examples on Limits of Functions: The Squeeze Theorem

I assume that you have worked through the basics of calculating limits and one-sided
limits. Here, we want to look at another useful technique of finding limits. Let’s with an
example.

Example 1a. Find the limit lim
x→0

x2 sin
1

x
.

Discussion. We know that one of the limit theorems says that the limit of a product is
the product of the limits. That, of course, assumes that the limits of the factors exist in the

first place. So, if lim
x→a

f (x) and lim
x→a

g (x) exist, then lim
x→a

f (x) g (x) =
(

lim
x→a

f (x)
)(

lim
x→a

g (x)
)
.

If we try and apply this theorem, we would say the limit of x2 sin
1

x
is the limit of x2 times

the limit of sin
1

x
. The problem with this attempt is that the limit of sin

1

x
does not exist!

It is not hard to see why the limit of sin
1

x
does not exist. Here, x is moving toward 0.

This means that x is getting smaller and smaller. This implies that
1

x
keeps growing in size

indefinitely. But then sin
1

x
will represent the y-coordinate of a point on the unit circle that

keeps moving round and round unceasingly. But this y-coordinate will be bouncing back
and forth between the two (vertical) ends of the unit circle, namely −1 and 1. It just keeps
oscillating like that and it never goes toward any place. So it has no limit.

Now, the fact that sin
1

x
does not have a limit as x goes to 0 means that the limit theorem

for product cannot be applied! So what can we do? Well we have seen many situations
where the limit theorems cannot be applied right away. Standard scenarios are when the
denominator goes to zero, remember? There we found ways to rewrite the function in a form
so that we can then apply the limit theorems, right? What about here in this example. The

terms involved are x2 and sin
1

x
, and as far as we can recall and/or search there doesn’t seem

to be any identity that allows us to rewrite sin
1

x
, so we are doomed!?

Now, let’s sit back and ask, What’s the problem here? Ah, it has to do with the indefinite

oscillating behavior of sin
1

x
. Well we can’t say “Don’t Wobble”, but perhaps we can keep

it under some kind of control? The answer is YES. Let’s notice that even though sin
1

x
oscillates, it oscillates between fixed bounds, namely −1 and 1. That turns out to be exactly

what we need to keep sin
1

x
under control and pursue the limit of x sin

1

x
. Here are the details.

Solution. We know that for all x, as long as x 6= 0 so we can talk about
1

x
, we have

−1 ≤ sin
1

x
≤ 1.

What does it imply about the function x2 sin
1

x
? Well, just multiply the inequality throughout
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by x2. We get this:

−x2 ≤ x2 sin
1

x
≤ x2, x 6= 0.

Notice that x2 is always positive, and so when we multiply it to the inequality, we do not
need to turning the inequality signs around. [Remember? If a ≤ b and c > 0, we have
ac ≤ bc, but if c < 0, we have ac ≥ bc instead.] Now, this says that the graph of the function

x2 sin
1

x
lies between the graphs of −x2 and x2 everywhere! Well... except at x = 0, because

there the function x sin
1

x
is undefined. But if we look at the graphs of −x2 and x2 near 0,

we see that both graphs tend to get near the origin. In fact, as x → 0, both −x2 → 0 and

x2 → 0. This does not leave much room for x2 sin
1

x
to go! Being sandwiched between two

graphs that merge together as x→ 0, the graph of x2 sin
1

x
is forced to go there too! So, we

can safely conclude that it also has limit 0. That is,

lim
x→0

x2 sin
1

x
= 0.

Reflection. The way we solved the above example suggests that we can write down a
principle about a general “sandwiching” scenario. It is called the Sandwich Theorem or
the Squeeze Theorem.

Theorem. Suppose that f (x) ≤ g (x) ≤ h (x) for all x close to a, except possibly for
x = a, and if lim

x→a
f (x) = lim

x→a
h (x) = L, then lim

x→a
g (x) = L.

So, we interpret a significant use of the Sandwich Theorem as follows. We have a function
g, and we want to find its limit at a. But somehow we find it impossible or hard to apply
the normal limit theorems to find this limit. But “fortunately” we realize that abnormal it
may be, g is bounded between two functions f and h which happen to be simple enough to
handle. Furthermore, we notice that f and h tend to merge together as x approaches a. That
leaves no room for g to go, and it has to go to the place where f and h converge. Simple as
it may sound, a successful application of the theorem requires us to be “fortunate” enough
to have f and h. And of course they are usually not given to us. After all, we are often
just asked the find the limit of g. Period. No extra information. No extra hints. No f or h.
Right? Yes, and that means we have to come up with f and h ourselves if we want to use the
Sandwich theorem effectively. And that means we need to know basic features of standard
classes of functions such as the power functions, exponential and logarithmic functions, and
the trigonometric functions. The more we know about the standard functions, the better we
can make use of the Sandwich theorem.

Let me show you another one. It is similar to the above example. It involves the oscillating
function cosine. Note also that the Sandwich Theorem is clearly valid for one-sided limits
as well as ordinary limits.

Example 1b. Find lim
x→0+

√
x cos

(
x+

1

x

)
.

Solution. We know that the cosine of any angle is between −1 and 1 since it represents
the x-coordinate of a point on the unit circle. So,

−1 ≤ cos

(
x+

1

x

)
≤ 1
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for all x > 0. Now, multiply throughout by
√
x, we get

−
√
x ≤
√
x cos

(
x+

1

x

)
≤
√
x.

We do not need to switch the inequality signs since
√
x > 0 always.

Now, since both −
√
x→ 0 and

√
x→ 0 as x→ 0+, it follows from the Sandwich Theorem

that

lim
x→0+

√
x cos

(
x+

1

x

)
= 0.

Want to try and write up the proof for the following?

Practice 1a. Use the Sandwich Theorem to argue that lim
x→0+

x1/3 cos

(
2 +

1

x

)
= 0.

Solution. We start by observing that

−1 ≤ cos

(
2 +

1

x

)
≤ 1

for all x 6= 0. Then if x > 0, then x1/3 > 0 and so

−x1/3 ≤ x1/3 cos

(
2 +

1

x

)
≤ x1/3.

Now, as x → 0+, we have both −x1/3 → 0 and x1/3 → 0. It follows from the Sandwich

Theorem that x1/3 cos

(
2 +

1

x

)
→ 0 as well. That is,

lim
x→0+

x1/3 cos

(
2 +

1

x

)
= 0.

Try one more?

Practice 1b. Use the Sandwich Theorem to prove that lim
x→0−

x sin

√
x+ 2

x
.

Solution. We start by observing that

−1 ≤ sin

√
x+ 2

x
≤ 1

for all x for which the expression sin

√
x+ 2

x
is defined, i.e., for all x ≥ −2 with x 6= 0.

Now, if −2 ≤ x < 0, then multiplying the above inequality by x demands a switch in the
inequality signs:

−x ≥ x sin

√
x+ 2

x
≥ x.

Now, as x→ 0−, we have both functions x→ 0 and (−x)→ 0. It follows from the Sandwich

Theorem that x sin

√
x+ 2

x
→ 0 as well. That is,

lim
x→0−

x sin

√
x+ 2

x
= 0.
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You wouldn’t think that the Sandwich Theorem always gives the answer 0? Let’s look at
the following example, which deals with limit at infinity. I suppose it is easy to see why the
Sandwich Theorem is also valid in this case.

Example 2. Find lim
x→∞

3x− sin x

4x+ 5
.

Solution. We know that
−1 ≤ sin x ≤ 1

for all values of x. Multiplying through by −1 and switching the inequality signs, we have

1 ≥ − sin x ≥ −1.

Adding 3x to all the terms, we get

3x+ 1 ≥ 3x− sin x ≥ 3x− 1.

Now, dividing by 4x+ 5, we get

3x+ 1

4x+ 5
≥ 3x− sin x

4x+ 5
≥ 3x− 1

4x+ 5
.

[Shouldn’t we thought about if we have to switch the inequality signs?] Now, for limits at
infinity, we have

lim
x→∞

3x+ 1

4x+ 5
= lim

x→∞

3 + 1
x

4 + 5
x

=
3 + 0

4 + 0
=

3

4
,

and

lim
x→∞

3x− 1

4x+ 5
= lim

x→∞

3− 1
x

4 + 5
x

=
3− 0

4 + 0
=

3

4
.

It follows from the Sandwich Theorem that

lim
x→∞

3x− sin x

4x+ 5
=

3

4
.

Practice 2a. Find lim
x→∞

x+ 7 sin x

−2x+ 13
.

Solution. We know that
−1 ≤ sinx ≤ 1

for all x. So,

−7 ≤ 7 sin x ≤ 7,

x− 7 ≤ x+ 7 sin x ≤ x+ 7.

Dividing through by −2x+ 13, we get

x− 7

−2x+ 13
≥ x+ 7 sin x

−2x+ 13
≥ x+ 7

−2x+ 13

for all x that are large. [Why did we switch the inequality signs?]
Now,

lim
x→∞

x− 7

−2x+ 13
= lim

x→∞

1− 7
x

−2 + 13
x

=
1− 0

−2 + 0
= −1

2
,
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and

lim
x→∞

x+ 7

−2x+ 13
= lim

x→∞

1 + 7
x

−2 + 13
x

=
1 + 0

−2 + 0
= −1

2
.

Practice 2b. Find lim
x→−∞

5x+ 2 cosx

3x− 14
.

Solution. We know that
−1 ≤ cosx ≤ 1

for all x. So,

−2 ≤ 2 cos x ≤ 2,

5x− 2 ≤ 5x+ 2 cosx ≤ 5x+ 2.

Dividing by 3x− 14, we get

5x− 2

3x− 14
≥ 5x+ 2 cosx

3x− 14
≥ 5x+ 2

3x− 14

for x large and negative. Now,

lim
x→−∞

5x− 2

3x− 14
= lim

x→−∞

5x+ 2

3x− 14
=

5

3
.

It follows that

lim
x→−∞

5x+ 2 cosx

3x− 14
=

5

3
.

Example 3. Suppose that f is a function that 9x ≤ f (x) ≤ (x+ 1) (x+ 4) for all x that
are near 2 but not equal to 2. Show that this fact contains enough information for us to find
lim
x→2

f (x) . Also, find this limit.

Solution. It is easy to see that

lim
x→2

9x = 9 (2) = 18,

and
lim
x→2

(x+ 1) (x+ 4) = (2 + 1) (2 + 4) = 18.

This has enough information for us to find lim
x→2

f (x) . Indeed, it follows from the Sandwich

Theorem that
lim
x→2

f (x) = 18.

Practice 3a. Suppose that f is a function that 2x2 ≤ f (x) ≤ x (x2 + 1) for all x that
are near 1 but not equal to 1. Show that this fact contains enough information for us to find
lim
x→1

f (x) . Also, find this limit.

Solution. We see that
lim
x→1

2x2 = 2 (1)2 = 2,

and
lim
x→1

x
(
x2 + 1

)
= 1

(
12 + 1

)
= 2.

This is enough for us to find lim
x→1

f (x) . Indeed, it follows from the Sandwich Theorem that

lim
x→1

f (x) = 2.
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Practice 3b. Suppose that f is a function that 2 (3x− 1) ≤ f (x) ≤ x (x2 + 3) for all x
that are near 1 but not equal to 1. Show that this fact contains enough information for us
to find lim

x→1
f (x) . Also, find this limit.

Answer. 4.
Remarks.
1. In the statement of the Sandwich Theorem, we assume that f (x) ≤ g (x) ≤ h (x) for

all x near a, “except possibly at a”. This means that it is not required that when x = a, we
have the inequality for the functions. That is, it is not required that f (a) ≤ g (a) ≤ h (a) .
The reason is that we are dealing with limits as x approaches a. So, we have x that is
moving closer and closer to a. As long as f (x) ≤ g (x) ≤ h (x) is true for all these x, we can
be sure that the limit, i.e., the point where the function values are heading, must behave
as the Sandwich Theorem indicates. In particular, unless we are given extra information
about the functions and their values at a, the Sandwich Theorem does not allow us to make
conclusions about function values at a. So, none of the following claims can be guaranteed
by the assumptions in the Sandwich Theorem:

(a) f (a) = g (a) = h (a) . [Well, not even f (a) ≤ g (a) ≤ h (a)]
(b) g (a) = lim

x→a
f (x) = lim

x→a
h (x) = L.

(c) lim
x→a

g (x) = g (a) .

etc.
2. The Sandwich Theorem allows us to draw a conclusion about lim

x→a
g (x) when lim

x→a
f (x) =

lim
x→a

h (x) . This is because the graph of g is being forced to head to that point where f and

h converge. But what if lim
x→a

f (x) < lim
x→a

h (x) , i.e., the graphs of f and h do not converge

as x → a? Can we conclude that since the graph of g lies between f and h, the limit of g
at a must lie between those of f and g? Well, yes and no. The catch here is that if we only
know lim

x→a
f (x) < lim

x→a
h (x) , then snce g lies between them, its limit should lie between them

if g actually has a limit there! The inequality lim
x→a

f (x) < lim
x→a

h (x) allows a gap between

the bounds so that there is no guarantee that g does not oscillate in such a fashion that it
does not have a limit at a. An example we ahve already encountered is this: the funciton

g (x) = sin
1

x
lies between −1 and 1. The limits of −1 and 1 as x approaches zero are of

course −1 and 1, but g oscillates indefinitely within these bounds in such a way that it does
not go toward a limit as x approaches 0. So, we can phrase the fact as follows:

Theorem. Suppose that f (x) ≤ g (x) ≤ h (x) for all x close to a, except possibly for
x = a, and if lim

x→a
f (x) ≤ lim

x→a
h (x) both exist, then if lim

x→a
g (x) exists, we have lim

x→a
f (x) ≤

lim
x→a

g (x) ≤ lim
x→a

h (x) .
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