15-396 Science of teh Interwebs

Auctions

 Lecture 9 (September 30, 2008)

Types of Auctions

Ascending Bid or English Auctions
Descending Bid or Dutch Auctions
First Price Sealed Bid Auctions
Second Price Sealed Bid or Vickrey Auctions

The Seller does not know the buyers' valuations

The Buyers don't know each other's valuations

Descending bid and first price sealed bid are essentially equivalent from the buyer's perspective

In an ascending bid auction, each buyer will want to stay in the auction until the precise moment when the price reaches his value.

Second Price Auctions

Seller

The highest bidder wins, but pays the what the second highest bidder bid

Bidding your true value is a dominant strategy in a second price sealed bid auction
$v_{i}=$ bidder i's value for the object
$b_{i}=$ bidder i's bid for the object
A bidder's strategies are bids as functions of their values

The payoff to bidder i with value v_{i} and bid b_{i} is:

$$
\begin{cases}v_{i}-\max _{j \neq i} b_{j} & \text { if } b_{i}>\max _{j \neq i} b_{j} \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& v_{i}=\text { bidder } i \text { 's value for the object } \\
& b_{i}=\text { bidder } i \text { 's bid for the object } \\
& \text { Payoff }= \begin{cases}v_{i}-\max _{j \neq i} b_{j} & \text { if } b_{i}>\max _{j \neq i} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Theorem: Bidding $b_{i}=v_{i}$ is a dominant strategy
If $b_{i}>v_{i}$ bidder i could get object and pay more than what she values it for (and thus go negative)

If $b_{i}<v_{i}$ bidder i could fail to obtain the object; obtaining the object can get her positive payoff

First Price Auctions

Seller

The highest bidder wins, and pays her bid

Bidding your true value is NOT a dominant strategy in a first price sealed bid auction

Since your bid also affects what you pay, you will tend to underbid

First Price Auctions

Suppose all bids v_{i} are uniformly distributed between [0,1] and there are N other bidders

Suppose all bidders bid $s\left(v_{i}\right)$ where $s()$ is a strictly increasing function

What is the probability that bidder who bids $s\left(v_{i}\right)=b_{i}$ will win?

What is the net payoff for value \mathbf{v}_{i} and bid $s\left(v_{i}\right)=b_{i}$ if they win?
$\left(v_{i}-b_{i}\right)$
Expected payoff to bidder i with value v_{i} and bid $s\left(v_{i}\right)=b_{i}$:

Expected payoff to bidder i with value v_{i} and bid $s\left(v_{i}\right)=b_{i}$:

Bidders could pretend their value is some $\mathbf{u}_{\mathbf{i}}$ instead of $\mathbf{v}_{\mathbf{i}}$

For s() to be an equilibrium, this deviation must make i worse off:

$$
\left(v_{i}\right)^{N-1}\left(v_{i}-s\left(v_{i}\right)\right) \geq\left(u_{i}\right)^{N-1}\left(v_{i}-s\left(u_{i}\right)\right)
$$

It can be shown that $s(v)=v(N-1) / N$ is an equilibrium strategy
E.g., For $\mathrm{N}=2$:

$$
v_{i}\left(v_{i}-v_{i} / 2\right) \geq u_{i}\left(v_{i}-u_{i} / 2\right) \text { is true for all } v_{i}, u_{i}
$$

Seller Revenue

Which is better for the Seller: first or second price auctions?

In first price auctions the bidders pay less than their true valuation

In second price auctions they only pay the second largest valuation

Assume N valuations uniformly distributed in [0,1]
In expectation, the highest value is $N /(N+1)$ and the second highest value is $(\mathrm{N}-1) /(\mathrm{N}+1)$

So, seller revenue is the same in both cases

$$
t+y
$$

