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ABSTRACT 
Blue Gene/L represents a new way to build 
supercomputers, using a large number of low power 
processors, together with multiple integrated 
interconnection networks. Whether real applications can 
scale to tens of thousands of processors (on a machine like 
Blue Gene/L) has been an open question. In this paper, we 
describe early experience with several physics and material 
science applications on a 32,768 node Blue Gene/L system, 
which was installed recently at the Lawrence Livermore 
National Laboratory. Our study shows some problems in 
the applications and in the current software 
implementation, but overall, excellent scaling of these 
applications to 32K nodes on the current Blue Gene/L 
system. While there is clearly room for improvement, these 
results represent the first proof point that MPI applications 

can effectively scale to over ten thousand processors. They 
also validate the scalability of the hardware and software 
architecture of Blue Gene/L. 
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1. INTRODUCTION 
The Blue Gene/L (BG/L) project at IBM, in partnership with 
Lawrence Livermore National Laboratory (LLNL), has pursued a 
new approach to building supercomputers [1]. Rather than using 
clusters of powerful symmetric multiprocessors or vector 
processors with expensive interconnection networks (the approach 
taken on the Earth Simulator [2], ASC Purple [3], and the 
Columbia [4] systems), it uses low power processors and 
integrated networks. Using low power technology allows a larger 
packaging density (each BG/L rack has 2048 processors), with 
modest electrical power consumption and heat dissipation that can 
be managed with air cooling. BG/L uses system-on-a-chip 
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technology to integrate powerful torus and collective networks, 
and uses a novel software architecture [5] to support high levels 
of scalability.  
Solving a scientific problem on BG/L typically requires more 
nodes than conventional supercomputers since BG/L has 
relatively modest nodes, with 5.6 Gigaflop/s peak performance 
and 512 MB memory. While promising results have been reported 
on a 512 node BG/L prototype [6], it has been an open question 
whether a machine like BG/L can match the computational 
capabilities of high end supercomputers on real applications. 
Another related open question is whether applications of scientific 
interest can be effectively scaled to tens of thousands of 
processors. Previous results on performance of MPI applications 
have been limited to well below ten thousand processors, on 
systems such as ASCI White, ASCI Q, ASCI Red, and the Earth 
Simulator, as evidenced by winning entries on the Gordon Bell 
prizes (awarded annually for achievements in parallel applications 
performance). Some of the studies on massively parallel systems 
have reported problems in scaling of applications to thousands of 
processors due to factors like computational noise [7] or 
insufficient network bandwidth. 
This paper begins to answer the above questions, and describes 
early experience with several physics and material science 
applications on a 32,768 node BG/L system. A half-sized version 
of this system, which occupies less than 400 square feet of 
floorspace, and consumes about 400 KW in power, was recently 
rated as the fastest supercomputer in the world (#1 on the 
November 2004 TOP500 list), with a sustained LINPACK 
performance of 70.7 Teraflop/s [8]. In contrast, the Earth 
Simulator, which delivers a LINPACK performance of 35.9 
Teraflop/s, occupies an area of about 70,000 square feet, and 
consumes about 7 MW of power. We show that the applications 
targeted in this study scale well on the BG/L system, achieving 
the highest sustained performance ever on the respective 
applications. These results validate the design of the BG/L 
system. More importantly, this study establishes the first proof 
point of MPI applications scaling beyond ten thousand processors, 
and shows that scientific problems can be effectively solved on 
systems with tens of thousands of processors. This study also 
uncovers several opportunities for performance improvements on 
BG/L through software optimizations. 

2. OVERVIEW OF BG/L  
We briefly review the key architectural features of BG/L here; 
further details are available elsewhere [1]. 

2.1 BG/L Hardware  
Each BG/L compute node has two 32-bit embedded PowerPC 
(PPC) 440 processors. The PPC 440 processor is a low-power 
superscalar processor with 32 KB each of L1 data and instruction 
caches. The BG/L nodes support prefetching in hardware, based 
on detection of sequential data access. The prefetch buffer for 
each processor holds 64 L1 cache lines (16 128byte L2/L3 cache 
lines) and is referred to as the L2 cache. Each chip also has a 4 
MB L3 cache built from embedded DRAM, and an integrated 
DDR memory controller. A single BG/L node supports 512 MB 
memory, with an option to use higher-capacity memory chips. 
The PPC 440 design does not support hardware cache coherence 
at the L1 level. However, there are instructions to invalidate a 

cache line or flush the cache, which can be used to manage 
coherence in software.  

BG/L employs a SIMD-like extension of the PPC floating-point 
unit, which we refer to as the double floating point unit or DFPU 
[9]. The DFPU adds a secondary FPU to the primary FPU as a 
duplicate copy with its own register file. The second FPU is not 
an independent unit: it is used with a comprehensive set of special 
parallel instructions. This instruction set includes parallel add, 
multiply, fused multiply-add, and additional operations to support 
complex arithmetic. All of the SIMD instructions operate on 
double-precision floating-point data.  
The BG/L ASIC supports five different networks: torus, 
collective, global interrupts, Ethernet, and JTAG.  The main 
communication network for point-to-point messages is a three-
dimensional torus. Each node has six bi-directional links for 
direct connection with nearest neighbors. The raw hardware 
bandwidth for each torus link is 2 bits/cycle (175 MB/s at 700 
MHz) in each direction. The torus network provides adaptive and 
deterministic minimal path deadlock-free routing. The collective 
network implements broadcasts and reductions with a target 
hardware latency of 1.5 microseconds for a 64K node system. The 
global interrupts network supports a fast barrier operation, also 
with a target latency of 1.5 microseconds for a 64K node system. 
Finally, each BG/L chip supports a serial JTAG network for 
booting, control and monitoring of the system, and contains a 
1Gbit/s Ethernet macro for external connectivity. Only I/O nodes 
are attached to the Ethernet network, which connects the BG/L 
core to external file servers and host systems. (BG/L can be 
configured with an I/O node, architecturally identical to compute 
node, for every 8 to 64 compute nodes.) 

2.2 BG/L Software  
Each BG/L compute node has BG/L supports a single program 
multiple data (SPMD) programming model, with message passing 
via an implementation of the Message Passing Interface (MPI). A 
BG/L job can be submitted in one of two modes. In coprocessor 
mode, which is the default mode, a single application (MPI) 
process runs on each compute node – one of the processors of the 
compute node is used for computation, and the other is used for 
offloading part of the communication operations. In virtual 
processor mode, two application processes are run on each 
compute node, one on each of the two processors. 

BG/L uses a hierarchical organization of software [5]. User 
applications run exclusively on compute nodes under the 
supervision of a simple, minimalist compute node kernel (CNK).  
The I/O nodes run a customized version of Linux. Many system 
calls (such as read and write) are not directly executed in the 
compute node, but are function shipped through the collective 
network to the “parent” I/O node. The control system is 
implemented as a collection of processes running in an external 
computer, called the service node for the machine. All of the 
visible state of BG/L is maintained in a commercial database on 
the service node. 
BG/L provides an operating environment with a very low level of 
“computational noise” (interference from operating system 
activity), about two orders of magnitude lower than traditional 
clusters and the ASCI Q system [10]. It also supports low latency 
communication (latency to nearest neighbor is about 3.3 
microseconds, or 2350 processor cycles), with a low half-
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bandwidth point (half of asymptotic bandwidth is often achieved 
at a message size smaller than 1 KB). 

3. APPLICATIONS 
This section describes the applications we used in this study. We 
also briefly describe the scientific problems they are addressing. 

3.1 Miranda 
Miranda is a high order hydrodynamics code for computing fluid 
instabilities and turbulent mixing. It employs FFTs and band-
diagonal matrix solvers for computing spectrally-accurate 
derivatives, combined with high-order integration methods for 
time advancement; e.g., fourth-order Runge-Kutta. Fluid 
properties, i.e., viscosity, diffusivity and thermal conductivity, are 
computed from kinetic theory. The code contains solvers for both 
compressible and incompressible flows. It has been used 
primarily for studying Rayleigh-Taylor (R-T) and Richtmyer-
Meshkov (R-M) instabilities, which occur in supernovae and 
Inertial Confinement Fusion (ICF). 
The grid resolution needed to support a sufficiently broad range 
of dynamical scales for turbulent flow is severe. Hence, virtually 
all past measurements of R-T and R-M growth rates have been 
sensitive to grid resolution (i.e., they were not converged). Very 
large simulations, using well in excess of 1000 grid points in each 
of three directions, are needed to support the large range of length 
scales necessary to grow R-T and R-M instabilities to full 
turbulence. Smaller simulations simply cannot capture true rates 
of growth and mixing due to initial/boundary effects. 
The Miranda code has been optimized for the BG/L torus by 
distributing the data among Cartesian communicators, which we 
map to the torus to reduce message time, primarily in 
MPI_Alltoallv on subcommunicators. All of the code operating in 
a master-slave CPU manner has been replaced with fully parallel 
routines, memory overhead has been reduced, and the FFTW 
library tuned for BG/L has been used. 

3.2 Raptor 
Raptor is a multi-physics Eulerian Adaptive Mesh Refinement 
(AMR) code used for applications at LLNL including 
astrophysics, ICF and shock-driven instabilities and turbulence. 
Raptor can simulate purely fluid dynamics systems by solving the 
Eulerian equations (inviscid, non-conducting) or the Navier-
Stokes equations (viscous, conducting) using a higher-order 
Godunov finite difference method. Raptor can also be used to 
simulate more complex physical systems where the fluids are 
coupled to the radiation field. A fully implicit treatment is used to 
solve the radiation-diffusion equation coupled to the matter 
internal energy.  
Raptor is based on the BoxLib and AmrLib general software 
infrastructure developed and maintained by the Center for 
Computational Sciences and Engineering at Lawrence Berkeley 
National Laboratory. BoxLib provides C++ foundation classes for 
templated data containers and their efficient manipulation. 
AmrLib adds framework support in C++ that extends BoxLib to 
efficiently support the demands of block-structured AMR. The 
entire software system, both base and framework libraries, as well 
as applications software and physics algorithms, has been 
optimized for efficient use of modern large-scale parallel 
computing platforms. Raptor uses a wide variety of 
communication operations, including point-to-point, reductions, 

all-to-all, and barrier, and so is a good test of the MPI 
implementation on BG/L. 
Simulations at full scale on BG/L will offer the computational 
power to gain an order of magnitude more resolution in 
simulations of three-dimensional shock-driven systems. Two of 
the systems to be investigated numerically on BG/L are modeled 
after the research shock tubes at the University of Arizona (low 
Mach number facility) and the University of Wisconsin-Madison 
(high Mach number facility) as well as laser driven systems like 
the National Ignition Facility (ultra-high energy density facility).  

3.3 Qbox 
Qbox is a C++/MPI implementation of the first-principles 
molecular dynamics (FPMD) simulation method. It is developed 
at LLNL and was recently ported to the BG/L platform. Qbox 
implements FPMD within the Density Functional Theory, 
pseudopotential, plane-wave framework. It relies on efficient Fast 
Fourier Transform (FFT) and dense linear algebra libraries. We 
use a specialized version of the FFT-W library for BG/L 
developed at the Technical University of Vienna, Austria. Dense 
linear algebra is implemented using the ScaLAPACK library. 
Qbox has been used in the past on other large parallel platforms in 
many applications including the simulation of liquids and solids 
in extreme conditions, nanotechnology and solid-state physics. 
The target BG/L application of Qbox is simulation of the 
properties of transition metals at high pressure and high 
temperature. 

3.4 ddcMD 
ddcMD is a scalable, general purpose code for performing 
classical molecular dynamics simulations using the highly 
accurate MGPT potentials. These semi-empirical potentials, 
which are based on a rigorous expansion of many body terms in 
the total energy, are needed in order to investigate quantitatively 
the dynamic behavior of transition metals and actinides under 
extreme conditions. 
To date, accurate atomic scale simulation of materials behavior 
has been constrained by the maximum size that can be modeled, 
as un-physically small simulation cell sizes introduce artificial 
“size effects” into the dynamics. Scientists must either draw 
inferences from such small simulations, or make sufficient 
approximations to the underlying physics (i.e., use a “cheaper” 
potential) to enable larger simulations. By scaling the simulation 
to tens of thousands of processors, scientists can model dynamic 
behavior with results independent of system size, while using the 
most accurate semi-empirical potentials available for the first 
time. Nearly linear weak scaling is required to develop meso-
scale and continuum level models of behavior. 

3.5 MDCASK 
MDCASK simulates the motion of large collections of individual 
atoms using the classical laws of Newtonian mechanics and 
electrostatics. The basic features of the code, as in any “classical” 
(as opposed to “quantum mechanical”) molecular dynamics code, 
are an algorithm for the integration of the equations of motion, an 
inter-atomic potential, and boundary conditions and constraints. 
A given problem defines initial positions for the atoms (e.g., 
lattices for crystalline solids). MDCASK calculates the forces on 
each atom using the inter-atomic potential and atom positions, 
updates the velocities and then obtains new positions for the 
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atoms based on the new velocities. Each atomic material and 
spatial configuration type uses an inter-atomic potential, derived 
from atomic theory and quantum mechanical, “ab initio” 
calculations. The code repeats this cycle to evolve the system 
over time. It can use a wide variety of potentials that allow for the 
simulation of metals, semiconductors, insulators, glasses and 
other materials. 
It is the specifics of atomistic behavior that gives rise to 
phenomena at the meso- and macroscopic scale that are in turn 
responsible for the wide range of material properties important for 
science and industry. Larger computer systems such as BG/L 
allow us to span the gap between the microscopic scale of 
individual atoms to the meso-scale, thereby providing critical 
validation of meso- and macroscopic models of material 
properties. Also, some phenomena, such as the competition 
between different possible lattice structures during re-
solidification require very large collections of atoms to properly 
represent. At the largest processor counts, it will be possible to 
perform full, 3D simulations of hydrodynamic instabilities 
important to the ICF program without any of the approximations 
inherent in more commonly used fluid dynamics simulations. 

3.6 ParaDiS 
ParaDiS (for Parallel Dislocation Simulator) [12] is a code 
developed at LLNL for direct computation of plastic strength of 
materials by tracking simultaneous motion of millions of 
dislocation lines. Simulations using ParaDiS are closing the 
computational performance gap long recognized to prevent 
physicists and materials scientists from understanding the 
fundamental nature of self-induced strengthening (or hardening) 
and the origin of intricate patterns that dislocations spontaneously 
form under mechanical straining. The code is primarily written in 
C and uses the MPI library for communication among the 
processors. 
ParaDiS relies on a line-tracking model that only considers the 
defects and not the rest of the material. This reduces degrees of 
freedom dramatically, but it is a considerable effort to track the 
constantly evolving topology of the dislocation network. ParaDiS 
achieves a breakthrough in topology handling by using a minimal 
set of (irreducible) topological operators. Another challenge is a 
tendency of dislocation lines to cluster in space and develop 
highly heterogeneous distributions of degrees of freedom, making 
it difficult to achieve a good load balance. To maintain scalability, 
ParaDiS recursively partitions the problem domain and shifts the 
domain boundaries at regular time intervals. 
Because dislocation interaction is long ranged, any two line 
segments interact with each other. For computational efficiency, 
all interactions are partitioned into local and remote contributions, 
based on proximity of the interacting segments. The local 
interactions are computed explicitly for each local segment pair, 
while the effect of all remote segments in a single cell are lumped 
together into a super-segment contribution, using a Fast Multipole 
algorithm. Still, evaluation of forces among dislocation segments 
typically takes more than 80% of compute time. 
Optimizations for BG/L have simply been through the use of 
compiler options, although significant modifications were made to 
allow the code to execute with the limited memory available on 
the nodes of BG/L. No explicit task mapping was done to map the 
MPI tasks to the BG/L torus. 

4. RESULTS 
We present the performance of these applications on a 32K node 
BG/L system at LLNL. Initial runs were performed on a 16K 
node system at IBM Rochester. 

All of these applications were compiled using the IBM XL 
compilers with the options –qarch=440 –O3. Using the highest 
level optimizations (-O5) generally did not improve performance, 
and using automatic SIMDization capability of the compiler (with 
–qarch=440d) led to performance degradation in most cases. 
Some applications use the MASS libraries and/or BLAS routines 
on BG/L, which do exploit the DFPU. 
Due to the low level of computational noise introduced by the 
software environment, performance results on BG/L are usually 
reproducible, i.e., multiple runs of an application with the same 
input show virtually identical elapsed times [10]. 

Most applications in this study use the default coprocessor mode 
for execution, which implies a peak performance of 91.75 
Teraflop/s for a 32K node system and 45.88 Teraflop/s for a 16K 
node system. For applications that can work with a 255 MB 
footprint per MPI process, it is feasible to exploit the virtual node 
mode that doubles the peak performance of the system. 
 
4.1 Miranda 
The initial weak scaling results for Miranda were disappointing. 
With a grid size of 8 x 8 x 1024 per node, a speedup of 4x was 
obtained in going from 512 nodes to 16K nodes in coprocessor 
mode, a factor of 8 below linear speedup. Instrumentation of the 
MPI library showed that the percentage of communication time 
was increasing from 34% of execution time on 512 nodes to 79% 
on 16K nodes, with alltoall communication accounting for most 
of that time. Improvements in the MPI_Alltoallv implementation 
optimized for the torus network [11] led to dramatic performance 
improvements, about 6x better performance for a 16K node 
system. Figure 1 shows recent results on the 32K node system: for 
a grid size of 12 x 12 x 3072 per node, a speedup of about 45x is 
obtained in going from 512 to 32K nodes, with communication 
time remaining flat at about 11% after reaching 2K nodes. Overall 
on LLNL’s 32,768 node system, Miranda has obtained 85% of the 
theoretical peak speed of the BG/L torus with sustained 
computation rates of 1.8 Teraflop/s. 
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Figure 1: Miranda step timing (problem size proportional to 

number of BG/L nodes) 
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Limitations on bisection bandwidth at large scales can be a 
significant concern with a 3D torus topology. Miranda’s scaling 
results demonstrate that the network bandwidth in BG/L 
(supported with scalable system software) is sufficient to allow 
scaling of some applications requiring all-to-all communication to 
an unprecedented level of 32,768 nodes despite the 3D torus 
topology. 

4.2 Raptor 
The experiments with Raptor have used just a single level of data 
across the computational domain, i.e., no adaptivity has been 
used. Using a data block size of 323 with one block per compute 
node, we observe a time per step (seconds per step) of 2.67 sec on 
2048 processors. This is similar timing to that obtained on the 
MCR cluster at LLNL using two 2.2GHz Pentium 4 CPU’s per 
node and a Quadrics Elan 3 interconnect. 
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Figure 2: Raptor step timing (32,768 BG/L nodes) 

Figure 2 demonstrates results for Raptor on the 32,768 node 
LLNL system in coprocessor mode for problems with varying 
number of 323 data blocks. Raptor demonstrates nearly perfect 
scaling as shown in the weak scaling portion of the graph with up 
to 32,768 blocks, i.e., with one block per node (remaining nodes 
are essentially idle) since the times are very flat. In other words, 
the time per step is constant as we scale up the problem size but 
keep the work per node constant. The remaining portion of the 
graph, with more than one block per node, shows the data scaling 
regime where the work per node increases. The data scaling 
performance is also very good: compared to 32,768 blocks, an 
efficiency of 91% is achieved with 131,072 blocks. Raptor’s 
computational kernel has achieved 91.2 Mflop/s per node or 3.0 
Teraflop/s aggregate performance on the current LLNL 32,768 
node system. More importantly, Raptor’s AMR capabilities will 
enable the solution of unprecedented problem sizes. 

4.3 Qbox 
As a first benchmark of Qbox on BG/L, we computed the 
electronic structure of a sample of bulk crystalline Molybdenum. 
A sample of 686 atoms including 8232 electrons was used to 
establish the strong scaling properties of Qbox on up to 16K 
nodes on the LLNL BG/L platform. Electronic wavefunctions 
were expanded on a plane-wave basis with an energy cutoff of 
100 Rydberg. Electron-ion interactions were represented by 
norm-conserving, semi-local pseudopotentials. 
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Figure 3: Qbox Strong Scaling for 686 Molybdenum Atoms 

 

Overall performance was found to depend sensitively on the 
combination of task mapping to the BG/L torus, and on choices of 
process grids used by the ScaLAPACK library. For each BG/L 
partition size, several node mappings were used (by way of the 
BGLMPI_MAPPING environment variable). BG/L partitions 
have a predefined shape that cannot be modified by the user. For 
this reason, the node mapping leading to the best performance for 
a given partition size may not be optimal for another partition 
size. The results reported in Figure 3 show the speedup obtained 
with the best mapping for each partition size. An initial 
superlinear scaling between 512 and 4096 nodes is attributed to 
the effect of node mappings as well as some improved cache use 
on larger partitions. Speedup between 8192 and 16384 nodes 
reflects the imperfect scaling of some ScaLAPACK functions. A 
parallel efficiency of 75% is obtained on 16K nodes relative to 
the 512 node configuration. Qbox has demonstrated outstanding 
overall performance in coprocessor mode, partly through 
optimized libraries that provide effective utilization of the DFPU. 
On the 32K nodes of LLNL’s current system, the code has 
achieved sustained performance of over 22 Teraflop/s. Current 
work is developing custom implementations of some 
ScaLAPACK functions to improve scaling beyond 32K nodes. 

4.4 ddcMD 
Figure 4 shows weak scaling results for ddcMD in virtual node 
mode. The elapsed time per particle per task per step with 500 
particles per task goes up from 0.99 milliseconds at two tasks to 
1.39 milliseconds at 32K tasks, for a parallel efficiency of 71%. 
For a larger data size, 2000 particles per processor, the elapsed 
time per particle per task per step increases from 0.95 seconds at 2 
tasks to only 1.20 seconds at 64K tasks, representing a parallel 
efficiency of 79%. On LLNL’s 32,768 node system in virtual 
node mode, ddcMD has achieved 20 Teraflop/s sustained 
performance, which will enable scientists to develop meso-scale 
and continuum level models of behavior of materials for the first 
time. 
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Figure 4: ddcMD Weak Scaling for High-Pressure Solidification 
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Figure 5: MDCASK Weak Scaling 

4.5 MDCASK 
We have conducted a weak scaling test of MDCASK in which a 
constant workload per processor (of about 250,000 atoms) was 
tested in powers of two from one node to 8K nodes. The runtime 
remains constant up to 4K nodes, as shown in Figure 5. 
Communication in MDCASK is primarily broadcast and point-to-
point. Performance drops off somewhat in going to 8K nodes, 
while initial tests at 16K nodes have revealed scaling issues 
within the application. Current work is focused on removing these 
limitations and scaling to 64K processors. 

4.6 ParaDiS 
We targeted ParaDiS towards a large simulation to cover the 
length and time scales sufficient to observe the hardening 
transitions that occur naturally as a result of motion and 
rearrangement of dislocations. A full simulation should include 
from 1M to 100M dislocation segments and should be traced over 
millions of time steps. Line dynamics capabilities available up to 
now at LLNL and elsewhere stop short of these target 
performance figures by about 2-3 orders of magnitude. 
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The experimental results, presented in Figure 6, show strong 
scaling for an identical problem running an identical number of 
steps at processor counts of 4K, 8K and 16K BG/L nodes in co-
processor mode. The runs show a speedup of 1.8x when doubling 
the processor count from 4K to 8K, and a speedup of 2.8x in 
quadrupling the processor count to 16K. The results may appear 
somewhat disappointing. However, our analysis indicates that the 
results were skewed by ParaDiS’s dynamic load-balancing. Given 
a specific initial problem, the load-balance of the problem 
decreases as the number of processors is increased. ParaDiS then 
dynamically adjusts the load balance to settle into the optimal 
work distribution. However, our tests show that the load-
balancing mechanism requires longer to converge as the number 
of processors increases. Thus, we expect greater parallel 
efficiency for longer runs. In addition, we are investigating 
techniques to achieve better load balance, which would also lead 
to higher parallel efficiency. 

4.7 Summary 
The above results show that all of the applications we studied 
were able to scale to 16K or 32K nodes, representing 
unprecedented levels of scaling. We encountered some problems 
in both system software and the applications, which represent 
opportunities for further improvement of these results. Some of 
the key performance issues were: 

• Poor single node performance: We find that despite 
incorporating several novel techniques for automatic 
SIMDization [12,13], the compiler is unable to 
effectively exploit the second FPU of the DFPU for the 
applications used in this study. Applications that use 
tuned BLAS routines and MASS libraries are able to 
benefit from the second FPU for portions that use those 
libraries. 

• All-to-all communication: The scalability of many 
applications is limited by the performance of the all-to-
all communication. In particular, improvements in the 
performance of the MPI_Alltoallv primitive led to 
dramatic improvements in the scaling of the Miranda 
code. 

• Mapping of application topology: For some applications 
such as Miranda and Qbox, the performance is sensitive 
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