15-396 Science of teh Interwebs ## Auctions Lecture 9 (September 30, 2008) ## **Types of Auctions** **Ascending Bid or English Auctions** **Descending Bid or Dutch Auctions** First Price Sealed Bid Auctions Second Price Sealed Bid or Vickrey Auctions The Seller does not know the buyers' valuations The Buyers don't know each other's valuations ## Descending bid and first price sealed bid are essentially equivalent from the buyer's perspective In an ascending bid auction, each buyer will want to stay in the auction until the precise moment when the price reaches his value. #### **Second Price Auctions** The highest bidder wins, but pays the what the second highest bidder bid eBay is equivalent to a second price auction ## Bidding your true value is a dominant strategy in a second price sealed bid auction v_i = bidder i's value for the object **b**_i = bidder i's bid for the object A bidder's strategies are bids as functions of their values The payoff to bidder i with value v_i and bid b_i is: $$\begin{cases} v_i - \max b_j & \text{if } b_i > \max b_j \\ j \neq i & j \neq i \end{cases}$$ $$0 & \text{otherwise}$$ v_i = bidder i's value for the object b_i = bidder i's bid for the object Payoff = $$\begin{cases} v_i - \max b_j & \text{if } b_i > \max b_j \\ j \neq i & j \neq i \end{cases}$$ $$0 & \text{otherwise}$$ Theorem: Bidding $b_i = v_i$ is a dominant strategy If b_i > v_i bidder i could get object and pay more than what she values it for (and thus go negative) If $b_i < v_i$ bidder i could fail to obtain the object; obtaining the object can get her positive payoff v_i = bidder i's value for the object In a second price auction, your bid does not affect how much you pay; it just affects whether you get the object or not regative) more The² If b_i > than Wilai If $b_i < v_i$ bidd $\int i$ in the object; obtaining the object can get him positive payoff ### First Price Auctions The highest bidder wins, and pays her bid 23 Bidding your true value is NOT a dominant strategy in a first price sealed bid auction Since your bid also affects what you pay, you will tend to underbid #### First Price Auctions Suppose all bids v_i are uniformly distributed between [0,1] and there are N other bidders Suppose all bidders bid $s(v_i)$ where s() is a strictly increasing function What is the probability that bidder who bids $s(v_i)=b_i$ will win? $(v_i)^{N-1}$ What is the net payoff for value v_i and bid s(v_i)=b_i if they win? (v_i-b_i) Expected payoff to bidder i with value v_i and bid $s(v_i)=b_i$: $(v_i)^{N-1}(v_i-s(v_i))$ Expected payoff to bidder i with value v_i and bid $s(v_i)=b_i$: $(v_i)^{N-1}(v_i-s(v_i))$ Bidders could pretend their value is some u_i instead of v_i For s() to be an equilibrium, this deviation must make i worse off: $$(v_i)^{N-1}(v_i-s(v_i)) \ge (u_i)^{N-1}(v_i-s(u_i))$$ It can be shown that s(v) = v(N-1)/N is an equilibrium strategy **E.g., For N=2:** $v_i(v_i-v_i/2) \ge u_i(v_i-u_i/2)$ is true for all v_i , u_i #### Seller Revenue Which is better for the Seller: first or second price auctions? In first price auctions the bidders pay less than their true valuation In second price auctions they only pay the second largest valuation Assume N valuations uniformly distributed in [0,1] In expectation, the highest value is N/(N+1) and the second highest value is (N-1)/(N+1) So, seller revenue is the same in both cases