
A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 1105-1109, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Automated Design of an ASIP for Image Processing
Applications

Henjo Schot and Henk Corporaal

Delft University of Technology
Department of Electrical Engineering

Section Computer Architecture and Digital Technique
P.O. Box 5031, 2600 GA Delft, The Netherlands

H.J.M.Schot@FEL.tno.nl, H.Corporaal@et.tudelft.nl

Abstract. This paper presents the design of highly optimized TTA architectures
for image processing applications. An automatic processor design framework as
described in [2] is used. Specialized hardware is used to improve the
performance-cost ratio of the processors. An explorer searches the design space
for solutions that are good in terms of cost and performance. We show that
architectures can be found that efficiently execute very different algorithms at
low cost. A hardware feasible architecture is presented that efficiently executes
a set of image processing algorithms and performs almost equally or better than
alternative, commercial-available solutions do.

1 Introduction

In this paper, we show the design of an application specific instruction set processor
(ASIP) for a set of image processing algorithms. Processors and code are generated,
trying to exploit the instruction level parallelism of image processing algorithms. We
show that processors can be generated that efficiently execute very different
algorithms at low cost. We add application specific hardware and functionality to
improve the performance cost of the processors.

The architecture of the ASIP we develop is a Transport Triggered Architecture
(TTA) [2]. An automated design framework, called the MOVE framework [], is used
for the development of the VLIW like processor. It tries to find an architecture with
an optimal cost/performance ratio. The designer can use Special Function Units
(SFUs) to improve the cost-performance ratio of an architecture. These SFUs can be
incorporated in the MOVE framework.

Our work on the design of a highly optimized processor architecture differs from
others [3] in that we use TTAs and application specific hardware (SFUs) in order to
find architectures with higher performance-cost ratios.

The next section describes the image processing algorithms we used. Section 3
shows the mapping of the algorithms to TTAs. Section 4 presents the results and
conclusions.

1106 Henjo Schot and Henk Corporaal

2 Image Processing Algorithms

Four image processing algorithms were mapped to TTAs. A color conversion
algorithm, and three gray-scale neighborhood algorithms: convolution and two edge
detection algorithms on a 3x3 area. Here we concentrate on the color conversion
algorithm.

Color conversion is an operation from the area of color image processing. It is used
to convert between color representations e.g. a color in RGB has to be converted to
represent the same color using CMYK color components. There are several methods
to perform color conversion. In our case we uses lookup tables (LUTs) and tri-
interpolation.

Using this method, the conversion of a color P starts with searching the lookup
table for the eight nearest points. Seven linear interpolations are performed on these
points. Figure 1 shows point P and its eight nearest points that correspond with the
corners of a cube. The interpolations are shown as bold lines. The final interpolation
is performed on V and W. The distance a of point V to point P and the distance 1 - a
of point W to point P are used as interpolation coefficients.

V
P

W

000

001

110

011

100

111

a

R

G

B P = (1-a)W + aV 0<a<1

Fig. 1. Tri-linear interpolation of point P in the RGB space.

Since the calculation of each pixel is independent of other pixels, in principle, all
pixels can be processed in parallel. The amount of parallelism that can be attained by
TTAs is determined by the maximum number of available resources and the ability of
the compiler to exploit the parallelism.

 In our implementation, we use a LUT of 4 K entries. This size results in
reasonable interpolation accuracy at low cost. Higher accuracy requires larger lookup
tables. The LUT is addressed using the 4 most significant bits of each color
component. The 4 least significant bits are used for the interpolation distance giving
interpolation coefficients of 0, 1/16, ... 16/16. We aim to achieve a performance that is
comparable or better than that of available solutions (12.5 Mpixels/s [7]), at lower
cost.

 Automated Design of an ASIP for Image Processing Applications 1107

3 Mapping the Algorithms to TTAs

The main components of the MOVE framework are a retargetable C/C++ compiler, a
processor generator and hardware modeller and a design explorer. The explore tool
searches the design space for architecture solutions using hardware cost and
performance as its main design criteria. The explore tool drives both the compiler and
the hardware modeler in order to find architecture solutions with a good
performance/cost ratio. A pareto-curve with the resulting architecture solutions is
produced, from which the designer chooses an architecture configuration.

The mapping of the algorithm starts with analyzing the solutions that are found in
case we use basic operations only. The curve �w/o SFUs� in figure 2 shows that the
latency for high cost architectures remains quite long. E.g.. an architecture of cost 300
(in integer units) does color conversion of a single pixel in 11 cycles.

Fig. 2. The TTA design space for the color conversion application.

An enormous improvement in performance is achieved when SFUs are used. Parts
of the algorithm that are implemented in hardware are the lookup operation and a
linear interpolation. Figure 3 shows the dataflow symbols of different
implementations of the interpolation. They are implemented by extending a multiplier
FU with these specific functions. The impact of the SFUs on architectures
cost/performance is also shown in figure 2. Solutions with 2 to 60 times better
performance at equal cost are found.

* *

+

x 16-aya

o

x y a

o

Interpol

x.y a

o

packed
Interpol

Fig. 3. Dataflow symbols of the interpolation functions

Architectures that execute a set of algorithms are found by combining multiple
algorithms in an application. Resulting architectures showed a small loss in

1108 Henjo Schot and Henk Corporaal

performance for each algorithm, but overall they performed very well, as can be seen
in figure 4.

Fig. 4. The TTA design space for both color conversion and neighborhood operations.

4 Results

A feasible processor configuration which efficiently executes the whole set of
algorithms is selected from the curve in figure 4. In this configuration, marked with
�+�, the in- and outputs of each FU and register file are connected to all buses, which
is impractical. We therefore remove as much connections as possible without
performance losses. The resulting processor is shown in figure5. It can do color
conversion at 5.3 cycles/pixel. It contains 8 buses and 11 functional units (FUs). The
register file, as shown, contains many read and write ports. However, the tools allow
to split up this file into multiple small register files [4][5].

Fig. 5. A processor configuration that efficiently executes the color conversion algorithm and
the whole repertoire of neighborhood operations.

 Automated Design of an ASIP for Image Processing Applications 1109

Table 1 gives an overview of the performance of commercial available solutions
[6]-[11] and our solution. It is seen that the Imagine and the C6x perform better for
the convolution application than our solution does. For the other algorithms our
solution performs significantly better.

Table 1. Performances of the applications for other available solutions and our solution.

Performance (Mpixels/s)
Algorithm Imagine

@ 66 MHz
PixelMagic 44

@ 75 MHz
TI C6201

@ 200 MHz
Chameleon MOVE

@ 100 MHz
convolution 37 22.8 40 n.a. 27

Min-max operation < 15 11.8 n.a. 27
Edge detection < 15 < 11.8 n.a. 23

Color conversion 3.0 - - 12.5 19

5 Conclusion

In this paper, we showed that the MOVE framework can be used to find solutions for
digital image processing algorithms. Solutions can be found for applications
containing several algorithms, including very different ones. Furthermore, hardware
feasible solutions are found that perform almost equally or better than alternative,
commercially available solutions.

A large part of the processor design is done automatically. However, a lot of
manual interaction is required in the identification and application of Special Function
Units. Automation of this part of the design trajectory is currently being researched
[1].

References

1. Marnix Arnold and Henk Corporaal, Automatic Detection of Recurring Operation
Patterns, Codes �99, May 1999

2. Henk Corporaal, Microprocessor Architectures; from VLIW to TTA, John Wiley, 1998,
ISBN 0-471-97157-X

3. Joseph A. Fisher, Paolo Faraboschi and Guiseppe Desoli, Custom-Fit Processors: Letting
Applications Define Architectures,

4. Jan Hoogerbrugge, Code Generation for Transport Triggered Architectures, Delft
University of Technology, 1996

5. Johan Janssen and Henk Corporaal, Partitioned Register File for TTAs, Delft University of
Technology

6. Redford, J., Iler, J. and Berger, E., The PM44: A Single-Chip SIMD GigaOp DSP for
Imaging, Pixel Magic Inc, Andover MA

7. The Barco Chameleon ASIC; A very high speed, very high accuracy, color correction
utility, Barco Graphics, 1993

8. Redford, J., Iler, J. and Berger, E., The PM44: A Single-Chip SIMD GigaOp DSP for
Imaging, Pixel Magic Inc, Andover MA

9. Evaluation of the Performance of the C6201 Processor & Compiler, Loughborough Sound
Images plc., 1996

10. TMX320C6201 DIGITAL SIGNAL PROCESSOR, Texas Instruments Inc., 1997
11. The Imagine engine; Documentation & User Manual, Arcobel Graphics B.V., March 1994

	1	Introduction
	2	Image Processing Algorithms
	3	Mapping the Algorithms to TTAs
	4	Results
	5	Conclusion
	References

