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Abstract— In the InfoBeacons system, a peer-to-peer network
of beacons cooperates to route queries to the best information
sources. Many internet sources are unwilling to provide more
cooperation than simple searching to aid in the query routing. We
adapt techniques from information retrieval to deal with th is lack
of cooperation. In particular, beacons determine how to route
queries based on information cached from sources’ responses
to queries. In this paper, we examine alternative architectures
for routing queries between beacons and to data sources. We
also examine how to improve the routing by probing sources
in an informed way to learn about their content. Results of
experiments using a beacon network to search 2,500 information
sources demonstrates the effectiveness of our system; for example,
our techniques require contacting up to 71 percent fewer sources
than existing peer-to-peer random walk techniques.

Categories and Subject Descriptors:H.3.4 [Information Storage
and Retrieval] Systems and Software – distributed systems,in-
formation networks, performance evaluation; H.3.3 [Information
Storage and Retrieval] Information Search and Retrieval – search
process; C.2.4 [Computer-Communication Networks] Distributed
systems – Distributed databases, distributed applications
Additional Keywords: peer-to-peer systems, information search
and discovery

I. I NTRODUCTION

There is an explosion of useful data available from dynamic
information sources, such as “deep web” data sources, web
services, web logs and personal web servers [5]. The Internet
and web standards make it possible and easy to contact a source
and retrieve information. But the proliferation of sourcescreates
a challenge: how to find the right source of information for
a given query? Peer-to-peer search mechanisms are useful for
finding information in large scale distributed systems, butsuch
mechanisms often rely on the explicit cooperation of information
sources to export data, data summaries or data schemas to aid
in searching. Many data sources are unwilling to provide this
cooperation, either because they do not want to export valuable
information, or because they do not want to modify their service
software and expend the resources necessary to cooperate with a
peer-to-peer system.

How can we build a peer-to-peer system that is useful for
searching large numbers of distributed sources when those sources
will not provide more cooperation than simple searching? Our
approach is to build a network of peers, calledInfoBeacons, that
are loosely-coupled to the information sources: beacons connect
to sources and utilize their existing search interface, butdo not
expect tight schema integration, data summary export, or any
other high-level cooperation from the source. InfoBeaconsact
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to guide user keyword queries to information sources, wherethe
actual processing of queries is done, and then retrieve results
and return them to the user. As such, the InfoBeacons network
is similar to a super-peer network [37], except that the beacons
do not expect the same level of cooperation from sources (i.e.
exporting their indexes or schemas) that super-peers expect. In
order to choose appropriate beacons and sources for a given query,
we adapt techniques from networked information retrieval [17],
[15]. These techniques allow us to predict how good a source
or beacon will be for a given query. As a result, we can route
queries through the system to the most appropriate sources,and
avoid overburdening beacons and sources with irrelevant queries.

In this paper, we describe how the InfoBeacons system uses IR
techniques to perform query routing. Beacons maintain a cache
of the information available at other beacons and sources and
use this cache to determine where to route queries. Each beacon
is responsible for a subset of sources (to reduce the load on
any individual beacon), and many beacons cooperate to route
queries among a very large number of sources. We examine three
approaches to inter-beacon routing. In thehierarchical approach,
a “superbeacon” uses IR-style ranking to choose among beacons.
In the flat approach, beacons treat each other as regular sources,
forming a flat network composed of both beacons and sources. A
beacon routes queries to the most promising “neighbor,” which
may be a source or another beacon. The third approach is ahybrid
approach that combines the hierarchical and flat architectures, by
arranging beacons in two levels with multiple superbeaconsand
multiple “leaf” beacons clustered under each superbeacon.Su-
perbeacons route queries to leaf beacons and other superbeacons,
while leaf beacons route queries to sources.

When a source returns results for a query, the beacon caches
those results to aid in future routing decisions. However, the
decentralization in the system means that each beacon sees a
limited number of queries, and thus the cache may not warm very
quickly. Moreover, a simple beacon cache usually has a limited
view of the full range of content available at a source. In order
to accelerate the warming of the beacon’s cache and expand its
coverage of a source’s data, we usequery probing: proactively
querying a source with keywords to sample the source’s data [10],
[19]. Generating good probe queries is central to the performance
of query probing. We present a technique calledinformed probing
that utilizes the information available on a source’s crawlable
web interface to generate effective probe queries. Improving the
quality of the cache results in improved query routing.

We have experimentally evaluated our techniques with real
Internet data using a prototype implementation of the InfoBeacons
system. Experiments demonstrate that our techniques perform
better than random walks, an efficient and scalable peer-to-peer
routing mechanism [26], [1]. We also evaluated our query probing
technique using the prototype implementation of our system. With
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as little as a single query, informed probing is able to extract as
many documents as a large number of random dictionary-word-
based queries [10].

There are many existing techniques for performing information
discovery in peer-to-peer systems. However, these techniques
must be adapted, and new techniques must be developed, to deal
with dynamic, uncooperative information sources. First, many
systems rely on the explicit cooperation of the data sources
to export content or content summaries [37], [30], [29], [33].
Unfortunately, deep web sources are often unwilling to do so,
and our system must use special approaches to learn about a
source’s data. Second, some systems gather information about
sources in order to build a static, federated search system [24].
Many data sources are dynamic, frequently changing their content
or appearing and disappearing, and we must dynamically adapt
our routing based on the most current information. Third, many
systems focus on locating documents based on their identifier [31]
or on keywords in document metadata (such as the title) [22].Our
work focuses on full text content-based searching and routing,
which presents new performance challenges. More related work
is discussed in Section V.

In this paper, we examine how information retrieval techniques
can be adapted to route queries through the InfoBeacons system.
Specifically, we make the following contributions:

• We present and compare thehierarchical, flat and hybrid
architectures for routing queries between beacons.

• We describe an effective query probing technique,informed
probing, that uses a minimal number ofinformed probesto
extract content from data sources and accelerate warming-up
of beacon caches.

• We present an experimental evaluation, which demonstrates
the performance tradeoff between different routing architec-
tures. The results also show that our techniques can signifi-
cantly outperform previously reported approaches.

This paper is organized as follows. First, in Section II we
describe how beacons cache source data, and use those caches
to route queries. Then, in Section III we describe and compare
qualitatively the hierarchical, flat and hybrid architectures. Next,
in Section IV we present experimental results quantitatively
evaluating our techniques. We examine related work in Section V,
and discuss our conclusions in Section VI.

II. ROUTING QUERIES USING CACHED RESULTS

In the InfoBeacons system,beaconsconnected in a peer-to-peer
network work together to guide user queries to useful informa-
tion sources. Beacons accept user keyword queries, connectto
sources, submit the queries, retrieve results, and return them to
the user. The user is therefore shielded from the complexityof
choosing and searching many different sources. Many beacons,
each managing multiple information sources, are needed to scale
to a large number of information sources.

Figure 1 shows the architecture of an individual beacon. The
user query interfaceprovides an API for users to submit queries
and retrieve results. Currently, our prototype accepts queries as
HTTP GET requests and returns results encoded in XML. User
queries in our system are sets of multiple terms, although our
techniques can be extended to deal with other query types (such as
general boolean queries). Thecachecontains partial information
about the content available at sources and other beacons, and
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Fig. 1. Beacon architecture.

the routing logic uses the information in the cache to determine
where to route queries. Lightweightsource wrapperssubmit
queries to data sources and retrieve results. Our current prototype
includes simple wrappers for submitting queries via HTML forms
and screen-scraping the results. Techniques for creating more
complex wrappers, and creating wrappers automatically, have
been examined by others [34], [11], [2] and can be integrated
into our framework.

Beacons can be run by libraries, universities, ISPs, corporations
or any organization that wants to provide searching services to
its user group. In order to reduce the resource requirementsfor
these hosts (and to encourage them to participate), beaconsare
designed to be lightweight components. In particular, our goal is
to minimize the memory, processing and bandwidth requirements
for running a beacon. We address this goal partially through
implementation techniques (for example, by designing the in-
memory data structures to be very compact) and partially through
algorithms for efficiently routing queries (so that only “relevant”
beacons should have to process a given query, reducing the load
on other beacons). In this paper we focus on developing such
efficient routing algorithms. Because we expect beacons to be run
by libraries, ISPs and so on, and not necessarily by end users,
beacons will typically be long-lived peers, even if the information
sources they manage are not. Thus, while the system is robustto
beacons joining and leaving, we expect such turnover among the
beacons to be infrequent.

Each beacon is responsible for a small number of sources (say,
100 or so). Since it is too expensive to send every query to every
source, the beacon must determine the most appropriate sources
for each query. Ideally, each source would export a summary of its
content to help the beacon route queries. However, many Internet
information sources are willing to accept queries and return re-
sults, but are unwilling to provide more cooperation by exporting
their contents, content summaries, or schema information.This is
what we mean by “uncooperative sources.” As a result, a beacon
must learn which sources are good for each query, while relying
only on the sources’ basic search interface. Beacons learn about
sources by caching results from previous queries, and then use
these results to choose appropriate sources for future queries. We
say that the beacon isloosely coupledto the information sources.
This loose coupling ensures that it is cheap to integrate a new
source, so that the system is tolerant to frequently appearing and
disappearing sources.
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A beacon is like anetworked information retrieval systemsuch
as GlOSS [17] or CORI [15], but adapted to work in a peer-
to-peer manner with uncooperative sources. First, the beacon is
loosely coupled to the information source, allowing it to work
with even uncooperative sources, while many existing networked
IR systems require sources to export their contents or content
summaries. The high turnover of data sources observed in many
peer-to-peer systems also makes loose coupling important,as
mentioned above. Second, existing networked IR systems are
usually centralized, while in our system, sources are managed in
a decentralized way by many beacons, enhancing the scalability
of the system. Third, existing systems usually build up a static
characterization of the source contents, while a beacon constantly
adapts its cache in response to new results. Experiments show
that continual adaptation improves source selection performance
(especially when content is changing frequently) [13].

A. ProbResults routing

We have developed a function, calledProbResults, to determine
where to route queries based on the information in the beacon’s
cache. ProbResults uses the cache to predict the number of results
that a source will return containing the given query words; this
predicted number is called theProbResults score. The ProbResults
function uses several values:

• nQ: the number of terms in the queryQ

• Rs
i : the number of past results from sources that contained

query wordi

• tqs: the total number of times that sources has been queried
by the beacon

The ProbResults score for sites for a queryQ is calculated by:

ProbResultsScoresQ =

nQ∏

i=1

Rs
i

tqs
(1)

EachRs
i /tqs term represents the expected number of results (for

any query) froms that contain query wordi. Multiplying the
Rs

i /tqs values produces an aggregate score for all of the query
words.

In order to keep the beacon lightweight, the beacon cache does
not contain whole documents, but instead only retains statistics
about the word distributions in the results returned from each
source. In fact, the only information that is needed for each
sources is theRs

i value for each word and thetqs value for the
source. The result is that the beacon cache is very compact, and
in our experiments a beacon responsible for 100 sources needed
only a few tens of megabytes of cache. This caching structureis
adapted from the source summary structure used in the GlOSS
system [17]. Moreover, since the beacon only updates this term
count data structure for retrieved documents, and does not have
to build a full inverted index, query results can be processed very
quickly (in fact, more quickly than they can be downloaded from
the data source1).

Consider two sourcess1 ands2 that are managed by the same
beaconB. Sources1 contains chemistry papers, whiles2 contains
retail customer survey responses. After several queries, aportion
of the beacon cache might contain:

1For example, the time to download 3,394 web pages from www.uga.edu
to Georgia Tech was 173 seconds, while the time to parse and cache those
documents on a 2.8 GHz Xeon machine was 12 seconds.

exothermic oxygen reactions product consumer tqs

s1 70 80 120 0 40 100
s2 10 15 80 130 210 150

The numbers in this table represent theRs
i counts for each

word and source. Now imagine that a user submits a query
for “exothermic reactions” toB. The ProbResults score fors1

is (70/100) × (120/100) = 0.84, while the score fors2 is
(10/150) × (80/150) = 0.036. Thus, the beaconB would first
contacts1 to search for “exothermic reactions.” This makes sense,
since sites1 contains chemistry literature, and the beacon cache
reflects that more previous results froms1 contain “exothermic”
and “reactions” than those froms2. On the other hand, if the user
searches for “consumer reactions,” we would expects2 to receive
a higher ProbResults score, and it does, scoring 0.75 (compared
to 0.48 fors1).

The ProbResults function is adapted from the Ind metric usedin
the bGlOSS information retrieval system [17]. ProbResultsdiffers
from Ind in several key ways in order to work in a loosely-
coupled, dynamic peer-to-peer architecture. First, ProbResults
tries to characterize both the behavior and the content of a source,
while Ind focuses only on the content. For example, theRs

i value
used by ProbResults counts documents once per time they are
returned as a query result, not just once overall (as in Ind).Thus,
ProbResults gives higher weight to documents that are returned
multiple times, better characterizing the behavior of the source
in response to queries. Characterizing a source’s behaviorhelps
compensate for the inexact picture a loosely-coupled beacon has
of the source’s content. Another difference is that both thetqs

andRs
i values are constantly updated in the beacon cache, unlike

in GlOSS, where a static source summary is constructed. As a
result, ProbResults produces scores that are tuned to the current
behavior of the source, unlike Ind, whose scores can become stale
over time.

Although a source may return documents that contain a par-
ticular word, actual queries containing the word may produce
no results at that source. This may either be due to frequent
content change at the data source or the fact that the word is
not considered a useful query term by the source. For example,
although most documents at a weather related source may contain
the term “weather”, the source may produce no results when
simply queried for “weather”, as the term is very common and
hence carries no weight. We have developed a technique called
experience weightingthat allows the cache to dynamically adapt
and align itself with the actual behavior of the informationsource.
Experience weighting uses an “experience factor”EF ≥ 1. After
each query, the beacon multiplies the cache count for query
terms for that source byEF, if the source returns results for the
query; otherwise, the cache count is divided byEF. Thus, over
time, experience weighting adjusts the term counts in the cache
to reflect not just the summary of data available at the source,
but also the actualbehaviorof the source. Moreover, experience
weighting allows the beacon to deal with dynamic information
at sources. If a source changes its content, invalidating the
cached information and causing the beacon to make bad routing
decisions, the cached values will quickly be experience weighted
downward to adjust the routing. In practice, experience weighting
is more effective at adapting the beacon cache to reflect the current
contents and behavior of sources than other alternatives (such as
a forgetting factor) [13].

The effectiveness of the ProbResults function depends on the
quality of the cached information. If the cache is biased toward
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a particular topic or popular documents, queries may not be
routed to sources with relevant content. To deal with this problem,
we employ several techniques. First, we use a technique called
informed probing(described in the next section), to add a variety
of content to the beacon cache, not just the most popular content.
Second, if the cache contains no information about a given query
term, we do not assume that the source has no content relevant
to the query term. Instead, we use a special constant,Pmin,
instead ofRs

i /tqs, whenRs
i (or tqs) is zero. In practice, a small

value of Pmin, such as 0.0001, works well. ThePmin constant
also allows us to calculate a non-zero ProbResults score fora
source if we have cached information from the source about
some, but not all, of the query terms. Since Equation (1) is a
product, withoutPmin the ProbResults score would be zero if
there were any query terms that matched no cached documents
for a given source. Third, when ejecting entries from the cache,
we preferentially eject entries that have little information value;
that is, entries whose cache count are close toPmin. This retains
high quality cached information even if queries tend to biasthe
cache. Fourth, even if a query is for rare or less popular content,
the beacon network will continue searching until results have been
found. Such queries will be more costly than queries for popular
content, but they will still find information if it exists in sources
managed by beacons. Finally, note that a highly skewed workload
(i.e. where queries follow a Zipfian distribution) may bias the
cache toward the frequent queries, but that this in fact results
in good performance for frequent queries, causing an overall
improvement in beacon performance compared to a non-skewed
query workload.

We could also add randomization to the ProbResults function,
to improve the chance that a source which appears irrelevant
due to cache bias is still contacted by the beacon. Of course,
more randomization means that more truly irrelevant sources are
contacted by the beacons, reducing the efficiency of the system.
Similarly, we could add personalization weights to ProbResults,
to assist in answering queries that were for a specific topic area
not necessarily well represented by the beacon cache. We have
not implemented such randomization or personalization, but we
note that the beacon framework is extensible enough to support
such techniques.

Experimental results in [13] show that our optimized Pro-
bResults function produces better predictions for our application
scenario than the Ind ranking or other ranking functions used in
the GlOSS and CORI systems. For example, in a system where
uncooperative source contents are frequently changing, beacons
using ProbResults contact about half the sources compared to
beacons using the other ranking functions in order to find the
same quality of results. There may be other ranking functions
that result in better predictions for different scenarios.However,
we have found in practice that ProbResults works very well for
our loosely-coupled network of highly dynamic data sources.

B. Warming beacon caches withinformed query probing

In the InfoBeacons system, query routing is based on source
summaries constructed incrementally by caching results ofearlier
queries. However, relying only on user queries to construct
summaries makes cache warm-up a slow process, especially since
the decentralization in the system means that each beacon sees
a limited number of queries. Moreover, purely reactive caching
may provide incomplete coverage of a source’s data, since the

cache may be biased towards the results of popular queries and
may not have any information matching less popular queries.The
beacons can proactively construct initial data source summaries
by sending a small number of probe queries to the data sources.
This probing can accelerate the cache warm-up process, and help
to ensure wider coverage of a source’s content. Since beacons
handle uncooperative data sources, some of which may impose
limitations on the number of requests serviced, it is important to
use as few probe queries as possible. Hence, the challenge here
is to retrievemaximuminformation from a source while using a
minimumnumber of probe queries.

Query probing has been proposed by other investigators as
a way to deal with uncooperative sources [10], [19]. Typically,
query probes may be terms randomly chosen from a dictionary,
or terms from a rule-based classifier for determining the topic
of a source. However, in each case a considerable number of
queries may have to be issued to the source before any results
are retrieved. For example, during our experiments, we observed
that on average only one percent of random query probes returned
any results from sources. The problem is that the query prober
has noa priori information about the source, and must try many
probes before finding one that is relevant to the source’s content.

Our approach is to use probes that are tailored to each source,
to improve the chance that each probe retrieves information.
Our probing strategy, calledinformed probing, exploits the fact
that the information available on a data source’s crawlableweb-
interface (e.g., HTML form) is representative of the content at
the data source, even if the content itself is not crawlable.For
example, a deep web data source containing medicine-related
information is likely to have keywords relevant to medicinein
the metadata tags (〈TITLE〉, 〈META〉, etc.) and page text of the
crawlable web interface. We therefore construct probe queries
from these keywords. The probability that probes using these
terms will return results is much higher than that of probes based
on randomly chosen dictionary words.

To construct probes, we take terms preferentially from〈TITLE〉

and〈META〉 tags to construct a query withn terms. For example,
we might construct probes withn = 10 terms. If there are less
than n terms in the〈TITLE〉 and 〈META〉 tags, we must select
some terms from the text of the page. We can use a weighting
mechanism (such as TF/IDF, where IDF is computed over a
corpus of web pages) to rank the terms in the text and choose the
highest weighted terms for inclusion in the probe.

Experiments in Section IV evaluate both the standalone perfor-
mance of the query probing technique and its impact on overall
system performance. Our results show that informed probes are
very effective at extracting source data. Our approach could be
extended by augmenting informed probes with synonyms to fur-
ther increase the probability of finding matching content, although
this extension is not implemented in our current prototype.

III. ROUTING QUERIES BETWEEN BEACONS

Different sources contain widely varying information, anda
single beacon may not have the right sources to answer a given
query. Even though a user initially submits his query to a single
beacon, that beacon may have to forward the query to several
other beacons in order to retrieve results. The simplest approach
would be for the beacon to send the query to all of its neighbor
beacons, but this flooding approach is too expensive in a large
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scale system. In this section we examine how a beacon can
intelligently route queries to other beacons.

One approach is to use existing peer-to-peer routing techniques.
For example, a beacon could forward each query to a randomly
selected neighbor. Such “random walks” [26], [1] have been
shown to be an effective and scalable way of routing queries
in a peer-to-peer network where there are many possible results
for a given query. However, no content information is used
during the routing process, and such information could be used
in routing to reduce the number of contacted peers while still
returning high quality results. Other existing techniquesfocus on
locating documents based on their identifier [31] or on keywords
in document metadata (such as the title) [22]. Our goal is to build
a system that can effectively search the full text of documents.

Our approach is that beacons use the ProbResults ranking to
route queries to sources and other beacons. In particular, we study
three mechanisms for routing queries between beacons:

• Hierarchical: A “superbeacon” caches results from beacons,
and uses this cache along with ProbResults to choose beacons
for a given query.

• Flat: Each beacon’s neighbor beacons are treated as regular
sources, and ProbResults produces a single ranking of both
information sources and neighbor beacons.

• Hybrid: Beacons are organized into a hybrid, two-level net-
work with superbeacons and leaf beacons. The superbeacons
cache results from leaf beacons, which themselves cache
results from data sources. The beacons in the superbeacon
level are organized as a flat network.

A. Hierarchical network

An example of thehierarchicalapproach is shown in Figure 2.
As the figure shows, the superbeacon is connected to the rest of
the system’s beacons, who are in turn connected to the system’s
sources. Each query is submitted to the superbeacon, which uses
ProbResults to rank the beacons for that query. The superbeacon
routes the query to beacons in decreasing order of ProbResults
score, until it has received enough results to satisfy the user’s
threshold. As with regular beacons, the superbeacon cachesthe
results it receives for use in routing future queries.

One alternative approach we examined was to have each beacon
send a copy of its cache to the superbeacon, and have the
superbeacon evaluate the query against each cache to determine
which beacon is best. This approach may result in more accurate
routing, since the superbeacon would have more information
about each beacon. However, while each beacon’s cache is small,
in a large scale system there are likely to be many beacons,
and a large amount of space would be required to store a copy
of every beacon’s cache. Our goal is to keep beacons, even
the superbeacon, as light-weight as possible, and therefore it is
infeasible to expect the superbeacon to store copies of all of the
beacon caches. As a result, we chose the approach described
above, where the superbeacon keeps its own compact cache of
results from the beacons and uses ProbResults to perform the
routing.

B. Flat network

Unfortunately, the hierarchical approach still may not be scal-
able enough. The superbeacon must know about all of the beacons

in the system, and must perform processing on every user query.
This degree of centralization is contrary to the decentralized
philosophy of peer-to-peer systems, since the superbeaconcan
quickly become a bottleneck hindering the performance of the
system. The superbeacon can also become a single point of
failure; if the superbeacon fails, the InfoBeacons networkwill
be effectively unavailable until a new superbeacon is selected.
Even when the new superbeacon is chosen, its cache will be cold
and there will be a period of inefficient searching as its cache
warms up.

A more scalable and robust approach is to maintain the routing
information in a decentralized manner, which is the goal of the
flat architecture, as shown in Figure 3(a). As this figure shows,
a beacon’s neighbors consist of both information sources and
other beacons, forming a one-level “flat” network. Each beacon
caches results both from information sources and from other
beacons. For each query, ProbResults is used to produce a single
ranking of neighbors, and these neighbors are contacted in order
of decreasing ProbResults score until enough results have been
found. For example, a beacon might first route the query to an
information source with a score of 0.9, then to a neighbor beacon
that has a score of 0.8, then to another information source with
a score of 0.7, and so on.

The flat approach avoids the centralization of the hierarchical
approach, since there is no beacon that has to process every
query or know about every other beacon. A disadvantage of the
flat approach is that each beacon has less information than the
superbeacon, and thus prediction accuracy may suffer.

In experiments with our beacon prototype, we found that the
structure of the flat network had a large impact on performance.
Initially, we constructed a random topology, connecting each
beacon with a randomly chosen set of beacon neighbors. An
example of this topology is the flat network shown in Figure 3(a).
In this topology, a given beacon has a path to all of the other
beacons (and sources) along each of its beacon neighbor links.
This means that the same documents can appear as results from
any of these neighbor links, and, after a while, the ProbResults
ranking begins to assign the same score to all of the beacon
neighbors. This prevents the beacon from making effective routing
decisions and performance suffers.

If we instead use a spanning tree structure, the inter-beacon
routing performs better. An example is shown in Figure 3(b).A
distinct set of beacons and sources is reachable along any given
beacon neighbor link. The result is that the beacon’s ProbResults
scores effectively distinguish between the information available
along each of the neighbor links, improving routing accuracy.
Results in Section IV demonstrate the performance improvement
of the spanning tree structure.

Beacons form themselves into a spanning tree in a decentralized
manner. Since we are not trying to form a “minimum” spanning
tree, this process is relatively straightforward. When a new beacon
B joins the network, it connects to one other existing beacon,
and designates the existing beacon as its “parent beacon.” This
designation of a “parent” is only used to ensure a spanning tree
topology, and does not denote any difference in functionality
between the beacons; in particular, the connection is not directed
(unlike in the hierarchical architecture) and queries flow both
ways across the connection. The beaconB may receive other
connections as other beacons join the network, but will always
have only one parent beacon. Every beacon in the network has
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Fig. 2. Hierarchical architecture.

(a) (b)

Fig. 3. Flat architectures: (a) random, and (b) spanning tree.

one parent, except the first beacon to be created, which has no
parent (and which can be thought of as the “root” of the tree).
The result is that the network always maintains a tree structure.
If a beacon becomes disconnected from its parent, it rejoins
the network, choosing another parent. We do not expect a high
level of “churn” among the beacons themselves (e.g., beacons
frequently joining and leaving), since a beacon is created with
the intent of serving as a long-running information service. Thus,
while there may be temporary disconnections, most of the time
the spanning tree should remain connected despite the sparseness
of the connectivity graph.

One disadvantage of the flat topology is that if there are very
many beacons, there could be long delays as queries travel long
overlay paths (even if the routing is effective.) For very large
networks, then, the hierarchical or hybrid network (described
next), which limit the number of beacons contacted, would
provide lower delays.

C. Hybrid network

The hybrid architecture bridges the extremes of the hierarchical
and flat architectures. Figure 4 shows an example hybrid network.
In this architecture, beacons are organized into two levels, with
each beacon at thesuperbeaconlevel responsible for a distinct
set of beacons at theleaf level. User queries are processed by the
superbeacons and data sources are managed by the leaf beacons.
While routing between superbeacons and leaf beacons follows the
hierarchical approach, routing between superbeacons follows the
flat architecture.

The hybrid architecture embodies a tradeoff between the ro-
bustness and scalability of the flat architecture, and the searching

efficiency of the hierarchical network. Like a flat architecture,
there is no single superbeacon that must handle all of the queries
in the system. Of course, each superbeacon in a hybrid network
will be more loaded than an average beacon in a flat network.
However, if superbeacons become overloaded we can promote
more leaf beacons to superbeacon status to help share the load.
Thus, unlike the hierarchical network, we can dynamically adjust
the amount of work done by superbeacons based on the current
load in the system, enhancing scalability. Similarly, likethe
flat architecture, the hybrid architecture has no single point of
failure. The failure of any one superbeacon does not make the
whole searching system unavailable, although several beacons
will be unavailable until they can choose or connect to a new
superbeacon. Like a hierarchical architecture, superbeacons in
the hybrid network enable more efficient searching than the flat
network, since superbeacons see more queries and have more
information about the system than an average beacon in the flat
architecture. Of course, since there are multiple superbeacons in
the hybrid network, each will have less information than thesingle
superbeacon in the hierarchical network.

In fact, both the flat and hierarchical architectures can be seen
as special cases of the hybrid architecture. A hybrid network with
one superbeacon is a hierarchical network, while a hybrid network
where every beacon is a superbeacon (and the superbeacons
connect directly to sources) is a flat network. Therefore, by
changing the number of superbeacons in the hybrid network,
we can make the system more or less like a hierarchical or flat
network, depending on the current needs of the system.
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Fig. 4. Hybrid beacon network architecture.

Sources 2,500
Total data size 20 GB
Total documents 816,863
Documents per source 100...13,625

TABLE I

CHARACTERISTICS OF INFORMATION SOURCES

IV. EXPERIMENTAL RESULTS

We have conducted a set of experiments to test the performance
of our techniques. In these experiments, we used the beacon
network to route keyword queries to information sources, and
counted the total number of information sources contacted for
each query. Our goal is to minimize the number of unnecessary
sources contacted, so that we can reduce the load on sources,
improve response time and enhance overall scalability. Here, we
focus on (1) the effectiveness of our informed probing technique
and, (2) the different architectures for routing. Extensive evalu-
ation of the effectiveness of our ProbResults ranking function,
including the quality of returned documents, is presented in [13].

A. Experimental setup

In our experiments, we used a beacon network to route
queries among 2,500 Internet information sources. To ensure our
experiments were repeatable, we created our own information
sources on a cluster in our lab, and populated them with HTML
documents downloaded from 2,500 .com, .net, .gov, .edu and .org
websites. Sites were selected randomly from the top websites
returned by the Google search engine for searches on “.com”,
“.net” etc. The proportion of websites of each suffix used matched
the global proportion reported by Google. Each information
source managed documents downloaded from one website, and
processed keyword searches using the vector space model with
TF/IDF weighting. The characteristics of our data set are shown
in Table I. Some sources had many documents and some had few,
just as in the actual Internet. We also ran other experiments(not
reported here) where we varied the total number of sources in
the network from 1,000 to 2,500. The results are consistent with
those reported here. In fact, some queries are now easier to satisfy
because there are more possible sources of information.

Our query set consisted of real WWW queries from the publicly
available search.com query database. Because our data sources
are a small subset of the whole internet, not all queries matched
data, and we filtered out queries that did not match any results
at any source. We then expanded the query-set into a Zipf-like

distribution (with an exponent of 1) by duplicating randomly
chosen queries; a Zipfian distribution is the observed distribution
of several real query sets [35], [9], [22]. We also ran experiments
with a non-skewed workload (the same workload, without the
Zipf-like expansion). These results are not reported in detail, but
show that the relative ordering of which techniques are bestdo
not change, although all techniques perform better for a skewed
workload.

For our experiments, we assume that users choose a random
beacon. Real users may instead choose a beacon run by their
organization or themselves. Our current prototype experimentally
can support a peak rate of 144 user queries per second, running on
a 2.8 GHz Xeon workstation. We assume that each user specifies
a thresholdT : the number of desired document results. This
is similar to a search engine, where users usually only look at
the first page or two of results. Users can request more results
if the first results returned are not sufficient. Here, we used
T = 10, although other experiments (omitted here) show that our
results and techniques generalize to other values ofT . As may
be expected, larger values ofT cause more sources and beacons
to be contacted looking for results, in linear proportion tothe
increase inT .

Our beacon prototype is implemented in C++, and uses XML
messages carried over HTTP to communicate between beacons.
Also, a beacon accepts user queries and returns results via XML
over HTTP, and queries information sources using HTTP. The
cluster machines which ran the beacons had dual 550 MHz
Pentium III Xeon CPUs and 4 GB RAM, running Linux. We
were able to run 17 beacons per machine without difficulty. We
configured beacons with an experience factorEF = 10 and
constantpmin = 0.0001 (see Section II-A); we experimented
with a range of values and found that these provided the best
performance for many different scenarios.

B. Standalone performance of the informed probing technique

First, we examined the standalone performance of the informed
probing technique. Each probe query consisted of 6-8 keywords
extracted from the source’s crawlable surface-web interface (as
described in Section II-B).

Over all 2,500 sources, we were able to extract an average of 45
percent of each source’s documents using a single informed probe.
Table II show sample results for ten randomly chosen sources
with different content sizes and types. These results show that
informed probing is quite effective at warming the beacon cache
with source content. Note that some sources responded to the
informed probe with more results than others. The effectiveness
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Data Source Total Size Percentage
in documents of docs returned

AffiliateMatch.com 252 81.34%
showcase.netins.net 13625 16.91%
sourceforge.net 3277 20.01%
mineral.galleries.com 1400 25.35%
forbes.com 2108 14.32%
aausports.org 148 77.02%
dmoz.org 10339 19.42%
abceda.com 107 94.39%
aahn.org 101 86.13%
dallasobserver.com 3142 22.21%

TABLE II

RESULTS RETURNED BY A SINGLE INFORMED PROBE QUERY

of the informed probe depends on the information available on the
HTML page from which the probe was extracted. If an informed
probe does not extract much information from a given source,
then the beacon will take longer to warm its cache for that
source. For comparison, we also measured the number of results
returned by 300 random dictionary word queries consisting of
6-8 keywords each; this probe size is recommended by [10],
[19]2.Our experiments showed that, on an average, only 3 out
of 300 random dictionary word queries returned results. This
experiment demonstrated that much fewer informed probes are
necessary to extract content from source compared to random
probing.

Note that although informed probing retrieves a large number
of documents, it does not extract a full summary of the source’s
content. Therefore, it is still important to continually augment the
cache with results of user queries and experience weighting, as
described in Section II. We report experimental results forcom-
bining the informed probing technique and ProbResults routing
in Section IV-E.

C. Beacon network topologies in the flat architecture

Next, we examined the impact of the beacon network topology
in the flat architecture. Recall that in this architecture, each beacon
treats its neighbor beacons as regular sources, and produces a
single ProbResults ranking of beacons and sources in order to
route queries. We used a network of 100 beacons to route queries
to 2,500 information sources. In general, we expect beaconsto
be assigned to 100 or so sources, but we felt that a network of
only 25 beacons was too small for our experiments. A total of
50,000 queries were submitted to randomly chosen beacons.

We compared a random network of beacons to a spanning tree
network of beacons. In the random network, each beacon had
an average of five beacon neighbors. In the spanning tree, each
beacon had up to four beacon neighbors. In both cases, the links
between beacons were bi-directional.

The results are shown in Figure 5. As the figure shows, under
both topologies, the performance of the network improves asthe
beacon caches warm up. However, the spanning tree topology
achieves more overall efficiency than the random topology. After
50,000 queries the spanning tree beacon network only needs to
contact 68 sources per query in order to find results, compared to

2Query probing sometimes uses a specialized dictionary, forexample from a
particular corpus. However, since we are dealing with websites from multiple
domains, a domain dictionary is not appropriate and we used ageneral English
dictionary, the Unix ispell dictionary.

90 with the random topology (32 percent more than the spanning
tree topology). With the random network, the warming of the
beacon caches produces improvements in routing to information
sources, but this improvement is reduced by the ineffectiverouting
to other beacons. In contrast, with the spanning tree topology,
beacons route queries to other beacons more effectively, and
thus overall the routing improves as the beacon caches warm
up. Changing the maximum degree of the spanning tree (e.g.,
doubling it) had minimal impact on these results.

The spanning tree topology is used with the flat architecture
for the rest of the results reported in this paper. It may be
possible to develop other alternative topologies that provide higher
performance. However, in practice we have found the spanning
tree topology to be quite effective.

D. Alternative routing architectures

We conducted an experiment to evaluate our various architec-
tures for routing queries between beacons. We set up a network
of 100 beacons to route queries to 2,500 information sources. We
submitted 50,000 queries to randomly chosen beacons. Sincethis
experiment is aimed at studying the effect of organizing beacons
into different architectures and comparing their performance with
a random walk based approach, we did not perform informed
probing. The effect of informed probing on system performance
is studied in the next section. We compared thehierarchical, flat,
andhybrid architectures to a more traditional peer-to-peer archi-
tecture that used random walks to route queries among beacons.
In the hybrid architecture, our setup consisted of 10 superbeacons
and 90 leaf beacons with 9 leaf beacons connected to each
superbeacon. For the random walk, beacons were organized into a
network with a random topology (with an average of 5 neighbors),
and random walking was used to route queries between beacons.

The results are shown in Figure 6. As the figure shows, the
hierarchical, flat and hybrid architectures improve routing over
random walking by more than a factor of two. The beacons are
able to use their cached information and the ProbResults ranking
to make better routing decisions than the random walk.

The best performance is achieved using the hierarchical archi-
tecture. The superbeacon sees every query, and collects a large
amount of information about where to route queries. Load is dis-
tributed fairly evenly over the leaf beacons, although beacons with
popular content receive more queries. The beacon network using
the flat architecture contacts nearly 1.6 times as many sources
compared to the hierarchical approach (after the caches arewarm).
Unlike the superbeacon, each beacon in the flat architectureonly
sees a fraction of the queries. As a result, beacons in the flat
architecture cache fewer results than the superbeacon, andhave
less information for making routing decisions. Moreover, even
when there is excellent routing information, queries must travel
several hops in the flat network to reach the right beacon. This
effect is illustrated by Figure 7, which shows the number of
beacons contacted, per 1,000 queries, averaged over all 50,000
queries, with each technique. Each extra beacon visited potentially
tries a few of its own sources before forwarding the query to the
next beacon, increasing the total number of sources contacted. The
result of these effects is that queries in the flat architecture must
visit more beacons and sources. Also, the load distributionamong
beacons is more skewed than in the hierarchical case; beacons
in the middle of the spanning tree must process and route more
queries than those at the leaves. Despite this extra inefficiency, the
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Fig. 5. Flat architecture topologies.
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Fig. 6. Routing queries between beacons.

flat architecture may still be preferred since it avoids the potential
bottlenecks of the centralized superbeacon approach.

In comparison, the hybrid network contacts, on an average, 20
percent fewer sources than the flat architecture. Beacons inthe
hybrid architecture contact only 1.1 times as many sources as
those in the hierarchical architecture (after the caches are warm).
The hybrid architecture also strikes a balance in the numberof
beacons contacted (as shown in Figure 7). The hybrid architecture,
while preserving the decentralized structure of the system, is
able to benefit from its closer resemblance to the hierarchical
architecture, and can concentrate more routing information in the
second level without having a central bottleneck.

We also experimented with increasing the number of sources
per beacon. The result is that doubling the number of sources
per beacon (from 10 to 20 in our experiments) results in a
small bump in efficiency: 17 percent fewer sources contacted
in the superbeacon topology and 19 percent fewer in the flat

topology. As noted above, giving each beacon cache more direct
information about sources allows beacons to make better routing
decisions.

Other optimizations to our routing techniques may be possible.
However, our results demonstrate the usefulness of ProbRe-
sults for routing queries between beacons. Moreover, the results
demonstrate an interesting tradeoff between decentralization and
source selection efficiency. If we can devote enough server
resources to construct a superbeacon, the hierarchical approach is
most effective. If not, we must choose the hybrid or possiblyeven
the flat architecture, expending more system resources overall to
avoid overburdening individual beacons.

E. Warming beacon caches with informed probing

Next, we examined the impact of using informed probing on
the overall system performance. We compared the average number
of sources contacted in an InfoBeacons system with and without
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informed probing. The beacons in this experiment were arranged
in a hierarchical network. The probe queries were generatedas
described in Section IV-B and each source was queried with a
single probe. Over all sources, the informed probes returned an
average of 45 percent of a source’s documents. Figure 8 shows
that a system using informed probing contacted 10 percent fewer
sources on average than a system with no probing. The main effect
is that informed probing accelerates the warming of the cache,
further improving the effective routing provided by ProbResults.

F. Result quality

Finally, we examined the quality of results returned by the In-
foBeacons system. Because the data set is so large (over 800,000
documents), it is impossible to assign a relevance score by hand
to each document for each query. Instead, we use a standard
approach from information retrieval to compute relevance:each

document is scored using the vector space model’s cosine distance
with TF/IDF weighting. This approach assigns a numeric score
to each document for each query. We took the average relevance
score for the documents returned for the flat and hierarchical
approaches, as well as the random walk approach. In each case,
the quality of results was roughly the same; although the random
walk approach produced slightly better results, the relevance was
only about 1 percent higher than the other approaches. Thus,the
efficiency of the flat and hierarchical approaches does not cause
a drop in document quality.

V. RELATED WORK

Several systems have been developed to perform information
retrieval using a peer-to-peer architecture [30], [29], [33]. Beacons
actually handle the “source selection” problem, while individual
sources handle the “information retrieval” problem.
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Networked information retrieval systems such as GlOSS [17]
and CORI [15] perform source selection, and beacons are similar
to these existing systems but adapted in several ways to work
into a peer-to-peer architecture. As discussed in Section II, the
key differences between our system and existing networked IR
systems are: 1. the beacon is loosely-coupled to sources; 2.the
InfoBeacons network is a decentralized collection of multiple
beacons, rather than a central directory server; and 3. beacons
continually adapt their cache and source scores based on the
results of queries sent to sources. Ipeirotis et al [20] use a
predictive model to determine when to update a source summary
(e.g., beacon cache). Their technique could be considered an
alternative to our approach of contacting the source on every
query and continually updating the beacon cache.

Several peer-to-peer systems have been developed to perform
source selection [5], [16]. These systems also expect sources
to export content summaries to aid in routing. The Harvest
system is an early example, with “brokers” that are similar
to our beacons [8]. Harvest combines source data export with
search engine-style crawling of static content by modules called
“gatherers.” Unlike Harvest, our system requires neither source
export, nor that the data be crawlable (as much hidden-web data
is not).

Callan, Lu and Renda have examined a peer-to-peer frame-
work similar to InfoBeacons for searching multiple information
sources [23], [28], [24], an approach they refer to as “federated
search.” Although InfoBeacons addresses some of the same
problems and uses some of the same approaches as their work,
there are several differences. First, InfoBeacons and federated
search are useful for different types of application scenarios.
Federated search deals mainly with a relatively static network of
digital libraries. In contrast, InfoBeacons is designed todeal with
data sources that appear or disappear frequently, and frequently
update their content. Second, while [23], [28], [24] discuss one
type of architecture (roughly analogous to our flat architecture),
we have also examined the hierarchical and hybrid architectures,
and compared and contrasted them with a flat architecture.3 This
previous work also deals with techniques for merging results, and
such techniques could be used to augment the client-side merging
performed by InfoBeacons. Balke et al [3] describe a peer-to-peer
federated search system similar to InfoBeacons, in that it focuses
on retrieving a subset of the results, and uses a spanning tree
topology. Our work goes beyond the techniques of [3] in several
ways, including: comparing hybrid and super-beacon topologies
to the spanning tree topology; fuzzy matching between queries
and cached results, instead of the exact query lookup of [3];and
dynamic adaptation of the beacon cache to progressively optimize
the search performance.

Other systems that search multiple sources include data in-
tegration systems and search engines. Data integration systems,
including traditional [12] and P2P systems [18], require tight
schema integration. These systems construct complex schema
mappings [6] or assume that most of the data has similar
structure [18]. In a large scale system such as the Web, it is
too expensive to construct all the required mappings, and data

3Note that the terms “hierarchical” and “hybrid” are used differently in
Callan, Lu and Renda’s work. The papers [24], [28] refer to a “hierarchical”
network of “hubs” and “leaf nodes;” such an organization is what we refer
to as a “flat” network of “beacons” and “sources.” The paper [23] refers to a
“hybrid” network of hubs and leaf nodes, which is also similar to our “flat”
network.

is structured in a wide variety of ways. Compared to these
systems, our approach trades strong query semantics for enhanced
scalability. Search engines [27] can search over HTML pagesat
many sites but do not deal well with uncrawlable or “hidden”
data in web databases. Our approach uses sources’ own query
processors to search “hidden” data. Some search systems assume
a consistent classification scheme or topic hierarchy to which
sources can be assigned to aid in routing (such as in [19], [32])
but it is not clear that sources can always be assigned a single,
unambiguous topic or that a single hierarchy is equally useful to
all users.

Various approaches to routing in peer-to-peer systems have
been proposed [36], [21], [26], [1], [31], [22]. Our system uses
the full text of content to aid in routing, while these existing
systems focus on document metadata, query statistics, network
topology, or peer-processing capacity. It may be possible to
combine our approach with existing approaches to achieve even
more scalability and accuracy in routing.

Caching of data to improve performance has been well studied
in many contexts, including the web [4], database systems [14],
information retrieval [25] and peer-to-peer search [7]. Usually,
data from a known source is cached to hide latency, not neces-
sarily for source selection.

VI. CONCLUSIONS

We have examined how techniques adapted from information
retrieval can be used to route queries in a peer-to-peer system.
Our goal is to route queries to the best information sources,and
allow those sources to perform the actual query processing.A
network of beacons work together to perform the routing, by
caching results from data sources and using this cache to route
future queries. Our informed probing technique uses a small
number of query probes to warm the cache more quickly than
just caching previous query results. Next, we presented three
approaches to inter-beacon routing. The hierarchical approach
uses a single superbeacon to choose among beacons, who then
choose among sources. In the flat approach, beacons treat other
beacons in the network like data sources and assign ProbResults
rankings to neighbor beacons and data sources. Finally, we exam-
ined the hybrid approach that retains the decentralized structure
of the flat architecture while still gaining from the advantage
of a hierarchical architecture. Experimental results demonstrate
the performance/centralization tradeoff between the hierarchical,
hybrid and flat architectures. These results also show that our
techniques are more effective than random walks for routing
queries. These results show the effectiveness of using information
retrieval techniques for routing queries to information sources.
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