
The 19th ACM International Conference on Supercomputing
June 20 - 22, 2005

Cambridge, Massachusetts, USA

Scaling Physics and Material Science Applications

on a Massively Parallel Blue Gene/L System

George Almasi, Gyan Bhanot, Alan Gara, Manish Gupta, James Sexton, Bob Walkup
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598
{gheorghe, gyan, alangara, mgupta, sextonjc, walkup}@us.ibm.com

Vasily V. Bulatov, Andrew W. Cook, Bronis R. de Supinski, James N. Glosli,

Jeffrey A. Greenough, Francois Gygi, Alison Kubota, Steve Louis, Thomas E. Spelce,
Frederick H. Streitz, Peter L. Williams, Robert K. Yates

Lawrence Livermore National Laboratory
Livermore, CA 94550

{bulatov, awcook, bronis, glosli1, greenough1, fgygi, kubota, stlouis, spelce1, streitz, plw, kimyates}@llnl.gov

Charles Archer, Jose Moreira
IBM Systems and Technology Group

Rochester, MN
{archerc, jmoreira}@us.ibm.com

Charles Rendleman
Lawrence Berkeley National Laboratory

Berkeley, CA 94720
CARendleman@lbl.gov

ABSTRACT
Blue Gene/L represents a new way to build
supercomputers, using a large number of low power
processors, together with multiple integrated
interconnection networks. Whether real applications can
scale to tens of thousands of processors (on a machine like
Blue Gene/L) has been an open question. In this paper, we
describe early experience with several physics and material
science applications on a 32,768 node Blue Gene/L system,
which was installed recently at the Lawrence Livermore
National Laboratory. Our study shows some problems in
the applications and in the current software
implementation, but overall, excellent scaling of these
applications to 32K nodes on the current Blue Gene/L
system. While there is clearly room for improvement, these
results represent the first proof point that MPI applications

can effectively scale to over ten thousand processors. They
also validate the scalability of the hardware and software
architecture of Blue Gene/L.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Categories and Subject Descriptors

J.2 [Computer Applications]: Physical Sciences and Engineering
– chemistry, physics.

ICS'05, June 20-22, Boston, MA, USA.
Copyright © 2005, ACM 1-59593-167-8/06/2005...$5.00

General Terms
Measurement, Performance, Experimentation.

Keywords
Blue Gene/L, supercomputers, scalability, MPI, applications.

1. INTRODUCTION
The Blue Gene/L (BG/L) project at IBM, in partnership with
Lawrence Livermore National Laboratory (LLNL), has pursued a
new approach to building supercomputers [1]. Rather than using
clusters of powerful symmetric multiprocessors or vector
processors with expensive interconnection networks (the approach
taken on the Earth Simulator [2], ASC Purple [3], and the
Columbia [4] systems), it uses low power processors and
integrated networks. Using low power technology allows a larger
packaging density (each BG/L rack has 2048 processors), with
modest electrical power consumption and heat dissipation that can
be managed with air cooling. BG/L uses system-on-a-chip

 1

technology to integrate powerful torus and collective networks,
and uses a novel software architecture [5] to support high levels
of scalability.
Solving a scientific problem on BG/L typically requires more
nodes than conventional supercomputers since BG/L has
relatively modest nodes, with 5.6 Gigaflop/s peak performance
and 512 MB memory. While promising results have been reported
on a 512 node BG/L prototype [6], it has been an open question
whether a machine like BG/L can match the computational
capabilities of high end supercomputers on real applications.
Another related open question is whether applications of scientific
interest can be effectively scaled to tens of thousands of
processors. Previous results on performance of MPI applications
have been limited to well below ten thousand processors, on
systems such as ASCI White, ASCI Q, ASCI Red, and the Earth
Simulator, as evidenced by winning entries on the Gordon Bell
prizes (awarded annually for achievements in parallel applications
performance). Some of the studies on massively parallel systems
have reported problems in scaling of applications to thousands of
processors due to factors like computational noise [7] or
insufficient network bandwidth.
This paper begins to answer the above questions, and describes
early experience with several physics and material science
applications on a 32,768 node BG/L system. A half-sized version
of this system, which occupies less than 400 square feet of
floorspace, and consumes about 400 KW in power, was recently
rated as the fastest supercomputer in the world (#1 on the
November 2004 TOP500 list), with a sustained LINPACK
performance of 70.7 Teraflop/s [8]. In contrast, the Earth
Simulator, which delivers a LINPACK performance of 35.9
Teraflop/s, occupies an area of about 70,000 square feet, and
consumes about 7 MW of power. We show that the applications
targeted in this study scale well on the BG/L system, achieving
the highest sustained performance ever on the respective
applications. These results validate the design of the BG/L
system. More importantly, this study establishes the first proof
point of MPI applications scaling beyond ten thousand processors,
and shows that scientific problems can be effectively solved on
systems with tens of thousands of processors. This study also
uncovers several opportunities for performance improvements on
BG/L through software optimizations.

2. OVERVIEW OF BG/L
We briefly review the key architectural features of BG/L here;
further details are available elsewhere [1].

2.1 BG/L Hardware
Each BG/L compute node has two 32-bit embedded PowerPC
(PPC) 440 processors. The PPC 440 processor is a low-power
superscalar processor with 32 KB each of L1 data and instruction
caches. The BG/L nodes support prefetching in hardware, based
on detection of sequential data access. The prefetch buffer for
each processor holds 64 L1 cache lines (16 128byte L2/L3 cache
lines) and is referred to as the L2 cache. Each chip also has a 4
MB L3 cache built from embedded DRAM, and an integrated
DDR memory controller. A single BG/L node supports 512 MB
memory, with an option to use higher-capacity memory chips.
The PPC 440 design does not support hardware cache coherence
at the L1 level. However, there are instructions to invalidate a

cache line or flush the cache, which can be used to manage
coherence in software.

BG/L employs a SIMD-like extension of the PPC floating-point
unit, which we refer to as the double floating point unit or DFPU
[9]. The DFPU adds a secondary FPU to the primary FPU as a
duplicate copy with its own register file. The second FPU is not
an independent unit: it is used with a comprehensive set of special
parallel instructions. This instruction set includes parallel add,
multiply, fused multiply-add, and additional operations to support
complex arithmetic. All of the SIMD instructions operate on
double-precision floating-point data.
The BG/L ASIC supports five different networks: torus,
collective, global interrupts, Ethernet, and JTAG. The main
communication network for point-to-point messages is a three-
dimensional torus. Each node has six bi-directional links for
direct connection with nearest neighbors. The raw hardware
bandwidth for each torus link is 2 bits/cycle (175 MB/s at 700
MHz) in each direction. The torus network provides adaptive and
deterministic minimal path deadlock-free routing. The collective
network implements broadcasts and reductions with a target
hardware latency of 1.5 microseconds for a 64K node system. The
global interrupts network supports a fast barrier operation, also
with a target latency of 1.5 microseconds for a 64K node system.
Finally, each BG/L chip supports a serial JTAG network for
booting, control and monitoring of the system, and contains a
1Gbit/s Ethernet macro for external connectivity. Only I/O nodes
are attached to the Ethernet network, which connects the BG/L
core to external file servers and host systems. (BG/L can be
configured with an I/O node, architecturally identical to compute
node, for every 8 to 64 compute nodes.)

2.2 BG/L Software
Each BG/L compute node has BG/L supports a single program
multiple data (SPMD) programming model, with message passing
via an implementation of the Message Passing Interface (MPI). A
BG/L job can be submitted in one of two modes. In coprocessor
mode, which is the default mode, a single application (MPI)
process runs on each compute node – one of the processors of the
compute node is used for computation, and the other is used for
offloading part of the communication operations. In virtual
processor mode, two application processes are run on each
compute node, one on each of the two processors.

BG/L uses a hierarchical organization of software [5]. User
applications run exclusively on compute nodes under the
supervision of a simple, minimalist compute node kernel (CNK).
The I/O nodes run a customized version of Linux. Many system
calls (such as read and write) are not directly executed in the
compute node, but are function shipped through the collective
network to the “parent” I/O node. The control system is
implemented as a collection of processes running in an external
computer, called the service node for the machine. All of the
visible state of BG/L is maintained in a commercial database on
the service node.
BG/L provides an operating environment with a very low level of
“computational noise” (interference from operating system
activity), about two orders of magnitude lower than traditional
clusters and the ASCI Q system [10]. It also supports low latency
communication (latency to nearest neighbor is about 3.3
microseconds, or 2350 processor cycles), with a low half-

 2

bandwidth point (half of asymptotic bandwidth is often achieved
at a message size smaller than 1 KB).

3. APPLICATIONS
This section describes the applications we used in this study. We
also briefly describe the scientific problems they are addressing.

3.1 Miranda
Miranda is a high order hydrodynamics code for computing fluid
instabilities and turbulent mixing. It employs FFTs and band-
diagonal matrix solvers for computing spectrally-accurate
derivatives, combined with high-order integration methods for
time advancement; e.g., fourth-order Runge-Kutta. Fluid
properties, i.e., viscosity, diffusivity and thermal conductivity, are
computed from kinetic theory. The code contains solvers for both
compressible and incompressible flows. It has been used
primarily for studying Rayleigh-Taylor (R-T) and Richtmyer-
Meshkov (R-M) instabilities, which occur in supernovae and
Inertial Confinement Fusion (ICF).
The grid resolution needed to support a sufficiently broad range
of dynamical scales for turbulent flow is severe. Hence, virtually
all past measurements of R-T and R-M growth rates have been
sensitive to grid resolution (i.e., they were not converged). Very
large simulations, using well in excess of 1000 grid points in each
of three directions, are needed to support the large range of length
scales necessary to grow R-T and R-M instabilities to full
turbulence. Smaller simulations simply cannot capture true rates
of growth and mixing due to initial/boundary effects.
The Miranda code has been optimized for the BG/L torus by
distributing the data among Cartesian communicators, which we
map to the torus to reduce message time, primarily in
MPI_Alltoallv on subcommunicators. All of the code operating in
a master-slave CPU manner has been replaced with fully parallel
routines, memory overhead has been reduced, and the FFTW
library tuned for BG/L has been used.

3.2 Raptor
Raptor is a multi-physics Eulerian Adaptive Mesh Refinement
(AMR) code used for applications at LLNL including
astrophysics, ICF and shock-driven instabilities and turbulence.
Raptor can simulate purely fluid dynamics systems by solving the
Eulerian equations (inviscid, non-conducting) or the Navier-
Stokes equations (viscous, conducting) using a higher-order
Godunov finite difference method. Raptor can also be used to
simulate more complex physical systems where the fluids are
coupled to the radiation field. A fully implicit treatment is used to
solve the radiation-diffusion equation coupled to the matter
internal energy.
Raptor is based on the BoxLib and AmrLib general software
infrastructure developed and maintained by the Center for
Computational Sciences and Engineering at Lawrence Berkeley
National Laboratory. BoxLib provides C++ foundation classes for
templated data containers and their efficient manipulation.
AmrLib adds framework support in C++ that extends BoxLib to
efficiently support the demands of block-structured AMR. The
entire software system, both base and framework libraries, as well
as applications software and physics algorithms, has been
optimized for efficient use of modern large-scale parallel
computing platforms. Raptor uses a wide variety of
communication operations, including point-to-point, reductions,

all-to-all, and barrier, and so is a good test of the MPI
implementation on BG/L.
Simulations at full scale on BG/L will offer the computational
power to gain an order of magnitude more resolution in
simulations of three-dimensional shock-driven systems. Two of
the systems to be investigated numerically on BG/L are modeled
after the research shock tubes at the University of Arizona (low
Mach number facility) and the University of Wisconsin-Madison
(high Mach number facility) as well as laser driven systems like
the National Ignition Facility (ultra-high energy density facility).

3.3 Qbox
Qbox is a C++/MPI implementation of the first-principles
molecular dynamics (FPMD) simulation method. It is developed
at LLNL and was recently ported to the BG/L platform. Qbox
implements FPMD within the Density Functional Theory,
pseudopotential, plane-wave framework. It relies on efficient Fast
Fourier Transform (FFT) and dense linear algebra libraries. We
use a specialized version of the FFT-W library for BG/L
developed at the Technical University of Vienna, Austria. Dense
linear algebra is implemented using the ScaLAPACK library.
Qbox has been used in the past on other large parallel platforms in
many applications including the simulation of liquids and solids
in extreme conditions, nanotechnology and solid-state physics.
The target BG/L application of Qbox is simulation of the
properties of transition metals at high pressure and high
temperature.

3.4 ddcMD
ddcMD is a scalable, general purpose code for performing
classical molecular dynamics simulations using the highly
accurate MGPT potentials. These semi-empirical potentials,
which are based on a rigorous expansion of many body terms in
the total energy, are needed in order to investigate quantitatively
the dynamic behavior of transition metals and actinides under
extreme conditions.
To date, accurate atomic scale simulation of materials behavior
has been constrained by the maximum size that can be modeled,
as un-physically small simulation cell sizes introduce artificial
“size effects” into the dynamics. Scientists must either draw
inferences from such small simulations, or make sufficient
approximations to the underlying physics (i.e., use a “cheaper”
potential) to enable larger simulations. By scaling the simulation
to tens of thousands of processors, scientists can model dynamic
behavior with results independent of system size, while using the
most accurate semi-empirical potentials available for the first
time. Nearly linear weak scaling is required to develop meso-
scale and continuum level models of behavior.

3.5 MDCASK
MDCASK simulates the motion of large collections of individual
atoms using the classical laws of Newtonian mechanics and
electrostatics. The basic features of the code, as in any “classical”
(as opposed to “quantum mechanical”) molecular dynamics code,
are an algorithm for the integration of the equations of motion, an
inter-atomic potential, and boundary conditions and constraints.
A given problem defines initial positions for the atoms (e.g.,
lattices for crystalline solids). MDCASK calculates the forces on
each atom using the inter-atomic potential and atom positions,
updates the velocities and then obtains new positions for the

 3

atoms based on the new velocities. Each atomic material and
spatial configuration type uses an inter-atomic potential, derived
from atomic theory and quantum mechanical, “ab initio”
calculations. The code repeats this cycle to evolve the system
over time. It can use a wide variety of potentials that allow for the
simulation of metals, semiconductors, insulators, glasses and
other materials.
It is the specifics of atomistic behavior that gives rise to
phenomena at the meso- and macroscopic scale that are in turn
responsible for the wide range of material properties important for
science and industry. Larger computer systems such as BG/L
allow us to span the gap between the microscopic scale of
individual atoms to the meso-scale, thereby providing critical
validation of meso- and macroscopic models of material
properties. Also, some phenomena, such as the competition
between different possible lattice structures during re-
solidification require very large collections of atoms to properly
represent. At the largest processor counts, it will be possible to
perform full, 3D simulations of hydrodynamic instabilities
important to the ICF program without any of the approximations
inherent in more commonly used fluid dynamics simulations.

3.6 ParaDiS
ParaDiS (for Parallel Dislocation Simulator) [12] is a code
developed at LLNL for direct computation of plastic strength of
materials by tracking simultaneous motion of millions of
dislocation lines. Simulations using ParaDiS are closing the
computational performance gap long recognized to prevent
physicists and materials scientists from understanding the
fundamental nature of self-induced strengthening (or hardening)
and the origin of intricate patterns that dislocations spontaneously
form under mechanical straining. The code is primarily written in
C and uses the MPI library for communication among the
processors.
ParaDiS relies on a line-tracking model that only considers the
defects and not the rest of the material. This reduces degrees of
freedom dramatically, but it is a considerable effort to track the
constantly evolving topology of the dislocation network. ParaDiS
achieves a breakthrough in topology handling by using a minimal
set of (irreducible) topological operators. Another challenge is a
tendency of dislocation lines to cluster in space and develop
highly heterogeneous distributions of degrees of freedom, making
it difficult to achieve a good load balance. To maintain scalability,
ParaDiS recursively partitions the problem domain and shifts the
domain boundaries at regular time intervals.
Because dislocation interaction is long ranged, any two line
segments interact with each other. For computational efficiency,
all interactions are partitioned into local and remote contributions,
based on proximity of the interacting segments. The local
interactions are computed explicitly for each local segment pair,
while the effect of all remote segments in a single cell are lumped
together into a super-segment contribution, using a Fast Multipole
algorithm. Still, evaluation of forces among dislocation segments
typically takes more than 80% of compute time.
Optimizations for BG/L have simply been through the use of
compiler options, although significant modifications were made to
allow the code to execute with the limited memory available on
the nodes of BG/L. No explicit task mapping was done to map the
MPI tasks to the BG/L torus.

4. RESULTS
We present the performance of these applications on a 32K node
BG/L system at LLNL. Initial runs were performed on a 16K
node system at IBM Rochester.

All of these applications were compiled using the IBM XL
compilers with the options –qarch=440 –O3. Using the highest
level optimizations (-O5) generally did not improve performance,
and using automatic SIMDization capability of the compiler (with
–qarch=440d) led to performance degradation in most cases.
Some applications use the MASS libraries and/or BLAS routines
on BG/L, which do exploit the DFPU.
Due to the low level of computational noise introduced by the
software environment, performance results on BG/L are usually
reproducible, i.e., multiple runs of an application with the same
input show virtually identical elapsed times [10].

Most applications in this study use the default coprocessor mode
for execution, which implies a peak performance of 91.75
Teraflop/s for a 32K node system and 45.88 Teraflop/s for a 16K
node system. For applications that can work with a 255 MB
footprint per MPI process, it is feasible to exploit the virtual node
mode that doubles the peak performance of the system.

4.1 Miranda
The initial weak scaling results for Miranda were disappointing.
With a grid size of 8 x 8 x 1024 per node, a speedup of 4x was
obtained in going from 512 nodes to 16K nodes in coprocessor
mode, a factor of 8 below linear speedup. Instrumentation of the
MPI library showed that the percentage of communication time
was increasing from 34% of execution time on 512 nodes to 79%
on 16K nodes, with alltoall communication accounting for most
of that time. Improvements in the MPI_Alltoallv implementation
optimized for the torus network [11] led to dramatic performance
improvements, about 6x better performance for a 16K node
system. Figure 1 shows recent results on the 32K node system: for
a grid size of 12 x 12 x 3072 per node, a speedup of about 45x is
obtained in going from 512 to 32K nodes, with communication
time remaining flat at about 11% after reaching 2K nodes. Overall
on LLNL’s 32,768 node system, Miranda has obtained 85% of the
theoretical peak speed of the BG/L torus with sustained
computation rates of 1.8 Teraflop/s.

0

5

10

15

20

25

30

0 8192 16384 24576 32768

Nodes

Ti
m

e
pe

r S
te

p
(s

ec
)

Total Time
MPI Time
Compute Time

Figure 1: Miranda step timing (problem size proportional to

number of BG/L nodes)

 4

Limitations on bisection bandwidth at large scales can be a
significant concern with a 3D torus topology. Miranda’s scaling
results demonstrate that the network bandwidth in BG/L
(supported with scalable system software) is sufficient to allow
scaling of some applications requiring all-to-all communication to
an unprecedented level of 32,768 nodes despite the 3D torus
topology.

4.2 Raptor
The experiments with Raptor have used just a single level of data
across the computational domain, i.e., no adaptivity has been
used. Using a data block size of 323 with one block per compute
node, we observe a time per step (seconds per step) of 2.67 sec on
2048 processors. This is similar timing to that obtained on the
MCR cluster at LLNL using two 2.2GHz Pentium 4 CPU’s per
node and a Quadrics Elan 3 interconnect.

0

2

4

6

8

10

12

0 16384 32768 49152 65536 81920 98304 114688 131072

Blocks

Ti
m

e
pe

r S
te

p
(s

ec
)

Figure 2: Raptor step timing (32,768 BG/L nodes)

Figure 2 demonstrates results for Raptor on the 32,768 node
LLNL system in coprocessor mode for problems with varying
number of 323 data blocks. Raptor demonstrates nearly perfect
scaling as shown in the weak scaling portion of the graph with up
to 32,768 blocks, i.e., with one block per node (remaining nodes
are essentially idle) since the times are very flat. In other words,
the time per step is constant as we scale up the problem size but
keep the work per node constant. The remaining portion of the
graph, with more than one block per node, shows the data scaling
regime where the work per node increases. The data scaling
performance is also very good: compared to 32,768 blocks, an
efficiency of 91% is achieved with 131,072 blocks. Raptor’s
computational kernel has achieved 91.2 Mflop/s per node or 3.0
Teraflop/s aggregate performance on the current LLNL 32,768
node system. More importantly, Raptor’s AMR capabilities will
enable the solution of unprecedented problem sizes.

4.3 Qbox
As a first benchmark of Qbox on BG/L, we computed the
electronic structure of a sample of bulk crystalline Molybdenum.
A sample of 686 atoms including 8232 electrons was used to
establish the strong scaling properties of Qbox on up to 16K
nodes on the LLNL BG/L platform. Electronic wavefunctions
were expanded on a plane-wave basis with an energy cutoff of
100 Rydberg. Electron-ion interactions were represented by
norm-conserving, semi-local pseudopotentials.

0

5

10

15

20

25

30

35

0 4096 8192 12288 16384

Nodes

S
pe

ed
up

Measured
Ideal

Figure 3: Qbox Strong Scaling for 686 Molybdenum Atoms

Overall performance was found to depend sensitively on the
combination of task mapping to the BG/L torus, and on choices of
process grids used by the ScaLAPACK library. For each BG/L
partition size, several node mappings were used (by way of the
BGLMPI_MAPPING environment variable). BG/L partitions
have a predefined shape that cannot be modified by the user. For
this reason, the node mapping leading to the best performance for
a given partition size may not be optimal for another partition
size. The results reported in Figure 3 show the speedup obtained
with the best mapping for each partition size. An initial
superlinear scaling between 512 and 4096 nodes is attributed to
the effect of node mappings as well as some improved cache use
on larger partitions. Speedup between 8192 and 16384 nodes
reflects the imperfect scaling of some ScaLAPACK functions. A
parallel efficiency of 75% is obtained on 16K nodes relative to
the 512 node configuration. Qbox has demonstrated outstanding
overall performance in coprocessor mode, partly through
optimized libraries that provide effective utilization of the DFPU.
On the 32K nodes of LLNL’s current system, the code has
achieved sustained performance of over 22 Teraflop/s. Current
work is developing custom implementations of some
ScaLAPACK functions to improve scaling beyond 32K nodes.

4.4 ddcMD
Figure 4 shows weak scaling results for ddcMD in virtual node
mode. The elapsed time per particle per task per step with 500
particles per task goes up from 0.99 milliseconds at two tasks to
1.39 milliseconds at 32K tasks, for a parallel efficiency of 71%.
For a larger data size, 2000 particles per processor, the elapsed
time per particle per task per step increases from 0.95 seconds at 2
tasks to only 1.20 seconds at 64K tasks, representing a parallel
efficiency of 79%. On LLNL’s 32,768 node system in virtual
node mode, ddcMD has achieved 20 Teraflop/s sustained
performance, which will enable scientists to develop meso-scale
and continuum level models of behavior of materials for the first
time.

 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 10 100 1000 10000 100000
Tasks (logscale)

Ti
m

e
pe

r (
P

ar
tic

le
/T

as
k)

 p
er

 S
te

p
(m

se
c)

500 Particles/Task
2000 Particles/Task

Figure 4: ddcMD Weak Scaling for High-Pressure Solidification

of Tantalum

0

1

2

3

4

5

6

0 1024 2048 3072 4096 5120 6144 7168 8192

Nodes

Ti
m

e
pe

r
St

ep
 (s

ec
)

Figure 5: MDCASK Weak Scaling

4.5 MDCASK
We have conducted a weak scaling test of MDCASK in which a
constant workload per processor (of about 250,000 atoms) was
tested in powers of two from one node to 8K nodes. The runtime
remains constant up to 4K nodes, as shown in Figure 5.
Communication in MDCASK is primarily broadcast and point-to-
point. Performance drops off somewhat in going to 8K nodes,
while initial tests at 16K nodes have revealed scaling issues
within the application. Current work is focused on removing these
limitations and scaling to 64K processors.

4.6 ParaDiS
We targeted ParaDiS towards a large simulation to cover the
length and time scales sufficient to observe the hardening
transitions that occur naturally as a result of motion and
rearrangement of dislocations. A full simulation should include
from 1M to 100M dislocation segments and should be traced over
millions of time steps. Line dynamics capabilities available up to
now at LLNL and elsewhere stop short of these target
performance figures by about 2-3 orders of magnitude.

0

1

2

3

4

5

6

7

0 25 50 75 100 125

Step

Ti
m

e
pe

r S
te

p
(s

ec
)

4096 CPUs
8192 CPUs
16384 CPUs

Figure 6: ParaDiS Time per Step with Constant Problem Size

The experimental results, presented in Figure 6, show strong
scaling for an identical problem running an identical number of
steps at processor counts of 4K, 8K and 16K BG/L nodes in co-
processor mode. The runs show a speedup of 1.8x when doubling
the processor count from 4K to 8K, and a speedup of 2.8x in
quadrupling the processor count to 16K. The results may appear
somewhat disappointing. However, our analysis indicates that the
results were skewed by ParaDiS’s dynamic load-balancing. Given
a specific initial problem, the load-balance of the problem
decreases as the number of processors is increased. ParaDiS then
dynamically adjusts the load balance to settle into the optimal
work distribution. However, our tests show that the load-
balancing mechanism requires longer to converge as the number
of processors increases. Thus, we expect greater parallel
efficiency for longer runs. In addition, we are investigating
techniques to achieve better load balance, which would also lead
to higher parallel efficiency.

4.7 Summary
The above results show that all of the applications we studied
were able to scale to 16K or 32K nodes, representing
unprecedented levels of scaling. We encountered some problems
in both system software and the applications, which represent
opportunities for further improvement of these results. Some of
the key performance issues were:

• Poor single node performance: We find that despite
incorporating several novel techniques for automatic
SIMDization [12,13], the compiler is unable to
effectively exploit the second FPU of the DFPU for the
applications used in this study. Applications that use
tuned BLAS routines and MASS libraries are able to
benefit from the second FPU for portions that use those
libraries.

• All-to-all communication: The scalability of many
applications is limited by the performance of the all-to-
all communication. In particular, improvements in the
performance of the MPI_Alltoallv primitive led to
dramatic improvements in the scaling of the Miranda
code.

• Mapping of application topology: For some applications
such as Miranda and Qbox, the performance is sensitive
to how the application tasks are mapped to the 3D torus

 6

[5] G. Almasi, R. Bellofatto, J. Brunheroto, C. Cascaval, J.
Castaños, L. Ceze, P. Crumley, C. Erway, J. Gagliano, D.
Lieber, X. Martorell, J. Moreira, A. Sanomiya, and K.
Strauss. An Overview of the BlueGene/L System Software
Organization (Distinguished Paper). Proceedings of the 2003
International Conference on Parallel and Distributed
Computing (Euro-Par 2003). August 26-29, 2003.
Klagenfurt, Austria. pp. 543-555.

topology. A good mapping reduces the average number
of hops traversed by messages, enhancing the effective
bandwidth for communication (since fewer messages
need to share the same link) and reducing the latency of
messages.

• Load imbalance: For the ParaDiS application, load
imbalance in the application is the primary inhibitor to
better scaling.

[6] G. Almasi, S. Chatterjee, A. Gara, J. Gunnels, M. Gupta, A.
Henning, J. Moreira, B. Walkup, A. Curioni, C. Archer, L.
Bachega, B. Chan, B. Curtis, S. Brunett, G. Chukkapalli, R.
Harkness, W. Pfeiffer. Unlocking the Performance of the
BlueGene/L Supercomputer. SC 2004: High Performance
Computing, Networking and Storage Conference, Pittsburgh,
PA, November 2004.

On BG/L, we did not encounter scaling problems due to
computational noise, which often manifest themselves in the form
of poor scaling of collective communication operations like
allreduce. Given the powerful networks and good message
passing performance on BG/L, communication overhead for all of
the applications we studied remained modest even at the levels of
16K and 32K processors.

[7] F. Petrini, D. Kerbyson and S. Pakin. The Case of the
Missing Supercomputer Performance: Achieving Optimal
Performance on the 8,192 Processors of ASCI Q. In
IEEE/ACM SC2003, Phoenix, AZ, November 2003.

5. CONCLUSIONS
In this paper, we have presented our experience so far with
several physics and materials applications on a 32,768 node BG/L
system. Our study shows that these applications can effectively
scale to the large BG/L system with a modest level of additional
effort. We have obtained the highest level of performance ever
delivered for all of these applications, enabling new
computational capabilities for science, and in the process, have
crossed the threshold of successful scaling of scientific
applications to over ten thousand processors. These results also
validate the scalability of the hardware and the software
architecture of Blue Gene/L. We expect to improve these results
further via software enhancements. We also plan to pursue the
scaling of applications to over a hundred thousand processors in
the near future, and using that capability to help solve grand
challenge problems of scientific importance.

[8] TOP500 Supercomputer Sites, http://www.top500.org.
[9] L. Bachega, S. Chatterjee, K. Dockser, J. Gunnels, M. Gupta,

F. Gustavson, C. Lapkowski, G. Liu, M. Mendell, C. Wait,
T.J.C. Ward. A High-Performance SIMD Floating Point Unit
Design for BlueGene/L: Architecture, Compilation, and
Algorithm Design. Parallel Architecture and Compilation
Techniques (PACT 2004), Antibes Juan-les-Pins, France,
Sept-Oct 2004.

[10] K. Davis, A. Hoisie, G. Johnson, D. Kerbyson, M. Lang, S.
Pakin and F. Petrini. A Performance and Scalability Analysis
of the BlueGene/L Architecture. In IEEE/ACM SC2004,
Pittsburgh, PA, November 2004.

[11] G. Almasi, C. Archer, J. Castanos, C. Erway, J. Gunnels, P.
Heidelberger, X. Martorell, J. Moreira, K. Pinnow, J.
Ratterman, B. Steinmacher-burow, W. Gropp, B. Toonen.
Design and implementation of message passing services for
the BlueGene/L supercomputer. IBM Journal of Research
and Development, No 2/3, 2005.

6. ACKNOWLEDGMENTS
We thank the entire Blue Gene/L team for creating the platform
that made this work possible.

7. REFERENCES [12] A. Eichenberger, P. Wu, and K.O’Brien. Vectorizing for
Short SIMD Architectures with Alignment Constraints. ACM
SIGPLAN conference of Programming Languages Design
and Implementation (PLDI’04), Washington DC, June, 2004.

[1] N. R. Adiga et al. An overview of the BlueGene/L
supercomputer. In SC2002 – High Performance Networking
and Computing, Baltimore, MD, November 2002.

[2] S. Habata, M. Yokokawa, S. Kitawaki. The Earth Simulator.
In NEC Research and Development, 44(1), January 2003.

[13] P. Wu, A. Eichenberger, and A. Wang. Efficient Code
Generation for Runtime Alignment and Length Conversion.
Code Generation and Optimization (CGO’05), March, 2005. [3] ASC Purple: Fifth Generation ASC Platform.

http://www.llnl.gov/asci/platforms/purple/.
[4] NASA Columbia Supercomputer.

http://www.nasa.gov/centers/ames/research/lifeonearth/lifeon
earth-projectColumbia.html.

 7

http://www.llnl.gov/asci/platforms/purple/
http://www.top500.org/

	1. INTRODUCTION
	2. OVERVIEW OF BG/L
	2.1 BG/L Hardware
	2.2 BG/L Software
	3. APPLICATIONS
	3.1 Miranda
	3.2 Raptor
	3.3 Qbox
	3.4 ddcMD
	3.5 MDCASK
	3.6 ParaDiS

	4. RESULTS
	4.1 Miranda
	4.2 Raptor
	4.3 Qbox
	4.4 ddcMD
	4.5 MDCASK
	4.6 ParaDiS
	4.7 Summary

	5. CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES

