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ABSTRACT—The Pathfinder mission demonstrated the
potential for robotic Mars exploration but at the same time
indicated the need for more robust rover autonomy. Future
planned missions call for long traverses over unknown
terrain, robust navigation and instrument placement, and
reliable operations for extended periods of time. Ultimately,
missions may visit multiple science sites in a single day and
perform opportunistic science data collection, as well as
complex scouting, construction, and maintenance tasks in
preparation for an eventual human presence. Significant
advances in robust autonomous operations are needed to
enable these types of missions.

Towards this end, we have designed an on-board executive
architecture that incorporates robust flexible operation,
resource utilization, and failure recovery. In addition, we
have designed ground tools to produce and refine contingent
schedules that take advantage of the on-board architecture’s
flexible execution characteristics. Together, the on-board
executive and the ground tools constitute an integrated rover
autonomy architecture.
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1. INTRODUCTION

Mars exploration is a high priority at NASA. Current plans
call for a mission to Mars every 26 months. Future missions
will require rovers with more capabilities than have ever
been demonstrated on previous missions. The rover to be
launched in 2003 will be expected to survive for more than a
year and traverse more than 10 kilometers. By contrast, the
Sojourner rover in the 1997 Mars Pathfinder mission was
only expected to survive for a few weeks and stayed within
sight of the lander. Ultimately, in support of human
exploration, rovers will be needed to scout out landing sites,

find water and other resources, set up power plants, and
mine and transport resources.

These capabilities will require rovers with robust
autonomous operations so that they can perform
independently over long intervals while achieving mission
and science goals. The rovers will communicate infrequently
with earth, and the communication will have high latency
and low bandwidth. Rovers that are continually dependent
on commands from Earth would incur huge cost and would
achieve a much lower science return due to the lost time that
the rover is waiting for instructions. Given that rovers have a
limited lifetime, such wasted opportunity translates to much
lower return on investment.

Robust autonomous operations will also be important in
support of human presence on Mars. Even though latency
will be less of a problem, the crew will be busy with more
important tasks and will not have the time to continuously
monitor the rovers and control their every move. Thus,
autonomous rovers can greatly amplify the productivity of
the small crew. It is also advantageous for the rovers to be
responsible for their own well-being: to avoid getting
damaged, as well as to diagnose and correct recoverable
software and hardware failures. With robust autonomous
rovers, the crew does not have to spend time baby-sitting
rovers and can concentrate on survival and science.

Although much research has been done to endow
autonomous robots with far greater capabilities than were
demonstrated on Sojourner, little of that can be used directly
for planetary missions. On space missions, safety is
paramount. Missions are very expensive, and even the
simplest mistakes can cause the mission to fail. If the rover
became permanently stuck on a rock or damaged, the effect
on the mission would be disastrous. Thus, on-board
technology will always be more conservative than what has
been tried in a laboratory setting.

In the following section, we discuss the capabilities of
current rovers and the additional capabilities needed to
support planned missions. In Section 3, we discuss a rover
autonomy architecture that provides these needed
capabilities. In Section 4, we discuss plans for an upcoming
field test that will demonstrate some of these capabilities.
We then discuss future directions of this work.



2. CURRENT AND FUTURE ROVER AUTONOMY

Criteria for robust autonomous rovers

For a rover to demonstrate robust autonomous operations, it
will need to adapt to its environment. Although someday this
may be performed through automatic, on-board modification
of plans and models, this could produce unanticipated
behaviors and thus would introduce an added risk into the
mission. Instead, we focus on those aspects that can allow
the rover controllers on ground to specify the rover’s
response to a range of possible operating situations that may
arise. In particular, we consider the following criteria
essential for robust rover autonomy:

• Robust flexible operation. A rover should choose its
behavior based on the execution environment. The
rover operators should be able to specify multiple
execution behaviors along with the conditions under
which they are appropriate.

• Resource utilization. Resources such as power, data
storage, and communication bandwidth place
restrictions on what the rover can do. In order to
perform its science and mission objectives efficiently,
the rover needs to make full use of the available
resources, even when they change from expected
values. To do this it should track actual and expected
resources, signal resource conflicts, and allow its
behavior to be specified with respect to the resources.

• Failure recovery. Because of the complexity of a
rover’s interactions with its environment, it will need
the ability to recover from faults or anomalous
situations. The rover should recover from those faults
from which it safely can, and it should gather relevant
information for problems that need to be handled by
rover operators. Each of these will save command
cycles and increase the efficiency of the rover.

In addition to these criteria, there are other considerations
that affect planetary rover operations in general. These
considerations influence the design of missions and
consequently the work described in this paper:

• Uncertainty. Rovers operate in environments that are
largely unknown. Techniques that require precise
information about the environment to perform actions
will be prone to failure.

• Need for safety. Space missions are expensive and
rover failure irreparable. A planetary rover must work
the first time, and it needs to guarantee its own safety in
order to achieve the mission goals.

• Limited communication. With limited use of the Deep
Space Network and with other communication limits
imposed by orbiter schedulers, the rover must operate
with relatively little and infrequent interaction with the
rover operators. The rover must operate between

communication events with no human intervention and
no assistance from ground-based programs.

• Need for understandability. Mission designers must
be convinced that the proposed approach will improve
the quality of the mission. If the approach is complex
and unclear to the mission designer, it is unlikely to be
used.

• Multiple objectives. A deployed planetary rover must
balance considerations such as navigation with science,
communication, resource consumption, and fault
recovery. A rover must be able to operate as an
integrated system.

Mission-ready rovers

Examples of mission-ready rover technology are scarce. The
primary source is the Mars rover development program at
JPL, which produced the 1997 Sojourner rover. Sojourner is
the only deployed planetary rover to demonstrate a
significant level of autonomous operations [1]. Sojourner
operated in a semi-autonomous mode, with periodic
communication with Earth via the Pathfinder lander.
Sojourner weighed about 23 pounds, operated for 83 sols
(Martian days, which are 37 minutes longer than days on
Earth), traveled 100 meters, performed 16 experiments on
soil and rocks, and transmitted 550 images.

The Soviet space program produced two lunar rovers that
were teleoperated from Earth in 1970 and 1973. The level of
autonomy was basic, limited to stopping in response to
excessive tilt, wheel blockage, or motor overheating. The
teleoperation allowed the rovers to travel over 30 times
further per day than Sojourner and perform nearly an order
of magnitude more experiments per day, all this 20 years
earlier.

Teleoperation is impractical at longer distances, so some
level of autonomous operation is necessary for planetary
rovers deployed beyond our moon. Current rover missions,
such as Pathfinder, depend almost entirely on ground-based
commanding and employ only enough on-board autonomy
to safely follow uplinked commands. If anomalous situations
arise, the rover goes into a safe mode and waits for an
updated command sequence to be generated by the ground
operations team and uplinked. In practice, this approach
leads to high mission cost and missed science opportunities.
The ground operations team for the Pathfinder mission had
to adjust themselves to Mars time, sleeping and waking 37
minutes later each day, for the entire mission and had much
more access to expertise in diagnosing and debugging
problems than will be possible in future missions. With
upcoming missions intended to last a year or more,
expecting people to work such hours and maintain such
vigilance is not feasible. Furthermore, since almost all of the
intelligence behind the Sojourner rover was on Earth, the
command sequences that Sojourner executed were quite
fragile. There were many cases when something went
wrong, and the team on Earth had to spend a day or more
diagnosing and fixing the problem.



NASA and the European Space Agency (ESA) have
published mission designs calling for autonomous Mars
rovers [15,17]. The space agencies recognize the need for
integrated architectures that allow for significant levels of
autonomy in order to operate effective missions. In the 1996
field tests of Sojourner-style technology, three of the lessons
learned dealt with a need for a higher degree of autonomous
operations [2]:

• Science operations required higher than
expected communication cycles.  Need to
improve rover autonomy for science
operations.

• Operator interface need[s] to be improved to
reduce operator load and to provide error free
operations. 

• Rover autonomous navigation not adequate for
Viking Lander II type terrains. Improvements
in autonomous navigation are required.

The second of these is not directly related to autonomous
operations, but rather indicates the need for a combination
of ground-based tools and on-board autonomy that will
reduce the burden on the rover operators.

The ability of future rovers to achieve the more ambitious
goals of future missions will depend critically on robust
autonomous operation. Each of the criteria for robust
autonomy can be seen to be lacking to some extent with
current mission-ready rovers:

Robust flexible execution—Currently, a rover command
sequence is specified to the lowest level of detail and leaves
few, if any, choices to be made at execution time; hence, it
admits only one, or a very small number of, valid execution
behaviors. This simplifies the execution process but does not
allow execution to be responsive to the dynamic status of the
rover and the environment. This inflexibility can cause
reduced productivity and execution failures.

For example, in Sol 22 of the mission, Sojourner received
the following challenging instruction sequence:
1. Back up to the rock named Soufflé.
2. Place the arm with the spectrometer on the rock.
3. Do extensive measurements on the rock surface.
4. Perform a long traverse to another rock.
At the next communication opportunity, the news came in
from Mars. The good news was that the sequence was
executed to completion, including the longest traverse ever
done in one day, a world’s record for Mars. However, there
was bad news with the good. The rover stopped short of the
rock and the spectrometer was left hanging out in mid-air
rather than placed on the rock. The rover sensors indicated
that the spectrometer was not in contact with the rock, but
the rover continued with its spectral measurements. Not only
was the spectrometer data useless, but the rover spent over
six hours running the spectrometer, using time and energy
that could have been used otherwise. The rock was never
again visited and thus that science opportunity was lost. A
more desirable behavior would be for the rover either to stop
and take pictures to aid the ground team’s diagnosis of the

placement problem or to give up on that science goal and
continue with another.

Resource utilization—The generation of uplink sequences is
based on estimated profiles, over time, of capacity and
demand for each resource. However, there is great inherent
uncertainty in the operating environment and its impact on
performance of rover hardware components. For example,
the power demand of a traversal is highly dependent on the
incline, roughness, and traction of the terrain. Without an
accurate estimate of power demand, battery state of charge
at a given time cannot be accurately predicted. Furthermore,
battery charge will also depend on how much time is spent
in shade and on the tilt of the solar panels, which in turn
depends on the surrounding landscape. In response to this
uncertainty, worst-case estimates of resource usage and
availability are typically used; however, even tight worst-
case bounds may be difficult to predict. Because demand
estimates are too pessimistic, execution of such sequences
often results in reduced rover productivity through wasted
time and lost opportunities. On the other hand, overly
optimistic estimates of resource usage and availability result
in higher risk to rover safety and a greater chance of broken
plans.

Failure recovery—Current rovers have very limited
capabilities for recovering from faults or anomalous
situations. The rover’s response to most execution failures is
to halt all activity and wait for the ground operations team to
determine what went wrong and uplink a recovery plan.
Depending on the nature of the anomalous situation and the
quality of the downlinked information for the purposes of
diagnosis, this ground-based recovery process can cost days
of rover idle time and lost science opportunity. For example,
a rover traverse may fail with a high wheel current combined
with the wheel encoder showing no movement. In this case,
the wheel may be stuck on a rock or the encoder may be
broken. The ground team will need to uplink diagnostic
sequences to determine which one is the case, wait for the
results to be downlinked, and eventually uplink recovery
sequences to remove the rover from the rock if that is the
problem. Valuable science opportunities are lost during this
time. Even transient problems such as an overheated motor
can cause plan failure, where perhaps a brief pause to cool
down would be sufficient to remedy the problem.

In the 1996 Rocky 7 field tests, rocks got caught in the
wheels, causing wheels to jam and drag on the ground [2,3].
This was diagnosed in the desert by human observers
noticing the track that the stuck wheel left in the soil, and it
was fixed by prying out the rock with tools. On a more
remote site, an automatic fault diagnosis and recovery
system would allow the rover to continue, or at least to stop
before damaging itself and to request help from Earth.

Research on outdoor robots

A number of rovers have been built for Earth-based missions
or to test research ideas on realistic platforms. Much of the
work on outdoor robotics has focused on advances in the
robotic hardware necessary to operate in the unstructured,



difficult environment that an outdoor setting presents. For
example, the main contribution of the Ambler robot is a
novel form of leg-based locomotion [4]. This work is
complementary to the work in this paper, which concentrates
on the software architecture needed for robust autonomous
operations.

Many outdoor robots are designed to be largely teleoperated
[5,6,7], concentrating on the ability to navigate
autonomously to a given waypoint, avoiding obstacles along
the way.  The performance of these robots is impressive in
terms of distance traveled [6] and environmental hazards
overcome [7], but the problem was restricted so that the
robots did not have to exhibit robust behavior with respect
to science goal achievement.

The ADS autonomous land vehicle [8] generated contingent
plans over uncertain terrain.  The work was restricted to path
planning, and a prior, possibly inaccurate map of the
environment was assumed to exist for generating paths.

Research on indoor robots

In contrast to the deployed missions and even outdoor
robots, results from research labs on indoor robots would
suggest that mobile rovers can operate reliably and
autonomously over a wide range of conditions and a wide
range of time, demonstrating impressive abilities for
navigation, fault recovery, replanning, and science
acquisition. However, the state of the art in outdoor rover
technology is significantly more modest. The reasons lie in
the considerations for mission-ready rovers stated above,
along with the difficulty in assembling an integrated rover
architecture from a number of disparate, individual research
results.

Mission-ready rovers must operate in environments that are
largely unknown and unstructured. Many indoor robots rely
on an accurate map of the environment. Furthermore, the
environment is often assumed to have straight walls, flat
floors, and right angles at corners. These assumptions are
obviously not true for outdoor environments, and the
approaches are not easily extended to the general case.

Map learning has been proposed as a method for
overcoming the lack of an accurate map [9]. However, this
is difficult in unstructured environments with significant
motion error. Moreover, the usefulness of a map-learning
phase is dubious in an environment where exploration and
science tasks are foremost; the extra time necessary to build
accurate navigation maps will have a severe impact on the
overall science return.

Many architectures have been proposed for autonomous
robots, relying largely on artificial intelligence techniques
for merging high-level and reactive control of the rover
[10,11,12,13,14]. Very few architectures address the issues
arising in remote, planetary rovers [15,16,17]. In general,
the architectures fail in the areas of understandability or
safety. The more complex AI techniques that promise higher
levels of autonomous operations often come with no

guarantee on behavior, and their operation is not easily
predictable. Bottom-up approaches that rely heavily on
programming and interacting behaviors [18,19] become
equally unpredictable when the system becomes large.

These architectures assume tightly coupled interaction
between different elements of the architecture (integrated
planning and execution) or between a human and the rover
system (teleoperation). Since it is not currently feasible to
put a full planner on board a planetary rover, either option
fails the requirement of limited communication.

Research rovers, both indoors and out, are tested repeatedly
under similar environments and situations to demonstrate the
usefulness of the rover architectures under those conditions.
Based on the test results, models are refined, parameters
adjusted, and the rover control software modified. However,
the only environment that truly matches that of a planetary
mission is on the planet.  Once there, the rover has a limited
lifetime, which must be devoted to mission goals, leaving no
time for further testing and refinement.

Rover research technology often addresses one problem,
such as navigation, in isolation. A deployed rover must,
however, balance considerations such as navigation with
science, communication, resource consumption, and fault
recovery. An integrated system presents challenges that
single technologies do not address. Nonetheless, the
research literature contains many results that are of potential
value to missions. Some have influenced current rover
designs, but many more remain unused. Individual
technologies, in addition to those mentioned above, include
verifiable real-time control [20,21,22] and human-computer
interaction [23].

The next generation of mission-ready rovers

The next generation of rovers, the first of which is expected
to launch in 2003, will be more flexible than Sojourner.
Instead of simple command sequences, the rovers will
execute complex contingency plans, which tell the rover
explicitly what to do if something goes wrong. They will
also execute plans more robustly, so minor problems such as
incorrect resource estimates or motor overheating do not
cause complete failure. Finally, they will be able to identify
and diagnose internal faults and recover from simple
failures.
To imagine how these rovers will behave, consider again the
problem of backing up to a rock, deploying a sensor,
gathering data, and moving on. We can imagine what a
smart rover would need to do in this case. First of all, the
operation of backing up on Sojourner was brittle because it
used a simple “try three times” strategy. We can imagine a
more robust operation of backing up until contact, with
some timeout in case it hits an insurmountable difficulty.
The backing-up operation should include the ability to try
different approach paths if obstacles block the planned
route. The rover should also be able to take a moment to let
an overheating motor cool down rather than abandoning the
operation. In addition, the rover should notice that a wheel
seems to be malfunctioning and pulling the rover off-path,



and it should autonomously shift control algorithms to
compensate. Certainly the rover should verify correct
instrument placement before doing hours of measurements;
furthermore, the rover should have alternative plans in case
it cannot make contact with the rock despite its best efforts.
While it is performing measurements, the rover should
monitor its energy level to make sure that it will have
enough energy left to send its data to Earth during the next
communication event. It should cut short the measurements
if it ends up in the shade of a larger rock and cannot charge
its battery enough to complete the task and also
communicate.

The technology needed to construct such a rover is within
reach using artificial intelligence technology in development
today.

3. ARCHITECTURE OVERVIEW

We now discuss our rover autonomy architecture, which is
specifically designed to accommodate the particular
constraints of planetary rovers while supporting autonomous
operations. The architecture builds on elements of the
Remote Agent architecture [24], extending and modifying
existing elements and adding new elements as needed.

The Remote Agent has been applied to the problem of
spacecraft control, in particular a technology experiment on
the Deep Space One mission [25]. The differences between
spacecraft in the relatively predictable environment of space
and a rover interacting with an unknown planetary surface
have led to the particular elements of the current
architecture.

The rover autonomy architecture consists of four major
reasoning components (see Figure 1): a contingency
planner/scheduler (CPS), a conditional executive (CX), a
resource manager (RM), and a model-based mode
identification and reconfiguration system (MIR). In the
current system, CPS is a ground-based planner, which is
given high-level science goals and generates a temporally
flexible schedule along with contingency plans for possible
execution failures. The planning capabilities will
incrementally migrate on board as advances in time-
constrained planning and mission-qualified processor power
allow and as the need for autonomy increases. The
contingent schedule is refined with help from a rover
operator and then sent to the on-board executive CX. These
commands are sent to the real-time control system, with
results coming back via state monitors into MIR. MIR’s
mode identification layer infers the system state from the
monitored information and updates the state for CX. If
commands fail or schedule constraints are violated, CX tries
to recover using the contingency plans. In the future, CX
will also be able to call MIR’s mode reconfiguration layer to
produce a recovery plan for unanticipated failures.

Contingency Planner/Scheduler

Throughout a mission, detailed mission operations plans
must be constructed, validated, and uplinked to a spacecraft
or rover. Currently a mission operations plan takes the form
of a rigid, time-stamped sequence of low-level commands.
Unfortunately, there is uncertainty about many aspects of
task execution: exactly how long operations will take, how
much power will be consumed, and how much data storage
will be needed. Furthermore, there is uncertainty about
environmental factors that influence such things as rate of
battery charging or which scientific tasks are possible. In
order to allow for this uncertainty, current plans are based
on worst-case estimates and contain fail-safe checks. If tasks
take less time than expected, the spacecraft or rover just
waits for the next time-stamped task. If tasks take longer
than expected, they may be terminated before completion. In
fact, all non-essential operations may be halted until a new
command sequence is received. All of these situations result
in unnecessary delays and lost science opportunities.

To account for execution uncertainty, CPS can actively plan
for, and take advantage of, possible contingencies. Thus, if
an operation takes longer than a certain amount of time, or
the power remaining drops below a specified value, a
different pre-planned sequence of operations can be
performed. Building contingency plans is, in general,
intractable, and so contingency planners tend to be slow
[26,27,28]. To overcome this problem, CPS employs the
Just-in-Case (JIC) planning approach [29], originally
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developed to generate contingent observation schedules for
automated telescopes.

The basic idea of JIC is to take an existing schedule and
look for the places where it is most likely to fail. The JIC
scheduler then generates alternative schedules for each of
those situations. The JIC scheduler starts with a sequence of
tasks, where each task must be performed in a certain
temporal window. However, there is uncertainty in how long
a particular task may take, and this can lead to potential
failures of the schedule. For example, an execution failure
could result if one task finished sufficiently late that the next
task’s start window has already passed.

CPS operates at two levels. At the lower level, CPS builds
straight-line (non-contingent) schedules of the tasks that it is
given. It does this by piecing together a schedule, one task at
a time. CPS uses a local search strategy to determine which
task should be added to the schedule next, and where. The
local search strategy has the advantage of being an anytime
algorithm—over time, CPS will produce schedules of
increasing quality.

At the higher level, CPS actually builds the contingent
schedule using this lower level as a subroutine. An initial
straight-line schedule is built first, then contingent branches
are iteratively added (see Figure 2). In each iteration, the
point in the contingent schedule that is most likely to fail is
selected. Then, the low-level scheduler is called to build a
new straight-line schedule, given the breaking condition and
the schedule prefix up until the breakpoint as an initial seed.

The resulting schedule is then integrated into the existing
contingent schedule and the iteration is complete.

The initial JIC work dealt only with one resource: time. For
rover operations, uncertainty about other resources can also
lead to potential failures in a plan. For example, if a task
uses more power than expected, or the battery has not
charged as much as expected, there may be insufficient
power available for the subsequent tasks. However, there
may be enough power left to do other useful tasks. Thus, we
have extended JIC to also consider power consumption and
data production when it is searching for a probable break
point. Furthermore, we consider both when a resource is
overdrawn (a task takes too long) and when a resource is
available in surplus (a task required less power than
expected). This ability allows the scheduler to build
contingent plans that take advantage of unexpected surplus.

Conditional Executive

The conditional executive (CX) is responsible for
interpreting the command sequence coming from ground
control, checking run-time resource requirements and
availability, monitoring plan execution, and potentially
selecting alternative plan branches if the situation changes.

The input to CX consists of the primary plan and a set of
alternate plans. The primary plan contains a nominal
sequence and a set of contingent branches (see Figure 3).
The nominal sequence is the sequence that will be executed
if there are no deviations from the a priori expectations of
the environment and actions. The contingent branches
specify alternative courses of action. Within any contingent
branch there may be further contingent branches, hence the
primary plan is a tree of alternative courses of action.

The alternate plans are not attached to particular points in
the primary plan but are rather applicable at any time their
conditions are satisfied; in some sense they are global
contingent branches, whereas the contingent branches within
a plan are local to their position in the plan. When enabled,
each alternate plan can either replace the executing plan or
insert itself between actions of the executing plan. Enabling
events can include unexpected opportunities, plan failures,
or conditions such as resource shortfalls and component
degradation.

CX starts by executing the nominal sequence of the primary
plan. At each point in time, CX may have multiple options,
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corresponding to the eligible branches of a branch point and
the enabled alternate sequences. CX chooses the option with
the highest estimated expected utility, computed over the
remainder of the plan. The utility of successfully completing
an atomic action is set by operators on the ground. From this
atomic utility and a model of the probabilities of various
events (such as a traverse taking longer than anticipated), the
expected utility of an entire branching sequence can be
estimated. This expected utility is initially computed by the
ground planner CPS; the utility could be updated by an on-
board plan revision component at run time to reflect changes
in resource availability, system state, or the environment.

CX receives state information from the mode identification
module MIR and resource information from the resource
manager RM. It uses this information to check action
preconditions and maintenance conditions, as well as to
check the preconditions of the alternate plan library. The
ability to branch on any state or resource condition provides
the sequence writer with a powerful language for describing
activities.

CX extends its own robust activity mechanism using the
fault recovery mechanisms of MIR. CX may request
recovery commands from MIR and integrate those
commands into the procedure for the currently executing
action. If MIR cannot suggest a recovery, the action has
failed, and depending on instructions in the plan, CX either
ignores the failure or aborts the executing plan and checks
for applicable alternate plans. In the case that no alternate
plans apply, CX aborts the entire plan set and puts the rover
into a stable standby mode.

As an example of flexible execution, consider the following
plan for a day’s traverse: the rover is to the south of a small
ridge, trying to head generally north. The uplinked primary
plan specifies the following course of action:
• Travel north to the top of the ridge
• Choose between the options: 

• Nominal option, highest utility (precondition: there
must be a path)
• Continue to the north
• Downlink to ground at sundown

• Contingent option, lower utility
• Move back down the ridge 
• Travel east scanning for a pass 
• Downlink to ground at sundown

Because operators have a good view of the slope of the
ridge, they decide to precisely define the low-level
navigation for that segment. They can upload a time-
stamped set of motion commands as a sequence. In this case,
CX is operating like a traditional sequencer.

At the top of the ridge, the rover’s on-board navigation
system judges that there is no safe path to the north. The
nominal plan option is not eligible to execute because its
precondition has failed, so the contingent option is selected.

As the rover executes the procedure for its action to move
back down the ridge, the mode identification component of
MIR notices an inconsistency between the commanded
speed of the left front wheel and the current draw of its
motor, and reports the anomaly to CX. CX invokes the
procedure’s predefined exception handler for that anomaly,
which in turn requests a recovery program from the mode
reconfiguration component of MIR. The recovery program
resets the motor microcontroller and resolves the anomaly.
The entire MIR cycle has happened within the scope of a
single action of the plan, below the level of abstraction of
the off-board planning system CPS.

Returning to the bottom of the ridge, the rover continues
with its uplinked sequence by beginning its traverse to the
east. An hour before sundown, the vision system picks up an
unusual green patch on a nearby rock. The ground operators
had supplied an alternate plan for this serendipitous science
opportunity and had given it a high priority. After
considering the relative utility estimates for the options of
continuing the current plan or inserting the alternate plan to
examine the rock before the next action, CX chooses to
examine the rock.

After sidetracking to the rock, CX returns to the primary
plan just before sundown. The next two actions, “Travel
east” and “Downlink,” both make requests for time and
power from the resource manager RM. It turns out that
because of the sidetrack, the total energy requested by these
actions exceeds the battery energy stored during the day.
RM reports the conflict to CX. The ground operators had
given a very high priority to the “Downlink” action and
specified that it should run even if previous actions failed, so
CX chooses to cancel the lower utility “Travel east” action.

After the “Travel east” command has been cancelled, CX is
ready to call the downlink action—but since the plan
requires that the downlink begin at a specific time, CX waits
until the beginning of that window to execute the downlink.
Ground operators can also request that CX wait for an
arbitrary predicate to become true, such as the antenna being
turned on, before executing an action.

Resource Management

Resources on rovers are severely limited and at the same
time critical for mission success. Solar energy is the primary
source of power, but downlink events may be scheduled
when there is little or no sunlight, so the power must be
managed such that the on-board battery is sufficiently
charged to communicate. There are more opportunities to
take pictures and instrument measurements than there is
space on board or communication bandwidth, thus space
needs to be managed so that the most important data are
stored and sent back.

Command sequences are sent at periodic intervals, usually
daily. Sequence writers (or automatic planning and
scheduling tools) must make conservative estimates of the
resource usage to avoid oversubscribing the resource (for
example, draining the batteries). But overly conservative



estimates may not make full use of the resources, leaving the
rover idle or passing up science opportunities that were in
fact possible. Conversely, overly optimistic estimates may
lead to fault conditions that will at best break the plan and at
worst damage the rover.

The underlying problem is that resources cannot be
estimated precisely for an entire day since the rover’s
interactions with the environment are complex. Only during
the execution of the sequence will it become clear how much
of each resource is indeed available. If a traverse completes
quickly because of unexpectedly easy terrain or good
traction, more tasks may be possible with the surplus time
and power. Conversely, if the rover traverses a ridge, slanted
away from the sun, the accumulated energy may be
insufficient to run all the planned experiments and also
communicate with ground. The rover would then have to
discard some of the experiments to reserve energy for
communication.

We have designed an on-board, run-time resource manager
that receives estimated resource profile information from
tasks, monitors current and planned resource usage, and
reacts to changes in resource availability. The resource
manager is largely transparent to sequence writers, while
allowing them to take full advantage of the resources
available. The following are the primary contributions of the
resource manager:

• On-board resource conflict and opportunity
detection. The resource manager is able to notice when
there are differences between predicted and available
resources, both in the present and the future. A
conditional sequencer that branches on resource
conditions can take advantage of changes and run the
plan that best conforms to the known resource
information.

• On-board resource conflict recovery. The resource
manager has multiple possible strategies for recovering
from resource conflicts. The strategies include rejecting
the conflicting tasks (the simplest and most severe
strategy) or shedding low-priority tasks.

• On-board resource opportunity exploitation. The
resource manager is able to allow low-priority or
background tasks (like heating of the electronic
components) to take advantage of unexpected extra
resources. In conjunction with a conditional sequencer,
resource opportunities can trigger new plan fragments
that wait for this additional resource availability.

Note that detection, recovery, and opportunity exploitation
can operate on future resource requirements and predicted
availability. This will provide support for more flexible task
scheduling and, in the long term, for further on-board
autonomy such as automatic scheduling, sequence
generation, and fault recovery.

Interaction between resource management and sequence
execution—The resource manager RM in the rover
autonomy architecture communicates with the sequence
execution component CX. Each step in the nominal
sequence has an expected resource profile associated with it.
The ground-based planner/scheduler CPS uses the expected
profiles and the expected resource availability to construct
the sequence. Under normal conditions, the initial sequence
will respect the resource availability (although this is not
assumed, in case the resource availability changes before
uplink).

CX sends the expected profiles to RM, which records them
and checks for conflicts (see Figure 4). Any conflicts are
signalled to CX. CX in turn can respond in a variety of
ways, depending on the severity and immediacy of the
conflict. CX can fail the plan, select an alternate plan from
its plan library, or ignore the conflict (for example, in the
case that it is a future conflict with a low priority task).

As the sequence is executing, the estimates of resource
usage and availability become concrete. Resource monitors
gather the information about the real usage and availability
and send that to RM. Based on this new information,
conflicts or opportunities may arise, which RM will in turn
signal to CX.

Conflict detection and recovery—RM stores resource
profiles using a timeline-based representation. Each timeline
is a set of non-intersecting time intervals over which a
constant amount of the resource is used (see Figure 5).

The predicted resource availability, given by system
resource information and models of resource availability

over time (for example, solar flux models), defines a
timeline of the maximum available resource during any time
interval.

Each resource request includes a profile of predicted
resource usage. The sum of all the granted resource requests
itself defines a timeline, and this resource request timeline

Figure 4: Communication between resource manager and
sequence executive.



must be less than the resource availability timeline at all
time points.

A conflict will arise whenever the request timeline exceeds
the available timeline. This may occur because of
availability changes or because of a new request. In either
case, the set of tasks using that resource during the time
interval where the conflict occurs forms the conflict set. This
conflict set is then minimized to find a set of lowest-priority
tasks that, when removed, will resolve the conflict. In the
case of a new request, the tasks must be lower priority than
the new task; if the conflict cannot otherwise be resolved,
the request is refused, thus resolving the conflict. If a
minimal conflict set is found that will resolve the conflict,
RM sends that set to the executive CX, which will react to
the conflict. For example, CX might remove those tasks
from its planned sequence, potentially even aborting the
sequence if those tasks were necessary for sequence success.

Resource borrowing—RM has the ability to borrow
resources from tasks to satisfy new resource requests. For
tasks that can operate in a number of modes, or background
tasks that can be preempted, the resource profile includes an
indication of how much of the resource requested could be
given up without aborting the task. For example, an image
could be compressed with quality loss to free up data storage
for higher priority images, but without completely
discarding the image. RM prefers to borrow resources
before it sheds tasks.

Diagnosis and Recovery

The approach that Sojourner used to respond to faults is
fairly typical of most fault-protection systems: monitors on
specific sensors check whether given limits have been
exceeded. If so, the rover stops what it’s doing and waits for
the next plan uplinked from Earth. Such monitors look at
pitch and roll sensors, accelerometers, and the product of
current and time in motors. This approach has a number of
limitations.

• The appropriate thresholds for a given sensor depend
greatly on context, not the least of which is the health
condition of the sensor itself. Wheel motors will draw
more current when the rover is going uphill, for

instance. In the Pathfinder mission, the ground
operations team turned off specific accelerometers
during particular maneuvers, and changed variables that
influence the rover’s reaction to minor faults. While this
is one solution to the context dependence of sensor data,
it is a fairly limited solution.

• Given that appropriate sensor thresholds are context-
dependent, rover engineers must trade the cost of false
alarms against the risk of not responding to failures in
time to prevent damage. On Sojourner, false alarms
were quite common, resulting in lost science
opportunities.

• Fault protection systems that rely only on monitoring
individual sensors cannot cope well with multiple faults,
and they are limited in the number of faults they can
detect.

• Simply halting and calling home for help is
unnecessarily conservative for many common faults.
Often, the rover could recover from the failure and keep
going or else perform actions that do not depend on (or
affect) the damaged component. Doing so depends on
knowing the nature of the fault.

To address these problems, the rover autonomy architecture
makes use of diagnosis, using all available sensor data to
infer whether the rover is behaving correctly and, in some
cases, to infer the specific fault. When it is possible to infer
the fault, and that fault is recoverable, the rover can execute
the appropriate recovery plan; otherwise, it can always shut
down and call home for help. Diagnosis, taking into account
the complete state of the rover, allows faults to be detected
earlier and also reduces the number of false alarms.

We refer to the diagnosis and recovery component of the
rover autonomy architecture as MIR, for Mode

Figure 5: Resource management timelines. Resource
availability is shown in the lighter shade, usage in darker
shades. Conflicts occur where actual or predicted usage
exceeds availability.
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Identification and Reconfiguration. MIR is part of the
Remote Agent Experiment flying on board the DS1
spacecraft [24]. MIR is a discrete, model-based controller
that uses a single, declarative model of the rover for both
mode identification (inferring the internal state) and
reconfiguration [30] (changing the system to a more
desirable state). Like CX, MIR runs as a concurrent reactive
process. MIR itself contains two components, one for Mode
Identification (MI) and one for Mode Reconfiguration
(MR).

MI is the sensing component of MIR’s model-based
reconfiguration capability. MI eavesdrops on commands
sent by CX to the rover. As each command is executed, MI
receives observations from low-level monitors, which
extract qualitative information from the rover sensors. For
example, a current monitor may map the continuous-valued
current into the set of qualitative values {low, nominal,
high}. MI is informed whenever the qualitative value
returned by a monitor changes.

Based on monitor inputs, the commands executed on the
rover, and a declarative model of the rover, MI infers the
most likely current state. MI also provides a layer of
abstraction to the executive, allowing plans to be specified
in terms of component modes, rather than in terms of low-
level sensor values.

MR serves as a recovery expert to CX, taking as input a
recovery request and returning a sequence of operations that,
when executed starting in the current state, will move the
executive into a state satisfying the properties required for
successful execution of the failed activity.

These recovery actions are determined by a model-based
reactive planner (see Figure 6), called Burton [31], which
uses a universal plan compiled from the models to quickly
determine the next action to execute, based on the current
state and the recovery request. The time required to generate
a complete recovery plan is linear in the length of the plan.

MIR uses algorithms adapted from model-based diagnosis
[35,32] to provide the above functions. MIR extends the
basic ideas of model-based diagnosis by modeling each
component as a finite state machine (see Figure 7), and
modeling the whole rover as a set of concurrent,
synchronous state machines. These finite-state-machine
models are used to predict state changes resulting from
executive commands and to identify commands for recovery
that will take the rover to the desired state. Because the
rover is modeled as a concurrent state machine, MI can track
concurrent changes to the different components of the rover.
This methodology is independent of the actual set of
available sensors and commands. Furthermore, it does not
require that all aspects of the rover state are directly
observable, providing an elegant solution to the problem of
limited observability. Following [32], MIR uses a conflict
directed best-first search in MI, to find the most likely set of
state assignments for all components, and in MR, to find the
least-cost sequence of commands needed to achieve the
desired recovery (see Figure 6).

The use of model-based diagnosis algorithms provides a
number of advantages including sound and complete search
algorithms for MI and MR, the ability to handle multiple
faults, and the ability to reason with explicit fault models if
they are available. Alternatively, MIR can infer faults solely
on the basis of a model of nominal behavior.

Additionally, the models are modular, which simplifies
writing and maintaining them and aids reuse. For example,
although the Marsokhod has six wheels, each containing a
motor, only one wheel module is needed; furthermore, the
module is general enough that it also applies to rovers with
different wheel configurations, including Carnegie Mellon
University’s Nomad rover.

The behavior of each component state is captured using
abstract, qualitative, models [33,34], which describe
qualities of the rover’s structure or behavior without the
detail needed for precise numerical prediction. Abstract
models are much easier to acquire and verify than
quantitative engineering models, and are easier to reuse. For
example, the wheels on the Marsokhod and Nomad rovers
are quantitatively quite different, but they are qualitatively
similar, and thus the wheel module shown in Figure 8 can be
used for both rovers (though the motor modules differ
slightly, since Nomad uses brushless motors). The same
applies to the majority of components.
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Figure 7: State diagram for motor control component.
Shaded nodes represent fault modes. In addition to the
explicit transitions, indicated by arrows, there are also
implicit, random transitions to fault nodes, represented in
the model probabilistically.



While such models cannot specify how far to the left the
rover will drift if the motor for one of its left wheels has
degraded, it can be used to identify the source of failure,
given evidence of the compass, encoders and ammeters.
Such inferences are robust, since small changes in the
underlying parameters do not generally affect the high-level
behavior of the rover. In addition, abstract models can be
reduced to a set of clauses in propositional logic, allowing
behavior prediction to use unit propagation, a restricted and
very efficient inference procedure.

4. FIELD TEST

The rover autonomy architecture will be demonstrated as
part of a February 1999 field test using the NASA Ames
Marsokhod rover [5]. The field test is designed to expose
scientists to new technology that is intended for use in near-
term missions, and to give them a chance to interact with
these technologies in a mission-realistic setting.

The role of the rover autonomy architecture will be to enable
reliable operation of the rover during the field test and to

illustrate the contribution of the rover autonomy elements to
the science productivity of the rover. Part of the field test
will be dedicated to technology experiments, and the rover
autonomy architecture will be fully exercised during that
time. Otherwise it will be simply functioning as an integral
part of the overall rover system.

The Marsokhod rover

The Marsokhod is a medium-sized planetary rover built on a
Russian chassis. The rover has six wheels, independently
driven, with three chassis segments that articulate
independently. It is currently configured with imaging
cameras that correspond to those planned for use in near-
term missions and an arm equipped with a spectrometer and
cameras. The on-board computing environment is a
Pentium-based Linux system, for ease of research software
integration.

The Marsokhod platform has been demonstrated at field
tests starting with Russian tests in 1993, followed by tests in
the Mojave desert in 1994, at Kilauea in Hawaii in 1995,
and in the Arizona desert in 1996. The field tests were
designed to study user interface issues and science
instrument selection. This field test will have the added
capabilities provided by the rover autonomy architecture.

Objectives for the rover autonomy architecture

The field test will demonstrate the rover autonomy
architecture both in specific technology experiments and as
part of the integrated rover system during science
experiments. We expect to demonstrate and test particular
aspects of the rover autonomy architecture in this field test:

• Description level. The language used to communicate
with the ground system, as well as the uplinked
sequence language, are designed to be at an appropriate
level of description for the user of that component. The
scientists are expected to interact with the rover
autonomy system at the level of goals and, in the case of
the principal investigator (PI), conditional schedules.
The uplinked sequence language is designed to capture
enough detail to describe the day’s operation without
losing the flexibility and conditionality that will
increase science productivity and reliability.

• Contingency planning and scheduling. The science PI
will be able to specify contingencies under which the
science plan will change. In addition, the rover
operators will be able to add contingencies to handle
rover operational failures such as traversal failure,
instrument deployment failures, or predicted resource
conflicts. In addition, the science team will be able to
add opportunistic sequences to be executed when more
resources are available than originally predicted. The
contingency planning and scheduling system CPS will
be able to automatically generate contingency branches
at the most likely failure points in the schedule, add or
delete branch points with user direction, and verify that

Figure 8: Partial MIR model of Marsokhod rover. Nested
boxes indicate sub-modules. Boxes containing state
diagrams are the lowest-level components; the nodes of the
state diagrams are the possible states, or modes, of the
component. Arcs between nodes indicate explicit,
deterministic, transitions between nodes. Implicit, random,
transitions to failure modes (shaded circles) are also
possible. The box labeled “Wheel Assembly” shows a
more detailed description of the module used to represent
the six wheels on the rover.



schedules respect resource and time constraints. CPS
will generate a conditional sequence as its output.

• Conditional execution of flexible plans. The rover
will be able to execute plans with temporal flexibility
and conditional branches. Task decomposition from a
higher-level sequence to rover-level commands will be
performed interactively during this field test rather than
automatically on board the rover. The conditional
execution system CX will accept the rover-level
sequence, with contingency branches and additional
plan fragments in the plan library, and execute the
sequence until successful completion or failure.

• Fault identification. The rover will be able to identify
errors that may not yet exceed hard thresholds, but
should nonetheless be handled by modifying or aborting
the sequence. In this field test the sensing component
MIR will be passive, based on information supplied by
the executive (which commands are executed) and the
rover control system via monitors. During the
technology experiment, fault identification will be
tested directly; during the science experiment, this will
be tested as fault conditions arise.

• Resource management. The resource manager RM in
the field test will manage power and data storage
resources. The rover will monitor these resources and
indicate when more or less resources are available than
predicted. This will be exercised fully in the technology
experiment phase, and then will be used as needed in
the science phase.

5. FUTURE WORK

Task decomposition

Each of the plan actions is potentially a high-level command
that may be decomposed into a procedure of low-level
commands for the rover real-time control system. This
procedure can use constructs for robustly executing
commands, including catching failure conditions and
performing local recoveries and retries. Thus low-level
conditionality and looping behaviors may be represented at a
level below the granularity of the planner, reducing the
computational complexity of the planning problem while
guaranteeing the correct execution semantics. For example,
the seemingly simple action “move to a point 5 meters
straight ahead” may include the ability to pause if a motor
overheats, try multiple routes if obstacles block the path, and
switch to alternative control algorithms if a wheel becomes
blocked.

The ability to decompose actions using a rich procedural
representation is a key point of the Remote Agent
architecture and will help in the rover autonomy architecture
to provide robust implementations of sequenced actions.

Interaction with the environment

In the past, MIR has been used to model systems, such as
spacecraft, in which the environment outside the spacecraft
can be effectively ignored. Spacecraft follow known
trajectories, free of obstacles, in which the external
environment can be reduced to a few simple variables, such
as the relative position of the Earth. On rovers, interaction
with the environment is central to many of the possible
faults: dust accumulates on the solar panels, the rover passes
into the shadow of large rocks, or it gets caught on small
ones. In order to handle failures involving external factors,
we need to add the capability to reason from first principles
about the rover and its interaction with the environment. We
intend to combine the model-based deduction used by MIR
with hybrid simulation, to capture factors such as rover
kinematics.

Active sensing and testing—The sensor information that MI
can passively acquire is not always adequate to allow an
unambiguous diagnosis, which may make it impossible for
MR to identify the appropriate recovery actions. In general,
it may be ambiguous which of two failures has occurred if
both are consistent with observations, and it may be
ambiguous whether a given component has failed or the
sensor responsible for measuring that component has failed.
If an encoder indicates that a wheel drive motor is not
turning, or is turning too slowly, that could be a sensor error:
the encoder may be skipping counts or entirely dead. While
MI could look at other evidence, such as motor currents, to
see if the motor appears to be stalled or encountering
unusually high torque, that evidence may not be sufficient to
determine the true fault. If the encoder is giving low
readings, the PID controller, which tries to maintain the
desired encoder values, will tend to speed up the motor,
resulting in higher wheel currents, which could be taken as
evidence of excessive torque. Furthermore, failures such as a
motor stall or excessive torque can reflect a number of
different underlying faults, such as seized bearings or a rock
caught in the wheel.

The true state of the rover may be determined by performing
experiments designed to eliminate certain candidate
diagnoses. For example, if the wheel does not appear to be
turning, the rover could try backing up to see if the wheel is
caught on a rock. Or it could try driving with some subset of
the wheels, and use other sensors to determine if the rover is
moving in a manner consistent with the encoder readings.

To deal with these ambiguities, we are adding the capability
to perform active sensing and testing in order to narrow the
candidate situation assessments (diagnoses) and in order to
evaluate the utility of alternative recovery plans.

In support of this active testing, MIR can make use of its
models, both to determine when there are multiple
competing diagnosis and to identify activities it can perform
that will rule out or confirm certain hypotheses. Reasoning
about the information to be gained by executing actions
exceeds the ability of the MIR system designed for the



Remote Agent, but we are working to provide that
capability.

Work in active testing for diagnosis [35] is typically based
on probe selection for circuit diagnosis, and it relies on
certain simplifying assumptions that are valid for circuits but
not for rovers. Some of the key assumptions are:
1. Measurements do not affect the state of the system

being diagnosed.
2. All measurements have equal cost.
3. The goal of making measurements is to eliminate

ambiguity as quickly as possible (i.e., to minimize the
total number of measurements); the order of
measurements is otherwise irrelevant.

These assumptions lead to a minimum entropy measure for
probe selection. The next probe selected is the one that
results in the lowest expected entropy of the probability
distribution of diagnoses. This policy tends to minimize the
total cost of measurements, under the assumptions listed
above. However, these assumptions do not hold in the rover
domain, for the following reasons, so minimizing entropy is
not sufficient.
1. Any information that can be obtained without changing

the state of the rover, as long as it is not too expensive
to compute, is already continuously available to MI.
Any additional tests involve causal action, such as
spinning a wheel or taking a picture from a camera.

2. On a rover, some sensing actions may have very high
cost, including the possibility of causing some
undesirable side effects, while others are relatively
cheap.

3. In the rover autonomy architecture, the main purpose of
diagnosis is to disambiguate the rover state enough to
find an appropriate recovery plan. Thus, not all
ambiguities are equal: the value of information depends
on the value of the recovery it supports. In the case of
multiple faults, one fault may be more critical and need
immediate response, meaning measurements relevant to
that fault have priority. If several candidate faults have
the same recovery procedure, fully disambiguating the
fault may even be unimportant.

We are exploring a modification of the minimum-entropy
model, which ranks measurements according to the recovery
actions they support and penalizes measurements based on
the cost of the corresponding sensing actions.

6. CONCLUSIONS

The particular characteristics of Mars rover operations
require a significant level of rover autonomy and an ability
to handle resource constraints and unpredictable events. We
have designed an integrated architecture for rovers that
includes contingency planning on ground and flexible,
robust execution of conditional sequences on board. The on-
board executive draws on model-based fault diagnosis,
active sensing, and dynamic resource management to
maximize its science return.

In the future, we would like to see rovers that are capable of
even higher levels of autonomous operations. These rovers
will accept very high-level goals from human operators and
will be able to achieve those goals with no further
supervision, even in dynamic and uncertain environments.
These rovers will be self-diagnosing and self-repairing; they
will be capable of detecting gradual degradation, adjusting
internal parameters accordingly, and performing preventive
maintenance to avoid catastrophic failure. For example,
solar panels accumulate dust over time and are gradually
damaged by UV; the ability of the rover to execute a plan
will be dependent on its gradually decreasing energy
production, and it may need to perform actions to remove
dust periodically when operating over long time intervals. In
addition to expected and predictable degradation, rovers will
be able to automatically replan when unexpected problems
occur or serendipitous opportunities arise.

We are building toward this vision in our research on robust
autonomous rovers. While we are not there yet, it is
reasonable to expect such capabilities in future generations
of rovers.
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