MOS OP AMP DESIGN: A Tutorial Overview

(PAUL R. GRAY & ROBERT G. MEYER)

Presented by:

HARSH KULKARNI KUNAL PATEL

About the Paper.....

Overview of CMOS OP AMP design techniques

■ PART I:

- Performance of a basic two-stage OP-AMP
- Design issues, constraints, tradeoffs discussed

■ PART II:

- Alternative architectures for improved performance
- Design of output stages

Introduction

- Relevance of OP AMP design
- Designing OP AMPS for single-chip analog subsystems
 - (VS stand-alone CMOS amplifiers)
 - Designing for well-defined loads

Internal Amplifiers VS Output Buffers

Design Issues

TYPICAL SPECS

- DC Gain (Av)
- Unity Gain Bandwidth
- Power Dissipation
- Slew Rate
- Input Offset Voltage
- PSRR
- Output Voltage Swing
- ICMR
- CMRR

DESIGN FACTORS

- Frequency Response
- Phase Margin
- Load Capacitance
- Compensation
- Nulling Resistor
- Noise Performance
- Device Dimensions

Basic Two Stage OP AMP

Input Transistors: PMOS

(Discussed in the paper)

Input Transistors: NMOS

(Discussed in the class)

Open Circuit Voltage Gain

$$A_{V} = g_{m}r_{o} = \frac{2I_{D}}{V_{GS} - V_{T}} \cdot \frac{1}{\lambda I_{D}} \qquad A_{V} = \frac{2L}{V_{GS} - V_{T}} \cdot \left(\frac{dx_{d}}{dV_{dS}}\right)^{-1}$$

$$A_{V} = \frac{2L}{V_{GS} - V_{T}} \cdot \left(\frac{dx_{d}}{dV_{ds}}\right)^{-1}$$

$$A_{v} = \frac{2\sqrt{\mu_{n}Cox.W.L}}{\sqrt{2I_{D}}} \cdot \left(\frac{dx_{d}}{dV_{DS}}\right)^{-1}$$

- Gain is directly proportional to the square root of W and L
 - Decides minimum size of transistors
- Gain is an increasing function of substrate doping

Gain VS Bias Current

For constant device geometry:

$$A_{v} = \frac{2\sqrt{\mu_{n}Cox.W.L}}{\sqrt{2I_{D}}} \cdot \left(\frac{dx_{d}}{dV_{DS}}\right)^{-1}$$

Gain is inversely proportional to the square root of the drain current

Input Offset Voltage

Systematic Offset Voltage:
 Results from Design of circuit and is present even when all matched devices are indeed identical

$$\frac{(W/L)_{3}}{(W/L)_{6}} = \frac{(W/L)_{4}}{(W/L)_{6}} = \left(\frac{1}{2}\right) \frac{(W/L)_{5}}{(W/L)_{7}}$$

Choose same channel lengths for M3, M4, M6 to counter process induced variations in L

Random Input Offset Voltage

- Results from mismatches in supposedly identical pairs of devices.
- If the load elements of the OP AMP mismatch by Δ , the for V_{out} to be zero, the absolute difference in the two currents must be ΔI . This requires that the DC input difference voltage to be applied be:

 $V_{gs} = \frac{I}{g_m} \Delta = \frac{\left(V_{gs} - V_T\right)}{2} \Delta$

- Thus Input offset depends on I/gm ratio and the fractional mismatch Δ .
- \blacksquare Mismatch can be reduced by operating at low values of V_{gs} .
- THRESHOLD MISMATCH: Independent of bias parameters
 - Improved by Common Centroid Geometries

Frequency Response

Compensation & Pole Splitting

$$p_1 = \frac{-1}{(1 + g_{m_2} R_2) C_c R_1}$$

$$p_2 = \frac{-g_{m_2}C_c}{C_2C_1 + C_2C_c + C_cC_1}$$

$$z = + \frac{g_{m2}}{C_{-}}.$$

p1: Pole due to capacitive loading of the first stage by the second

p2: Pole due to capacitance of the output node of the second stage

Cc: Compensation capacitance

Problem of Pole Splitting

Assume $C_1 \ll C_2$, C_c

$$\left|\frac{p_2}{\omega_1}\right| = \frac{g_{m2}C_c}{g_{m1}C_2}$$

$$\left|\frac{z}{\omega_1}\right| = \frac{g_{m2}}{g_{m1}}$$
.

$$GB(\omega) = \frac{g_{m1}}{C_C}$$

- •At HF, Cc behaves like a short circuit $=> Gain = g_{m_1} \left(\frac{1}{g_{m_2}} \right)$
- •The polarity of this gain is opposite to that at low frequencies
- •Hence negative feedback => positive feedback

Nulling Resistor Design

- Hence the need for a Nulling Resistor
- $\mathbf{R}_{\mathbf{z}}$ connected in series with $\mathbf{C}_{\mathbf{c}}$
- At HF, the O/P current from the 1st stage now flows as drain current in the 2nd stage transistor

$$z = \frac{1}{C_c \left(\frac{1}{g_{m2}} - R_z\right)}$$

Rz can be increased to make z negative, i.e. push the zero in the left-half plane to improve the phase margin

Slew Rate

$$SR = \frac{I_{D5}}{C_C} = \frac{2I_{D1}}{C_C}$$

$$C_C = \frac{g_{m1}}{GB(\omega)}$$

$$SR = \frac{2I_{D1}.\omega}{g_{m1}}$$

$$SR = (V_{gs} - V_T)_1 .\omega_1$$

- $(V_{gs} V_T)_1$ is the range of differential input voltage for which the input stage stays in the active region
- For constant BW, the slew rate is directly proportional to this range

Noise Performance

Input Referred 1/f noise

$$V_{1/f}^{2} = \frac{2K_{p}}{W_{1}L_{1}C_{ox}} \left(1 + \frac{K_{n}\mu_{b}L_{1}^{2}}{K_{p}\mu_{p}L_{3}^{2}}\right) \left(\frac{\delta f}{f}\right)$$

10⁻¹⁴
10⁻¹⁶
100 IK IOK IOOK IM IOM Freq. H

Thermal Noise

$$V_{eq}^{2} = 4kT \frac{4}{3\sqrt{2\mu C_{ox}(W/L)_{1}I_{D}}} \left(1 + \sqrt{\frac{\mu(W/L)_{3}}{\mu(W/L)_{1}}}\right)$$

Power Supply Rejection

•Need for Power Supply Rejection:

We need high PSRR in complex A-D systems, to avoid coupling of digital noise into analog supplies

•PSRR: Ratio of the voltage gain from the input to the output (open loop) to that from the supply to the output.

PSRR continued.....

$$PSRR^{+} = \left[\frac{\left\{ \frac{V_0}{V_i} (\omega) \right\}}{\left\{ \frac{V_0}{V^{+}} (\omega) \right\}} \right]$$

$$PSRR = \begin{bmatrix} \left\{ \frac{V_0}{V_i} (\omega) \right\} \\ \left\{ \frac{V_0}{V^{-}} (\omega) \right\} \end{bmatrix}$$

Negative PSRR

•Alternative Architectures have been developed to alleviate the problem. (discussed later)

Summary: PART I

- Relevance of OP AMP Design
- Performance Objectives for MOS OP AMPS
- Basic two-stage CMOS OP-AMP Architecture
- Analysis of Performance Parameters
 - Voltage Gain
 - Input Offset Voltage
 - Frequency Response, Compensation and Slew Rate
 - Noise Performance
 - Power Supply Rejection

Part II

ALTERNATIVE ARCHITECTURES FOR IMPROVED PERFORMANCE

Need for Alternative Architecture

- High performance that is superior over the basic circuit
- Improved closed loop voltage gain
- Improved stable bandwidth
- Better power-supply rejection ratio

Use of Cascode for Improved Voltage Gain

- Basic 2 stage op-amp suffers from inadequate voltage gain.
- Approach: Add a common gate and common source, cascode.
- M1A and M2A input cascade.
- M3A and M4A cascade of current mirror.
- M9 and a current source biases the gates of M1A and M2A.
- M7 and M8 act as level shifters.

Two-stage amplifier with cascoded first stage

- Advantage:
- Increase gain.
- Increase output resistance.
- Disadvantage: Reduction in ICMR.
- Tradeoff: Improve ICMR by adding cascode to second stage with decrease in output swing.

Improved PSRR Grounded-Gate Cascode Compensation

- Basic 2 stage op-amp suffers from reduced PSRR.
- Cause: Variation in negative supply of power.
- Effect: Change in output with change in supply voltage.
- This can be overcome by using cascode.

Basic amplifier with cascode feedback compensation

- Connect the left end of the capacitor to virtual ground.
- No change in capacitor voltage with change in supply
- Output independent on supply variations.
- Current source and sink is added to bias M7 in active region.

Tradeoff

Improved PSRR with slight increase in complexity, random offset and noise.

Class AB Amplifiers

- Most MOS analog circuits commercially produced utilize class AB circuitry in some form.
- Mainly used in output buffers.
- Used as internal amplifiers if minimization of chip power is the objective.
- Less power consumption and reduced cross over distortion is obtained using *Class* AB.

Class AB Amplifier

- Gate of M2 is connected to a level-shifted version of the stage input voltage.
- During positive half cycle
 M2 forces Vo to follow.
- During negative half cycle M1 conducts delivering the required current.
- M8 and M9 are level shifters.

Differential Output Amplifier

- Definition: Represent the signal by the difference between two inputs.
- It amplifies the difference between the two signal and rejects common components.
- Advantage: Provides a large output voltage swing.

Output Buffers

- Careabouts of an output stage :
- Large signal swing
- Avoid signal distortion
- Provide sufficient output power
- Have high Efficiency
- Provide protection from abnormal conditions

Complementary source follower CMOS

output stage

- $V_{GS4} + V_{SG5} = V_{GS1} + V_{SG2}$
- M4 and M5 are biased by M3, $V_{GS4} + V_{SG5}$ is constant, which implies $V_{GS1} + V_{SG2}$ is constant.
- Drawback: Limitation in output voltage swing.

Summary

Alternative architectures improve the performance and important parameters like voltage gain, PSRR and output resistance.

However, it comes with the cost of increase complexity and noise.

References

- P.R. Gray and R.G. Meyer, "MOS Operational Amplifier Design- A Tutorial Overview," *IEEE Journal of Solid-State Circuits*, VOL.SC-17, NO. 6; pp. 969-982, December 1982.
- P.R. Gray and R.G. Meyer, Analysis and Design of Analog Integrated Circuits. New York: Wiley, 2001.
- Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design. New York: Oxford University Press, 2002.

Acknowledgements

■ Dr. Antonio Rotondaro.