USING STATA TO ANALYZE DATA FROM A SAMPLE SURVEY

Kim Chantala
Carolina Population Center
UNC Chapel Hill
Last Update: October 1, 2001

Introduction 2
Guidelines for Analyzing Data from a Sample Survey 2
Data Used in Examples 4
Regression Analysis 6
Contingency Tables 8
Logistic Regression Analysis 9
Ordered Logistic Regression Analysis. 14
Multinomial Regression Analysis 19
Survival (Time-to-Event) Analysis 22
Appendix A. Stata Code Templates 26
References 27

A tutorial for understanding the basic Stata survey capabilities is available on the CPC webpage: http://www.cpc.unc.edu/services/computer/presentations/statatutorial/. If you are unfamiliar with these capabilities, it will be helpful if you have gone through the tutorial before using this document.

WARNING! Results from the examples are for illustrating usage of software and may not be representative of actual findings. These results should not be quoted.

INTRODUCTION

A sample survey is conducted to obtain information about the characteristics of a population. To reduce the cost and time necessary to collect the data, this task is often handled by selecting a subset (a sample) from the set of all measurements (the target population) of interest to the researchers. The methods that are used to select the sample often incorporate stratification, clustering and unequal probability of selection of participants. These characteristics must be incorporated into your analysis to obtain unbiased estimates concerning the entire population. This paper demonstrates appropriate analytical techniques from Stata specifically designed to handle these added complexities via a series of examples using data from a sample survey. Techniques covered will include contingency tables, regression, logistic regression, ordered logistic regression, multinomial logistic regression, and time-to-event analysis.

GUIDELINES FOR ANALYZING DATA FROM A SAMPLE SURVEY

To analyze data from a sample survey, you need to make sure that the design features of the sampling strategy are included with your analysis file. You must also account for the effects of sampling design on population estimates by using analytical methods appropriate for handling correlated data collected with unequal probability of selection. Failure to account for the sampling design usually leads to under-estimating standard errors and false-positive statistical test results.

This section presents guidelines adapted from "Sampling of Populations: Methods and Applications" by Paul S. Levy and Stanley Lemeshow, 1999, John Wiley and Sons that will help you get your analysis done correctly.

Getting the data ready for analysis.

Step 1. Identify the variables that describe the sample design. Find the variables that describe the following characteristics:

- Stratification variable. Stratification is the division of a population into mutually exclusive parts (strata) for the purpose of drawing a sample. A proportion of the sample is selected from each stratum. Stratification may be made on a geographic basis or by reference to some other quality of the population.
- Cluster (Primary Sampling Unit) variable. This is needed because participants sampled from the same cluster are likely to respond more alike than participants sampled from different clusters.
- Sampling (Probability) Weight variable. Recall that:

Sampling Weight $=$ inverse of the selection probability
= \# of subjects in the population represent by participant.

- Population Number of PSUs per Stratum variable. This variable may not be needed if sampling with replacement can be assumed. With Replacement (WR) sampling means that after a sampling unit is selected it is returned to the population before the next unit is
selected. In the contrary case, the sampling is "Without Replacement (WOR)". If the sampling fraction (\# selected/\# eligible) for each strata is less than 0.1 then the difference between WOR and WR is small and you can treat your design as a WR design.

Step 2. Make sure the variables in step 1 are available on each observation in the data set. If there are observations that have missing values for the design variables check with your data manager to determine why this is happening.

Step 3. Create any analysis variables you need. If you are creating variables that include only information available for each participant, then you do not have to incorporate any of the design variables. However, if you want to use the participants' data to construct clusterlevel variables, then you should consider incorporating the sampling weights. For example, if you have test scores for students (the participant) sampled from a school (the primary sampling unit), then to compute the average test score for schools like each one in your sample, you would want to use the sampling weight to compute the weighted average score.

Step 4. Create sub-population variable. Identify the population you are interested in analyzing and create an appropriate indicator variable to use for specifying the subpopulation. Recall from the tutorial, that the svy commands in Stata need information from the every observation in the data set to correctly compute variance, standard error, confidence intervals, and p -values.

Running Your Analysis.

The next step is to determine the best set of commands for performing the desired analysis. Stata provides two ways to analyze survey data. Appendix A also contains templates to illustrate how to set up your analysis with each method. You also can find out more about each method by going through the Stata tutorial. Here is a table from that tutorial to help you decide which one to choose.

Table 1. A comparison of methods to analyze data from a sample survey.
\(\left.$$
\begin{array}{lll}\hline \text { Method } & \text { Strengths } & \text { Limitations } \\
\hline \text { The svy commands } & \begin{array}{l}\text { svytest and svylc commands used after } \\
\text { estimation adjust the test statistics } \\
\text { correctly for the sample design. }\end{array} & \begin{array}{l}\text { Cannot subset data - the subpop } \\
\text { option must be used for sub- } \\
\text { population analysis . }\end{array} \\
& \begin{array}{l}\text { Can make finite population corrections for } \\
\text { without replacement samples. }\end{array} & \begin{array}{l}\text { Not all types of analysis available } \\
\text { with the svy commands. }\end{array} \\
& \begin{array}{l}\text { Option available on svyset command to } \\
\text { specify the stratification variable. }\end{array} & \begin{array}{l}\text { Should have at least 40 clusters } \\
\text { available. }\end{array} \\
\begin{array}{l}\text { Commands that } \\
\text { allow pweight and } \\
\text { robust cluster () } \\
\text { options }\end{array} & \begin{array}{l}\text { The data set can be subset for sub- } \\
\text { population analysis. }\end{array} & \begin{array}{l}\text { Additional estimation commands that do } \\
\text { not have an analogous svy command, such } \\
\text { as cox regression are available }\end{array}\end{array}
$$ \begin{array}{l}Option for specifying a stratification

variable is not available.\end{array}\right]\)| test and lincom do not adjust the test |
| :--- |
| statistics for the sample design. If the |
| number of clusters is large, then this |
| adjustment would be minor. |

Here are some common errors that you can avoid.

- Ignoring clustering and unequal probability of selection of participants in your analyses. This results in biased estimates and false-positive hypothesis test results. Avoid this error by using the svy commands for your analysis. If your analysis technique is not available with the svy commands, then use a command that allows pweight with the robust cluster() option.
- Using the wrong weight specification in Stata. For data from a sample survey, you should use the pweight command to define the sampling weight. Using any of the other weight commands (aweight, fweight, or iweight) can result in incorrect variance, standard errors, confidence intervals, and p-values.
- Subsetting the sample when using the svy commands in stata. These commands use the Taylor Series approximation for the variance estimation and must be able to correctly count the number of primary sampling units (PSUs) that were originally sampled. Subsetting the data may cause an incorrect number of PSU's to be used in the variance computation formula. Do not subset the data from a sample survey and always use the subpop option when using the svy commands to do sub-population analysis.

DATA USED IN EXAMPLES

The following examples utilize data from the National Longitudinal Survey of Adolescent Health (Add Health). Add Health is a panel study of adolescents selected from enrollment rosters for grades 7 through 12 from a sample of schools in the United States. Both schools (primary sampling unit) and adolescents were selected with unequal probabilities. Add Health data can be analyzed as having been selected by using a "with replacement" sampling strategy. Interviews were in 1994 (In-school), 1995 (Wave I In-home), 1996 (Wave II Inhome) and 2001 (Wave III In-home).

The following variables used in the examples were constructed from the Wave I In-home questionnaire of the National Longitudinal Survey of Adolescent Health (Add Health).

Table 2. Variables used in examples.

Use	Variable Name	Meaning
Design Variables	REGION GSWGT1 PSUSCID	Strata Variable - Region of country $\begin{array}{ll} 1=\text { West } & 3=\text { South } \\ 2=\text { Midwest } & 4=\text { Northeast } \end{array}$ Sample Weight from Wave I Primary Sampling Unit (PSU) - School ID
Covariates	MALE AGE_KID BIOMAPA ENGL_GPA BLACK_ WHITE_ HISPANIC SMKCIG BACKGRAD TRBTEACH	Male Adolescent? $0=$ No, Adolescent is female $\quad 1=$ Yes, Adolescent is male Integer Age of Respondent: 11-21 years old Live with Bio Mom \& Dad $0=\text { No } \quad 1=\mathrm{Yes}$ English Grade $\mathrm{A}=4, \mathrm{~B}=3, \mathrm{C}=2, \mathrm{D} / \mathrm{F}=1$ Black race? $0=\text { No }, \quad 1=\text { Yes, Black only or Black }+ \text { other races }$ White race? $0=\text { No , } \quad 1=\text { Yes, White only or White }+ \text { other races }$ Hispanic ethnic group? $0=\text { No , } 1=\text { Yes }$ Smokes Cigarettes regularly? $0=\text { No , } 1=\text { Yes }$ Ever held back a grade? $0=\mathrm{No}, 1=\mathrm{Yes}$ Have you had trouble getting along with teachers? $0=$ Never, $1=$ A few times, $2=$ Almost once a week 3=Almost everyday, 4=Everyday
Outcome Variables	PVT_PER1 PVT_Q4 PVTQ1_4	Age Standardized Percentile Rank for Add Health Picture Vocabulary Test . Range of Values: 1-100 Age Standardized Percentile Rank for Add Health Picture Vocabulary Test is $75^{\text {th }}$ percentile or greater $0=$ under $75^{\text {th }}$ percentile $1=75^{\text {th }}$ percentile or greater Age Standardized Percentile Rank Quartile $1=$ under $25^{\text {th }}$ percentile, $\quad 2=25^{\text {th }}$ to $49^{\text {th }}$ percentile $3=50^{\text {th }}$ to $74^{\text {th }}$ percentile, $\quad 4=75^{\text {th }}$ percentile \& over

REGRESSION ANALYSIS

This example illustrates the use of commands from Stata that can be used to perform a multiple regression analysis. A partial listing of the output is included with an interpretation of results.

Research Question:

Is performance on the Add Health Vocabulary test influenced by an adolescent's sex or family composition?

Predictive Model:

$$
P V T_{-} P E R 1=\beta_{0}+\beta_{I} A G E _K I D+\beta_{2} M A L E+\beta_{3} B I O M A P A
$$

Where
$\beta_{0}=$ Intercept
$\beta_{l}=$ Change in Test score for one year increment in age
$\beta_{2}=$ Difference in Test Score between males and females
$\beta_{3}=$ Change in Test Score for living with Biological Parents
The following table shows the model for each level of the categorical variables:

MALE	BIOMAPA	Prediction Equation
$0=\mathrm{No}$	$0=$ No	$P V T_{-} P E R I=\beta_{0}+\beta_{l} * A G E _K I D+\beta_{2} * 0+\beta_{3} * 0=\beta_{0}+\beta_{l} * A G E _K I D$
$1=Y e s$	$0=$ No	$P V T_{-} P E R 1=\beta_{0}+\beta_{I} * A G E E_{-} K I D+\beta_{2} * 1+\beta_{3} * 0=\left(\beta_{0}+\beta_{2}\right)+\beta_{I} * A G E _K I D$
$0=\mathrm{No}$	$1=$ Yes	$P V T_{-} P E R 1=\beta_{0}+\beta_{1} * A G E E_{-} K I D+\beta_{2} * 0+\beta_{3} * l=\left(\beta_{0}+\beta_{3}\right)+\beta_{1} * A G E _K I D$
$1=Y e s$	$1=Y \mathrm{es}$	PVT_PERI $=\beta_{0}+\beta_{1} * A G E_{-} K I D+\beta_{2} * 1+\beta_{3} * 1\left(\beta_{0}+\beta_{2}+\beta_{3}\right)+\beta_{1} * A G E _K I D$

The equation for each group defined by sex and living with biological parents has a different intercept, but a common slope for age of adolescent.

Using Stata: SVYREG

STATA CODE

The svyset command is used to specify the design information for analysis. Use the strata keyword to specify the stratification variable (region), the pweight keyword to specify the weight variable ($g s w g t 1$), and the $p s u$ keyword to specify the primary sampling unit (psuscid).

The first variable following the svyreg command denotes the outcome of our model and the following variables are the covariates.

```
svyset strata regi on
svyset pwei ght gswgt 1
svyset psu psuscid
svyreg pvt_per 1 age_ki d mal e bi omapa
```


STATA OUTPUT

The svyset command uses Taylor series linearization methods to estimate variance and standard error of the estimates. The R-squared statistic indicates only 3% of the variation in the data is explained by the model. Age of adolescent is not associated with Percentile PVT Score, but males are predicted to have 2.18 percentage points higher scores than females, while adolescents living with both biological parents will have a score 8.96 points higher than adolescent's not living with their biological parents.

Survey Ii near regression

```
pwei ght: gsugt1 Number of obs = 18001
Strata: region Nunber of strata = 4
PSU: psuscid
\begin{tabular}{llr} 
Nunber of obs & \(=\) & 18001 \\
Nunnber of strat a & \(=\) & 4 \\
Nunber of PSUs & \(=\) & 132 \\
Popul ati on si ze & \(=21095781\) \\
F( 3, 126) & \(=\) & 38.08 \\
Prob > F & \(=\) & 0.0000 \\
R- squared & \(=\) & 0.0304
\end{tabular}
```

pvt_per 1 \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. I nterval]	
age_ki d \|	- . 5964347	469777	-1. 270	0. 207	- 1. 525969	. 3330993
male \|	2. 178519	. 6033584	3. 611	0. 000	. 9846715	3. 372367
bi ommpa \|	8. 95549	. 9117622	9. 822	0. 000	7. 151413	10. 75957
_cons \|	54. 09994	7. 220088	7. 493	0. 000	39. 81376	68. 38612

Understanding the Predictive Model

The following table shows the prediction equation for each level of the qualitative variables.

MALE	BIOMAPA	Prediction Equation
0=No	$0=$ No	$\begin{aligned} P V T_{-} P E R I & =\beta_{0}+\beta_{I} * A G E_{-} K I D+\beta_{2} * 0+\beta_{3} * 0 \\ & =54.10-0.596 * A G E_{-} K I D \end{aligned}$
$1=Y e s$	$0=$ No	$\begin{aligned} P V T_{-} P E R I & =\beta_{0}+\beta_{1} * A G E_{-} \text {KID }+\beta_{2} * 1+\beta_{3} * 0 \\ & =54.10-0.596 * A G E_{-} \text {KID }+2.179 \\ & =56.279-0.596 * A G E_{-} \text {KID } \end{aligned}$
$0=$ No	$1=Y e s$	$\begin{aligned} P V T_{-} P E R I & =\beta_{0}+\beta_{I} * A G E_{-} K I D+\beta_{2} * 0+\beta_{3} * 1 \\ & =54.10-0.596 * A G E_{-} K I D+8.955 \\ & =63.055-0.596 * A G E_{-} K I D \end{aligned}$
$1=Y e s$	$1=Y e s$	$\begin{aligned} \text { PVT_PERI } & =\beta_{0}+\beta_{1} * A G E _K I D+\beta_{2} * 1+\beta_{3} * 1 \\ & =54.10-0.596 * A G E _K I D+2.179+8.955 \\ & =65.23-0.596 * A G E _K I D \end{aligned}$

To estimate the difference between males who live with their biological parents and females who do not live with their biological parents, you just subtract the two prediction equations:

$$
\begin{aligned}
\text { Difference } & =P V T_{-} \text {PER1 } 1_{\text {Male }=1, \text { BIOMAPA }=1}-P V T_{-} \text {PER1 } 1_{\text {Male }=0, \text { BIOMAPA }=0} \\
& =\left(\beta_{0}+\beta_{1} * A G E _K I D+\beta_{2}+\beta_{3}\right)-\left(\beta_{0}+\beta_{1} * A G E_{-} K I D\right) \\
& =\beta_{2}+\beta_{3}=2.179+8.955=11.13
\end{aligned}
$$

Males who live with both biological parents score 11.13 points higher than girls who do not. You can use the svylc (survey linear combination) or svytest (survey test) command in Stata to estimate this linear combination $\left(H_{0}: \beta_{2}+\beta_{3}=0\right)$ and compute a p-value for the testing the linear combination is zero.

CONTINGENCY TABLES

Often the response of interest in the Add Health data is categorical in nature. This section illustrates how to present categorical data in a contingency table and strategies for assessing association using Stata.

Research Question:

Is there an association between living with your biological parents and the quartile for the score received on the Add Health Picture Vocabulary Test?

To answer this question, we will look for an association between the variables biomapa and pvtq1_4.

Using Stata: svytab

STATA CODE

The svyset command is used to define the stratification variable (region), sampling weight (gswgtl) and the primary sampling unit (psuscid). The svytab command will create a contingency table showing the values of biomapa down the side and the values of pvtq1_4 across the top. Options specified here for svytab request that the table display cell proportions (cell), standard errors of cell proportions (se), and 95\% confidence intervals for cell proportions (ci).
svyset strata regi on
svyset pwei ght gswgt 1
svyset psu psuscid
svytab bi omapa pvtq1_4, cell se ci

STATA OUTPUT

Stata reports that 18,001 respondents representing 21,095,781 adolescents have complete data and are used in the computations for the contingency table. Each cell in the table contains three statistics:

- Population estimates for the proportion of adolescents scoring in a particular PVT quartile and presence (or absence) of both biological parents in the home
- the standard error of the proportion
- the 95% confidence interval of the proportion.

puei ght:	gsugt 1	Number of obs	$=$
Strat a:	regi on	Number of strata	$=$
PSU:	psuscid	Number of PSUs	$=$
		Popul ation si ze	$=21095781$

Live with					
Bi o Mbm \|					
\& Dad	PVT quartile				
$0=$ N/ 1 $=$ Y	1	2	3	4	Tot al
0=No	. 1149	. 1542	. 1157	. 0822	. 4671
	(. 0106)	(. 0066)	(. 0043)	(. 0044)	(. 0129)
	[. 0955, . 1375]	[. 1417, . 1677]	[. 1074, . 1246]	[.0739, .0914]	[.4417, . 4926]
$1=Y$ es	. 0799	. 1477	. 1632	. 1421	5329
	(. 0066)	(. 0061)	(. 0072)	(. 0097)	(. 0129)
	[. 0678, . 0939]	[.136, . 1602]	[. 1494, . 178]	[. 1239, . 1624]	[. 5074, . 5583]
Total	. 1948	. 3019	. 279	. 2243	1
	(. 0148)	(. 0084)	(. 0089)	(. 0129)	
	[. 1672, . 2257]	[. 2857, . 3187]	[. 2618, . 2969]	[. 1998, . 2509]	

Key: cell proportions
(standard errors of cell proportions)
[95% confidence intervals for cell proportions]

$$
\begin{array}{llrr}
\text { Pearson: } & & \\
\begin{array}{lll}
\text { Uncor rect ed } & \text { chi 2(} 3) & \\
\text { Desi gn- based } & F(2.64,338.04) & =48.4521
\end{array} \quad P=0.0000
\end{array}
$$

The summary statistics (Pearson) show the uncorrected chi-square and the corrected designbased F-statistic to evaluate the association between living with both biological parents and PVT test score quartile. This F-statistic shows that the association is significant ($\mathrm{p} \leq 0.0001$).
Stata has many options to control the contents of the table. For example, the stata command:
svytab bi omapa pvtq1_4, obs row count
can be used to obtain population estimates of the number of adolescents in each cell (weighted count) the number of respondents (observations) in each cell, and the row proportions.

LOGISTIC REGRESSION ANALYSIS

Logistic Regression is used to model dichotomous (0 or 1) outcomes. This technique models the log odds of an outcome defined by the values of covariates in your model. In addition to
covering how to model sub-populations, we will use both the svy commands and the robust cluster commands.

Research Question:

How is being in the upper quartile of the Vocabulary test score influenced by a boy's grade in English and Family composition?

Predictive Model:

$\log \left(\frac{\operatorname{Pr}\left(P V T_{-} Q 4=1\right)}{1-\operatorname{Pr}\left(P V T_{-} Q 4=1\right)}\right)=\beta_{0}+\beta_{1} A G E_{-} K I D+\beta_{2} B I O M A P A+\beta_{3} E N G L_{-} G P A$

Where

$$
\beta_{0}=\text { Intercept }
$$

$\beta_{I}=$ Change in log odds of being in upper quartile for one year increment in age
$\beta_{2}=$ Change in log odds of being in upper quartile for living with Biological Parents
$\beta_{3}=$ Change in log odds of being in upper quartile for increase in one grade level
The model predicted log-odds for the categorical subpopulations will be:

BIOMAPA	ENGL_GPA	Ln(odds)
$0=$ No	$4=\mathrm{A}$	$\beta_{0}+\beta_{1}$ AGE_KID $+4 \beta_{3}$
$0=$ No	$3=B$	$\beta_{0}+\beta_{1}$ AGE_KID $+3 \beta_{3}$
$0=$ No	$2=\mathrm{C}$	$\beta_{0}+\beta_{1} *$ AGE_KID $+2 \beta_{3}$
$0=$ No	$1=\mathrm{D} / \mathrm{F}$	$\beta_{0}+\beta_{1} *$ AGE_KID $+\beta_{3}$
$1=\mathrm{Yes}$	$4=A$	$\beta_{0}+\beta_{1}$ AGE_KID $+\beta_{2}+4 \beta_{3}$
$1=$ Yes	$3=B$	$\beta_{0}+\beta_{1}$ AGE_KID $+\beta_{2}+3 \beta_{3}$
$1=\mathrm{Yes}$	$2=C$	$\beta_{0}+\beta_{1} *$ AGE_KID $+\beta_{2}+2 \beta_{3}$
$1=$ Yes	$1=\mathrm{D} / \mathrm{F}$	$\beta_{0}+\beta_{1}$ * AGE_KID $+\beta_{2}+\beta_{3}$

We are assuming a model with a common slope for age of the boy, but different intercepts defined by grade in English and living with both biological parents.

The relationship between probability and odds

The odds of an outcome is related to the probability of the outcome by the following relation:

$$
\text { odds }=\frac{\text { probability }}{1-\text { probability }}
$$

An odds ratio is just the ratio of the odds of the outcome evaluated at two different sets of values for your covariates. It is easy to show that to test the hypothesis that $\mathrm{p}_{1}=\mathrm{p}_{2}$ you can test that the hypothesis that an odds ratio comparing group 1 to group 2 is equal to 1 .

However, you cannot easily put a confidence interval on the difference between the two probabilities.

Using Stata: SVYLOGIT

STATA CODE

The svyset command is used to specify the design information for analysis. Use the strata keyword to specify the stratification variable, region, the pweight keyword to specify the weight variable $g s w g t l$, and the $p s u$ keyword to specify the primary sampling unit, psuscid. The first variable following the svylogit command denotes the outcome ($p v t _q 4$) of our model and the following variables are the covariates. The option subpop is used to specify the sub-population we want to be used to compute parameter estimates. All 18,924 observations are needed for the variance computation because Stata determines the design information (number of primary sampling units) used in the formula variance computation

```
svyset strata regi on
svyset pwei ght gswgt1
svyset psu psuscid
svyl ogit pvt_q4 age_ki d bi omapa engl_gpa, subpop( mal e)
```


STATA OUTPUT

Stata lists the number observations with no missing values for the variables in the model ($\mathrm{N}=17,191$) and has summed the corresponding sample weights to estimate $19,955,620$ adolescents in the U.S. are represented by these observations. The number of observations with complete data in the sub-population is 8,366 representing $10,084,117$ boys. Note that the number of strata (4) and primary sampling units (132) has been correctly counted.

The adjust command can be used to estimate a linear combination of the coefficients estimated for the variables in our model. If you do not specify a value for a variable when using adjust, Stata will incorrectly substitute the sample mean rather than an estimate of the population mean. This is because adjust ignores any weights used by the estimation commands. To correctly compute a linear combination, it is necessary to specify a value for all variables in the model. For example, the following statement:

```
adj ust age_ki d=17 engl_gpa=3, by( bi omapa) xb se ci
```

produces an estimate of the log odds of scoring above the $75^{\text {th }}$ percentile for boys at age 17 with a grade of B in English for both categories of living with both biological parents:

Dependent variable: pvt_q4 Command: svyl ogit
Covariates set to val ue: age_kid = 17, engl_gpa $=3$

$$
\begin{array}{rll}
\text { Key: } & \mathrm{xb} & =\text { Li near Predi ct } \mathrm{i} \text { on } \\
& \text { stdp } & =\text { St andard Error } \\
& {[\mathrm{l} \mathrm{~b}, \mathrm{ub}]} & =[95 \% \text { Conf } \mathrm{i} \text { dence I nt erval] }
\end{array}
$$

You can also include the exp option at the end of the adjust command to get adjust to print exponentiated linear combination of the coefficients. The proption on adjust is not available after using the svylogit command.

The svylc command can also be used to produce linear combinations of the coefficients:
svyl c 17*age_ki d + 1*bi omapa + 3*engl_gpa + _cons
(1) 17.0 age_ki d + bi omapa +3.0 engl_gpa + _cons $=0.0$

pvt_q4 \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf	I nterval]
(1) \|	494267	. 0946653	-10.03	0. 000	-1. 136738	-. 7621154

The results from svylc match those from adjust. The advantage of using svylc is that a hypothesis test can also be performed. For example, suppose you want to compute the odds ratio comparing 17 year-old boys not living with both biological parents to12 year-old boys living with both biological parents. Assume both boys make the same grade in English. We would want to estimate the difference in log odds for these to :

$$
\left(\beta_{0}+17 * \beta_{1}+\operatorname{GRADE}^{*} \beta_{3}\right)-\left(\beta_{0}+12 * \beta_{1}+\beta_{2}+\text { GRADE }^{*} \beta_{3}\right)=5 * \beta_{1}-\beta_{2}
$$

Since β_{1} is the coefficient for AGE_KID and β_{2} is the coefficient for BIOMAPA, the svylc command would be:

```
svyl c 5*age_ki d - 1*bi omapa
```

This produces the desired difference in log odds:

```
( 1) 5.0 age_ki d - bi omæpa = 0.0
    pvt_q4 | Coef. Std. Err. t P>> t| [95%Conf. I nterval]
    (1) | -..6532364 . . }16411137 - 3.98 0.000 -. 9779635 -. 3285094
```

The or option can be added to the svylc command to get the odds ratio ($\mathrm{e}^{5 * \beta 1-\beta 2}$): . svylc 5*age_kid - 1*bi omapa , or

The following table will be printed.
(1) 5.0 age_ki d - bi omapa $=0.0$

pvt_q4 \| Odds Ratio	Std. Err.	t	P> t \|	[95\% Conf	I nterval]
(1) \| . 5203589	. 085398	-3. 98	0. 000	3760762	7199962

Thus, assuming equal grades in English, the odds of a 17 year-old boy not living with both biological parents is only half that of a 12 year boy who lives with his biological parents.
The svytest command can be used to test joint hypothesis about variables. For example, testing that the coefficient for age_kid and biomapa are both equal to zero can be done with the following stata command:

```
svytest age_ki d bi omapa
```

which produces the following output:
Adj usted Wal d test

```
( 1) age_kid = 0.0
( 2) bi onæpa =0.0
```

$$
F(2, \quad 127)=14.51
$$

$$
\text { Prob }>F=0.0000
$$

Using STATA: logit with pweight and robust cluster

STATA CODE

Note that we can subset the data (if male==1) when using the robust cluster() options in stata and still have the variance computed with an acceptable technique. The primary sampling unit (psuscid) is used as the argument to the cluster option and the sample weights ($g s w g t 1$) are specified by [pweight=gswgtl].

I ogit pvt_q4 age_kid bi omapa engl_gpa if mal e=1 [pwei ght =gswgt 1], robust cluster (psuscid)

STATA OUTPUT

The results and interpretation in the following output are identical to the results from svylogit.

Linear combinations of parameter estimates can be obtained with the lincom command and hypothesis tests can be performed with the test command. The results would be the same as those obtained with svylc and svytest. Adjust can also be used in the same manner as with svylogit.

ORDERED LOGISTIC REGRESSION ANALYSIS

Ordered logistic regression models can be used to predict the relationship between multilevel ordinal outcomes and a set of explanatory variables. For example, we may wish to predict the quartile of achievement (under $25^{\text {th }}, 25^{\text {th }}$ to $49^{\text {th }}, 50^{\text {th }}$ to $74^{\text {th }}$, and $75^{\text {th }}$ percentile \& over) on the Add Health Vocabulary test. We could collapse these categories to create three binary outcomes:

$$
\begin{aligned}
& \operatorname{Pr}\left\{\text { under } 25^{\text {th }} \text { percentile }\right\} \text { vs. } \operatorname{Pr}\left\{\text { over } 25^{\text {th }} \text { percentile }\right\} \\
& \operatorname{Pr}\left\{\text { under } 50^{\text {th }} \text { percentile }\right\} \text { vs. } \operatorname{Pr}\left\{\text { over } 50^{\text {th }} \text { percentile }\right\} \\
& \operatorname{Pr}\left\{\text { under } 75^{\text {th }} \text { percentile }\right\} \text { vs. } \operatorname{Pr}\left\{\text { over } 75^{\text {th }} \text { percentile }\right\}
\end{aligned}
$$

Standard logistic regression models could then be used to fit a separate model to each of these outcomes. However, it makes sense to take advantage of the natural ordering of these categories by estimating the three models simultaneously using proportional odds models. These models can be estimated with ordered logistic regression analysis. The basic assumption made to do this type of analysis is that the regression lines for the different outcomes are parallel to each other but are allowed to have different intercepts.
These models can be fit using either SUDAAN or Stata. However, SUDAAN and Stata use a different model for estimating the parameters. The models estimated by SUDAAN have the form:

$$
\log \left(\frac{\operatorname{Pr}(\text { category } j \text { orlower })}{\operatorname{Pr}(\text { category } j+1 \text { or higher })}\right)=\kappa_{j}+\sum_{i=1}^{p} \beta_{i} x_{i}
$$

This is the same formula that SAS uses. The models estimated by Stata have the form:

$$
\log \left(\frac{\operatorname{Pr}(\text { category } j \text { or lower })}{\operatorname{Pr}(\text { category } j+1 \text { or higher })}\right)=\kappa_{j}-\sum_{i=1}^{p} \beta_{i} x_{i}
$$

For both models, the κ_{j} 's are the intercepts or "cut-points" and will be estimated to have the same value by both SUDAAN or Stata. The β_{i} 's in the summation are regression coefficients for the covariates x_{i}. Notice that the SUDAAN or SAS model adds the summation while Stata subracts the summation. Thus, Stata estimates the β_{i} 's to be equal in magnitude, but opposite in sign than those estimated by SUDAAN or SAS. This means that the odds ratios estimated from the β_{i} 's computed with Stata will be the reciprocal of the odds ratios estimated from the SUDAAN or SAS results. Hence, the interpretation will be different because the reference and the risk groups will be interchanged. For example, if a variable smoking is coded as $0=$ Non-smoker and $1=$ Smokers, then the exponentiated coefficient for smoker estimated by Stata will be the odds ratio for Non-smokers to Smokers. When estimated by SUDAAN or SAS, the exponentiated coefficient will represent the odds ratio for Smokers to Non-smokers. Note that in most other estimation commands use the same model as SUDAAN and SAS.

Research Question:

How is the quartile of achievement in the Vocabulary test influenced by a boy's grade in English and family composition?

Predictive Models for SUDAAN (or SAS):
$\log \left(\frac{\operatorname{Pr}\left(P V T 1_{-} Q 4=1\right)}{\operatorname{Pr}\left(P V T 1_{-} Q 4=2,3,4\right)}\right)=\kappa_{1}+\beta_{1} A G E_{-} K I D+\beta_{2} B I O M A P A+\beta_{3} E N G L_{-} G P A$
$\log \left(\frac{\operatorname{Pr}\left(P V T 1_{-} Q 4=1 \text { or } 2\right)}{\operatorname{Pr}\left(P V T 1_{-} Q 4=3 \text { or } 4\right)}\right)=\kappa_{2}+\beta_{1} A G E_{-} K I D+\beta_{2} B I O M A P A+\beta_{3} E N G L_{-} G P A$
$\log \left(\frac{\operatorname{Pr}\left(P V T 1_{-} Q 4=1 \text { or } 2 \text { or } 3\right)}{\operatorname{Pr}\left(P V T 1_{-} Q 4=4\right)}\right)=\kappa_{3}+\beta_{1} A G E_{-} K I D+\beta_{2} B I O M A P A+\beta_{3} E N G L_{-} G P A$

Predictive Models for STATA:

$\log \left(\frac{\operatorname{Pr}\left(P V T 1_{_} Q 4=1\right)}{\operatorname{Pr}\left(P V T 1_{-} Q 4=2,3,4\right)}\right)=\kappa_{1}-\beta_{1} A G E_{-} K I D-\beta_{2} B I O M A P A-\beta_{3} E N G L_{-} G P A$

$$
\begin{aligned}
& \log \left(\frac{\operatorname{Pr}\left(P V T 1_{-} Q 4=1 \text { or } 2\right)}{\operatorname{Pr}\left(P V T 1_{-} Q 4=3 \text { or } 4\right)}\right)=\kappa_{2}-\beta_{1} A G E_{-} K I D-\beta_{2} B I O M A P A-\beta_{3} E N G L_{-} G P A \\
& \log \left(\frac{\operatorname{Pr}\left(P V T 1_{-} Q 4=1 \text { or } 2 \text { or } 3\right)}{\operatorname{Pr}\left(P V T 1_{-} Q 4=4\right)}\right)=\kappa_{3}-\beta_{1} A G E _K I D-\beta_{2} B I O M A P A-\beta_{3} E N G L_{-} G P A
\end{aligned}
$$

Interpretation of parameters

Parameter	SUDAAN (or SAS)	Stata
κ_{1}	Intercept for Log odds of scoring below $25^{\text {th }}$ vs. Over $25^{\text {th }}$ percent	Intercept for Log odds of scoring below $25^{\text {th }}$ vs. Over $25^{\text {th }}$ percent
κ_{2}	Intercept for Log odds of scoring below $50^{\text {th }}$ vs. Over $50^{\text {th }}$ percent	Intercept for Log odds of scoring below $50^{\text {th }}$ vs. Over $50^{\text {th }}$ percent
κ_{3}	Intercept for Log odds of scoring below $75^{\text {th }}$ vs. Over $75^{\text {th }}$ percent	Intercept for Log odds of scoring below $75^{\text {th }}$ vs. Over $75^{\text {th }}$ percent
β_{I}	Change in \log odds of being under the percentile cut-point for one year increase in age	Change in log odds of being under the percentile cut-point for one year decrease in age
β_{2}	Change in log odds of being under the percentile cut-point for living with both biological parents	Change in log odds of being under the percentile cut-point for not living with both biological parents
β_{3}	Change in log odds of being under the percentile cut-point for increase in one grade in English	Change in \log odds of being under the percentile cut-point for decrease in one grade in English

Each main effect in a model is equal to the difference between the model evaluated at two different sets of values of the explanatory variables. The meaning of β_{2} in the previous table will be verified as part of this example.

Using Stata: SVYOLOG

STATA CODE

The svyset command is used to specify the design information for analysis. Use the strata keyword to specify the stratification variable, region, the pweight keyword to specify the weight variable $g s w g t 1$, and the $p s u$ keyword to specify the primary sampling unit, psuscid. The first variable following the svyolog command denotes the outcome (pvtq1_4) of our model and the following variables are the covariates. Biomapa is a categorical variables coded as $0=$ No, $1=$ Yes, while age_kid and engl_gpa are treated as continuous variables. The option subpop is used to specify the sub-population we want to be used to compute parameter estimates. All 18,924 observations are needed for the variance computation because Stata determines the design information (i.e., number of primary sampling units) used in the formula variance computation.

```
svyset strata regi on
svyset pwei ght gswgt 1
svyset psu psuscid
svyol og pvtq1_4 age_ki d bi omapa engl _gpa , subpop(mal e)
```


STATA OUTPUT

Stata lists the number observations with no missing values for the variables in the model （ $\mathrm{N}=17,191$ ）and has summed the corresponding sample weights to estimate $19,955,620$ adolescents in the U．S．The number of observations with complete data in the sub－population is 8,366 representing $10,084,117$ boys．Note that the number of strata（4）and primary sampling units（132）has been correctly counted．

```
. svyol og pvtq1_4 age_ki d bi onmpa engl_gpa , subpop(n⿴囗十| e)
Survey ordered I ogi stic regression
\begin{tabular}{|c|c|c|c|c|c|}
\hline pwei ght： & gsugt 1 & & Nunber of obs & ＝ & 17191 \\
\hline Strata： & regi on & & Nunber of strata & ＝ & 4 \\
\hline PSU： & psuscid & & Nuntoer of PSUs & ＝ & 132 \\
\hline & & & Popul ation size & ＝ & 19955620 \\
\hline Subpopul & i on no．of obs & 8366 & F（ 3，126） & ＝ & 70． 96 \\
\hline Subpopul & i on size & 10084117 & Prob \(>\) F & & 0． 0000 \\
\hline
\end{tabular}
```

The results of the model are listed below．

pvt q1＿4	Coef	Std．Err．	t	$P>\|t\|$	［ 95\％Conf．I nt erval ］	
age＿ki d｜	－． 023944	． 0267947	－0． 89	0． 373	－． 0769619	． 0290739
bi omæpa｜	． 4953606	． 0698794	7． 09	0． 000	． 3570922	． 6336289
engl＿gpa｜	321382	． 0301858	10． 65	0． 000	． 2616542	． 3811098
／cut 1 ｜	－． 9126946	． 4200178	－2． 17	0． 032	－1． 743772	－． 0816176
／cut 2 ｜	586421	4253781	1． 38	0． 170	－． 2552622	1． 428104
／cut 3 ｜	1． 953444	4238309	4． 61	0． 000	1． 114823	2． 792066

We can estimate the difference in log odds of scoring lower on the Vocabulary test for not living with both biological parents vs．living with both to verify the meaning of β_{2} as estimated by Stata：

$$
\begin{aligned}
& \log \left\{\left.\frac{\operatorname{Pr}\left(P V T 1_{_} Q 4 \leq j\right)}{\operatorname{Pr}\left(P V T 1_{-} Q 4>j\right)} \right\rvert\, \text { BIOMAPA }=0\right\}-\log \left\{\left.\frac{\operatorname{Pr}\left(P V T 1_{-} Q 4 \leq j\right)}{\operatorname{Pr}\left(P V T 1_{-} Q 4>j\right)} \right\rvert\, \text { BIOMAPA }=1\right\} \\
& =\left\{\kappa_{j}-\beta_{1} * A G E _K I D-\beta_{2} * 0-\beta_{3} * E N G L_{-} G P A\right\} \\
& \quad \quad-\left\{\kappa_{j}-\beta_{1} * A G E_{-} K I D-\beta_{2} * 1-\beta_{3} * E N G L_{-} G P A\right\} \\
& =-\left(-\beta_{2}\right) \\
& =\beta_{2}
\end{aligned}
$$

Thus，boys not living with both biological parents have $e^{\beta 2}=e^{0.495}=1.64$ times higher odds of scoring lower than boys living with both biological parents．Similarly，those boys scoring one grade lower in English have $\mathrm{e}^{0.321}=1.38$ times higher odds of scoring lower on the Vocabulary test．

Using SUDAAN

SUDAAN code

The SUDAAN code and an explanation are included here for clarity. The With Replacement design type (design $=W R$) is specified on the proc statement. Note that the stratum variable region and primary sampling unit variable psuscid are listed on the nest statement, while the sample weight variable gswgtl is listed on the weight statement.
SUDAAN requires that all categorical covariates have values 1 or greater. Variable biomapa has been recoded as biomapar ($1=$ Yes, $2=$ No). You could have also used the SUDAAN recode statement to recode variables within the procedure. The categorical variables biomapar and pvtq1_4 are listed on the subgroup statement while the number of categories for each are listed on the levels statement. The cumlogit keyword on the model statement fits the proportional odds model.

```
proc multilog data=test filetype=SAS design=VR
    semet hod=bi nder r=i ndependent;
nest regi on psu;
wei ght gswgt 1;
reflevel bi ommpar=2;
subpopn mal e=1;
subgroup bi ommpar pvtq1_4;
levels 2 4 ;
model pvtq1_4=age_ki d bi omapar engl _gpa/ cuml ogit;
run;
```


SUDAAN results

Note the intercepts computed by SUDAAN have the same value as the intercepts computed by Stata, while the parameter estimates differ by a factor of negative one.

To understand the meaning of β_{2} as estimated by SUDAAN, the difference in log odds of scoring lower for living with both vs. not living with both biological parents gives:

$$
\begin{aligned}
& \log \left\{\left.\frac{\operatorname{Pr}\left(P V T 1_{_} Q 4 \leq j\right)}{\operatorname{Pr}\left(P V T 1_{-} Q 4>j\right)} \right\rvert\, \text { BIOMAPA }=1\right\}-\log \left\{\left.\frac{\operatorname{Pr}\left(P V T 1_{_} Q 4 \leq j\right)}{\operatorname{Pr}\left(P V T 1_{-} Q 4>j\right)} \right\rvert\, \text { BIOMAPA }=0\right\} \\
& =\left\{\kappa_{j}+\beta_{1} * A G E_{-} K I D+\beta_{2} * 1+\beta_{3} * E N G L_{-} G P A\right\} \\
& \quad-\left\{\kappa_{j}+\beta_{1} * A G E_{-} K I D+\beta_{2} * 0+\beta_{3} * E N G L_{-} G P A\right\} \\
& =\beta_{2}
\end{aligned}
$$

Thus, boys living with both biological parents have $\mathrm{e}^{\beta 2}=\mathrm{e}^{-0.50}=0.61$ times lower odds of scoring lower than boys not living with both biological parents. Similarly, those boys scoring one grade lower in English have $\mathrm{e}^{-0.32}=0.73$ times higher odds of scoring lower on the Vocabulary test.

MULTINOMIAL REGRESSION ANALYSIS

You may want to model an outcome with multiple levels. This example will show how to fit models to nominal outcomes. Nominal means that there is no ordering to the levels of the outcome. Although the outcome variable used in this is example, PVTQ1_4, is ordered since it is the quartile in which an adolescents PVT test score falls, we will model it as if there is no ordering. The technique selects one level of the outcome as a base category, and models the \log of the ratio of being the probability of being in the $\mathrm{n}^{\text {th }}$ category relative to the base category. This ratio is called the relative risk or odds and the log of this ratio is called the generalized logit.

Research Question:

How is the quartile of the Vocabulary test score for boys influenced by his grade in English and Family composition?

Predictive Model:

$$
\begin{aligned}
& \log \left(\frac{\operatorname{Pr}\left(P V T Q 1 _4=1\right)}{\operatorname{Pr}\left(P V T Q 1 _4=4\right)}\right)=\beta_{0,1}+\beta_{1,1} A G E_{-} \text {KID }+\beta_{2,1} B I O M A P A+\beta_{3,1} E N G L_{-} G P A \\
& \log \left(\frac{\operatorname{Pr}\left(P V T Q 1 _4=2\right)}{\operatorname{Pr}\left(P V T Q 1 _4=4\right)}\right)=\beta_{0,2}+\beta_{1,2} A G E_{-} K I D+\beta_{2,2} B I O M A P A+\beta_{3,2} E N G L_{-} G P A \\
& \log \left(\frac{\operatorname{Pr}\left(P V T Q 1 _4=3\right)}{\operatorname{Pr}\left(P V T Q 1 _4=4\right)}\right)=\beta_{0,3}+\beta_{1,3} A G E_{-} \text {KID }+\beta_{2,3} B I O M A P A+\beta_{3,3} E N G L_{-} G P A
\end{aligned}
$$

Where

$\beta_{0, n}=$ Intercept for the $\mathrm{n}^{\text {th }}$ category relative to the $4^{\text {th }}$ (base) category
$\beta_{l, n}=$ Change in log risk ratio of being in upper quartile for one year increment in age for the $\mathrm{n}^{\text {th }}$ category relative to the $4^{\text {th }}$ (base) category
$\beta_{2, n}=$ Change in log risk ratio of being in upper quartile for living with Biological Parents for the $\mathrm{n}^{\text {th }}$ category relative to the $4^{\text {th }}$ (base) category
$\beta_{3, n}=$ Change in log risk ratio of being in upper quartile for increase in one grade level for the $\mathrm{n}^{\text {th }}$ category relative to the $4^{\text {th }}$ (base) category

Using Stata: svymlogit

STATA CODE

The svyset command is used to specify the design information for analysis. Use the strata keyword to specify the stratification variable, region, the pweight keyword to specify the weight variable gswgtl, and the psu keyword to specify the primary sampling unit, psuscid.
The first variable following the svymlog command denotes the outcome of our model and the following variables are the covariates. The basecategory option is used to specify boys in the $75^{\text {th }}$ and above percentile as the base comparison group.

```
svyset strata regi on
svyset pwei ght gswgt 1
svyset psu psuscid
svyml og pvtq1_4 age_ki d bi omppa engl _gpa , subpop(mal e)
basecat egory(4)
```


STATA OUTPUT

Stata lists the number observations with no missing values for the variables in the model ($\mathrm{N}=17,191$) and has summed the corresponding sample weights to estimate $19,955,620$ adolescents is the U.S. The number of observations with complete data in the sub-population is 8,366 representing $10,084,117$ boys. Note that the number of strata (4) and primary sampling units (132) have been correctly counted.

Survey multinomial Iogistic regression

pwei ght: gsugt 1			Nunber of obs	$=$	17191
Strata:	region		Nunber of strata	=	4
PSU:	psuscid		Number of PSUs	=	132
			Popul ation size		19955620
Subpopul ation no. of obs		8366	F(9, 120)	=	25. 25
Subpopul ation size		10084117	Prob > F	=	0. 0000

The parameter estimates for each of the three models we fit are given in the output that follows.

pvt q1_4 \|	Coef	Std. Err.	t	$P>\|t\|$	[95\% Conf. I nt erval]	
age_ki d \|	. 0879976	. 0487072	1. 807	0. 073	-. 008378	1843731
bi omapa \|	-. 7430414	. 1251412	-5. 938	0. 000	-. 9906546	-. 4954282
engl_gpa \|	- . 5124962	. 0547626	-9. 359	0. 000	-. 6208533	-. 404139
_cons \|	. 0747199	. 7723085	0. 097	0. 923	- 1. 453424	1. 602864
2 \|						
age_ki d \|	- . 0028244	. 030068	- 0.094	0. 925	-. 0623192	. 0566703
bi ommpa \|	- . 5457032	. 1017309	-5. 364	0. 000	-. 7469952	-. 3444112
engl_gpa \|	- . 4859729	047102	- 10. 317	0. 000	- . 5791724	-. 3927735
_cons	1. 888848	. 4763762	3. 965	0. 000	9462563	2. 83144
3 \|						
age_ki d \|	. 0671961	. 0290782	2. 311	0. 022	. 0096598	1247323
bi ommpa \|	- . 1438588	. 0852997	-1. 687	0. 094	- . 3126389	. 0249212
engl_gpa \|	- . 3245378	. 0497126	-6. 528	0. 000	-. 4229026	- . 2261729
_cons \|	188824	. 4686449	0. 403	0. 688	- . 7384699	1. 116118

(Out cone pvt q1_4=4 is the comparison group)

Rounding to three digits, the models we estimated are:

$$
\begin{aligned}
& \log \left(\frac{\operatorname{Pr}\left(P V T Q 1_{-} 4=1\right)}{\operatorname{Pr}\left(P V T Q 1_{-} 4=4\right)}\right)=0.075+0.088 * A G E_{-} \text {KID }-0.743 * B I O M A P A-0.512 * E N G L_{-} G P A \\
& \log \left(\frac{\operatorname{Pr}\left(P V T Q 1_{-} 4=2\right)}{\operatorname{Pr}\left(P V T Q 1_{-} 4=4\right)}\right)=1.89-0.003 * A G E_{-} \text {KID }-0.546 * B I O M A P A-0.486 * E N G L_{-} G P A \\
& \log \left(\frac{\operatorname{Pr}\left(P V T Q 1_{-} 4=3\right)}{\operatorname{Pr}\left(P V T Q 1 _4=4\right)}\right)=0.189+0.067 * A G E_{-} \text {KID }-0.144 * \text { BIOMAPA }-0.325 * E N G L_{-} G P A
\end{aligned}
$$

Understanding the Predictive Model

The following table shows the predictive models for each level of the BIOMAPA variable.

	Ln (Relative Risk) for model	
Model	Biomapa=0 (No)	Biomapa=1 (Yes)
$\begin{aligned} & 1 \text { to } 4: \\ & <25^{\text {th }} \text { to } \\ & \geq 75^{\text {th }} \\ & 2 \text { to } 4: \\ & 25^{\text {th }}-<50^{\text {th }} \\ & \text { to } \geq 75^{\text {th }} \\ & 3 \text { to } 4: \\ & 50^{\text {th }-<75^{\text {th }}} \\ & \text { to } \geq 75^{\text {th }} \end{aligned}$	$\begin{aligned} & \beta_{0,1}+\beta_{1,1} \text { AGE_KID + } \\ & \beta_{3,1} \text { ENGL_GPA } \\ & \\ & \beta_{0,2}+\beta_{1,2} \text { AGE_KID + } \\ & \beta_{3,2} \text { ENGL_GPA } \\ & \\ & \beta_{1,3}+\beta_{1,3} \text { AGE_KID + } \\ & \beta_{3,3} \text { ENGL_GPA } \\ & \hline \end{aligned}$	$\begin{aligned} & \beta_{0,1}+\beta_{1,1} * \text { AGE_KID }+\beta_{2,1}+ \\ & \beta_{3,1} \text { ENGL_GPA } \\ & \\ & \beta_{0,2}+\beta_{1,2} * \text { AGE_KID }+\beta_{2,2}+ \\ & \beta_{3,2} \text { ENGL_GPA } \\ & \\ & \beta_{1,3}+\beta_{1,3} * \text { AGE_KID }+\beta_{2,3}+ \\ & \beta_{3,3} \text { ENGL_GPA } \end{aligned}$

To determine the relative risk ratio of scoring under the $25^{\text {th }}$ percentile to $75^{\text {th }}$ percentile $\&$ over for adolescents living with both biological parents, you would compute:

$$
\frac{e^{\beta_{0,1}+\beta_{1,1} A G E_{-} K I D+\beta_{2,1}+\beta_{3,1} E N G L_{-} G P A}}{e^{\beta_{0,1}+\beta_{1,1} A G E_{-} K I D+\beta_{3,1} E N G L_{-} G P A}}=e^{\beta_{2,1}}=e^{-0.74}=0.48
$$

We have considered the risk groups in the numerator and denominator to have the same age and grade in English. Thus, the risk is only 0.48 times as high of scoring under the $25^{\text {th }}$ percentile versus over the $75^{\text {th }}$ percentile if a adolescent lives with both biological parents. Computing the same risk ratio for the $50^{\text {th }}$ to $<75^{\text {th }}$ score category compared to the $75^{\text {th }} \&$ over category, we find adolescents not living with both biological parents have a risk that is $\mathrm{e}^{-0.14}=0.87$ times as those that do live with both biological parents. Note that these match the values in the Table of odds ratios printed by SUDAAN.

SURVIVAL (TIME-TO-EVENT) ANALYSIS

Survival analysis is used to predict the occurrence and timing of events. An event marks a qualitative change in status of the person (or entity) you are observing and the time that the event occurred. Some examples in the Add Health data are time to first intercourse and duration of a relationship.
The example used in this section investigates time until dropping out of school. In the Wave II In-home questionnaire, participants who were no longer in school were asked to identify the date they last attended school and the reason they were no longer attending. The goal here will be to use a participants' status at Wave I to predict if they will drop out of school by the time of the Wave II interview. The variables in the following table were constructed from Wave II data and merged with the Wave I data:

Use	Variable Name	Meaning
Outcome	OVER_14	Adolescent is 15 or older $0=14$ or younger $1=15$ or older
Variables	DROPOUT	Adolescent dropped out of school adolescents who left for other reasons) $1=$ Yes, reason for leaving was drop out Continuous Time in months Adolescent attended school since Wave I interview
Design Variable	GSWGT2	Grand Sample Weight for wave II

Here we have a choice:

- include all of Wave I Respondents and use the Wave I design information
- include only the Wave II respondents and use the Wave II design information.

The analysis was ran both ways and identical results (within ± 0.01) were computed. Only the Wave II results are presented here.

Research Question

Do any of the following factors: race, sex of respondent, living with both biological parents, smoking, being held back a grade, trouble getting along with teachers, raise (or lower) an adolescent's hazard of dropping out of school? We will limit the analysis to adolescents over the age of 14 .

Predictive Model

$$
\log \frac{h(t)}{h_{o}(t)}=\beta_{1} \text { BLACK }_{-}+\beta_{2} \text { WHITE- }+\beta_{3} \text { HISPANIC }+\beta_{4} \text { BIOMAPA }+\beta_{5} M A L E+\beta_{6} S M K C I G+\beta_{7} \text { HELDBACK }
$$

where
$h(t)=$ Hazard rate at time t, for the values of the covariates
$h_{0}(t)=$ Baseline hazard rate at time t, for values of all covariates equal to 0
$\beta_{1}=$ Hazard ratio for black race compared to not black
$\beta_{2}=$ Hazard ratio for white race compared to not white
$\beta_{3}=$ Hazard ratio for hispanic race compared to not hispanic
$\beta_{4}=$ Hazard ratio for living with both biological parents versus not living with biological parents
$\beta_{5}=$ Hazard ratio for males versus females
$\beta_{6}=$ Hazard ratio for smoking cigarettes regularly versus not smoking regularly
$\beta_{7}=$ Hazard ratio for being held back a grade .

Hazard is the probability that an adolescent will drop out of school in a month (the unit time interval) given that the adolescent has remained in school up to a given point time. Hence hazard is the rate of change of probability and can have values from 0 to infinity.

Using Stata: stcox

Stata does not have a special command for survival analysis with survey data, so we will use stset with the pweight option and stcox with robust cluster() option.

Stata Code

The stset command defines the failure time variable (time_mon), the grand sample weight variable (gswgt2), and the failure event (dropout) for use in subsequent survival commands. The stcox command specifies the covariates in the model. The if command subsets the data, limiting analysis to adolescents that are over 14 at time of the Wave I interview. The robust cluster() option specifies the primary sampling unit (psuscid).

```
stset ti me_mon [ pwei ght=gswgt 2], fail ure(dropout=1)
st cox age_ki d bl ack_ white_ hi spani c bi omapa mal e
        smkci g backgrad trbteach if over_14=1 , robust
        cl ust er(psusci d)
```


Stata Output

The stset command sets up key variables for survival analysis failure time (time_mon), grand sample weight (gswgt2), and failure event (dropout). Stata correctly reports 13,570 participants in Wave II, 63 participants with missing failure time data, and 219 participants who had dropped out of school before Wave I. Hence these adolescents will be omitted from any analyses. There are 275 adolescents who dropped out between Wave I and Wave II, while 13,288 adolescents were still in school or had left for other reasons.

```
failure event: dropout =1
obs. time interval: (0, time_non]
    exit on or before: failure
            wei ght: [ pwei ght =gswgt 2]
```

```
    13570 total obs.
```

 13570 total obs.
 63 event time missing (time_mon=) PROBABLE ERROR
 63 event time missing (time_mon=) PROBABLE ERROR
 219 obs. end on or before enter()
 219 obs. end on or before enter()
 13288 obs. remai ni ng, repr esenti ng
 13288 obs. remai ni ng, repr esenti ng
 2 7 5 \text { failures in single record/ si ngle failure data}
 2 7 5 \text { failures in single record/ si ngle failure data}
 143622.8 total anal ysis time at risk, at risk fromt =
143622.8 total anal ysis time at risk, at risk fromt =
0
0
earliest observed entry t = 0
earliest observed entry t = 0
I ast observed exit t = 16. 26667

```
                        I ast observed exit t = 16. 26667
```

The stcox procedure produced the rest of the output. There were 7,702 adolescents over 14 with data included in this analysis. Below are the estimated hazard ratios from the fitted model. We see adolescents who are regular smokers (smkcig) or who have been held back a grade in school (backgrad) have risks of dropping out of school approximately three times greater than other adolescents. Age (age_kid) and having trouble with teachers (trbteach) also elevates the hazard of dropping out of school, while adolescents who live with both biological parents (biomapa) have only 0.47 times the risk. Sex of adolescent (male) and
selecting white (white_) race has no effect. Selecting black race ($\mathrm{p}=0.061$) or hispanic ($\mathrm{p}=0.088$) ethnic group are marginally significant.

```
failure _d: dropout = 1 anal ysis time_t: time_non
    wei ght: [ pwei ght=gswgt 2] Cox regressi on -- Bresl ow method for ti es
```

No. of subj ects $=9507222.812$
No. of failures $=$ 394209. 4104
Time at risk $=$ 100210633. 9
Log I i kel i hood = -2571. 3805

Nunber of obs $=7702$

Wal d chi 2(9) $=291.76$
Prob > chi $2=0.0000$
(standard errors adj usted for cl ustering on psuscid)
--
_t | Robust
_d | Haz. Ratio Std. Err. z P>|z| [95\% Conf. I nterval]

age_ki d \|	1. 471376	. 1107276	5. 132	0. 000	1. 2696	1. 70522
bl ack_	5291449	. 1795304	-1. 876	0. 061	2721295	1. 028901
white_	1. 038147	. 1895911	0. 205	0. 838	. 7257855	1. 48494
hi spani c	1. 413141	. 2864434	1. 706	0. 088	9498328	2. 102441
bi omæpa \|	. 4737559	. 0820715	-4. 312	0. 000	. 3373618	6652935
male \|	8495824	. 1554353	-0. 891	0. 373	. 5935728	1. 21601
snkci g \|	3. 239976	. 6366865	5. 982	0. 000	2. 204309	4. 762238
backgrad \|	2. 919306	. 5900302	5. 301	0. 000	1. 964448	4. 338291
trbteach \|	1. 42784	1125872	4. 517	0. 000	1. 223379	1. 666472

APPENDIX A. STATA CODE TEMPLATES

Stata Code Template

The sampling characteristics are defined with the svyset statement:

```
svyset strata regi on
svyset pwei ght wt_var
svyset psu psuscid
```

Use the strata keyword to specify the stratification variable (region), the pweight keyword to specify the weight variable ($w t_{_} v a r$), and the $p s u$ keyword to specify the primary sampling unit (psuscid). Stata defaults to a "With Replacement" design type. Next, use one of the Stata commands for survey analysis. These commands begin with the letters svy. For example, to compute mean PVT scores you would use:

```
svymean ah_pvt
```

Subpopulation analysis is done by using either the subpop or by option. For example, to do the above analysis for boys you could create an indicator variable called sex with the value 1 for boys and 0 for girls and then use:

```
svymean ah_pvt, subpop(sex)
```

or use the by statement

```
svymean ah_pvt, by sex
```

Stata provides the svytest command for customized hypothesis testing and svylc for estimating linear combinations of parameter estimates after estimation with any of the survey commands.

Stata Robust Variance Estimation

Certain stata commands allow you to specify pweights (probability weights) and the robust cluster option. Below is an example using the logit command. Note for the commands that have the robust cluster option, sub-population analysis is done via the if statement.

```
I ogit outcone var1 var2 var3 if group=1
    [ pwei ght =wt_var], robust cl uster(psusci d)
```

Linear combinations of parameter estimates can be obtained with the lincom command; hypothesis tests can be performed with the test command.

REFERENCES

Brogan, D., Daniels, D., Rolka, D. Marsteller, F. Chattopadhay, M., "Software for Sample Survey Data: Misuse of Standard Packages"; invited chapter in Encyclopedia of Biostatistics, editors-in-chief Peter Armitage and Theodore Colton, John Wiley, New York, Volume 5, 1998, pages 4167-4174.

Chantala, K. and Tabor, J. "National Longitudinal Study of Adolescent Health Strategies to Perform a Design-Based Analysis Using the Add Health Data" University of North Carolina at Chapel Hill, 1999.

Cohen, S. B., "An Evaluation of Alternative PC-Based Software Packages Developed for the Analysis of Complex Survey Data," The American Statistician, August 1997, Vol. 51, No. 3, pages 285-292.

Levy, P. S., and Lemeshow, S., "Sampling of Populations Methods and Applications," John Wiley \& Sons, 1999. 525 p.

SAS Institute Inc., "SAS/STAT Software: Changes \& Enhancements through Release 6.12," Cary, NC, SAS Institute, 1997.

Shah, B. V., Barnwell, B. G., and Bieler, G. S., "SUDAAN User's Manual: Release 6.4," Research Triangle Institute, Research Triangle Park, NC, 1995.

Stata Corporation, "Stata Reference Manual," Release 6, College Station, TX, 1999.
Touraneau, R. and Hee-Choon, S. "National Longitudinal Study of Adolescent Health Grand Sample Weight," Carolina Population Center, University of North Carolina at Chapel Hill

