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Abstract. We consider simple cube-curves in the orthogonal 3D grid of
cells. The union of all cells contained in such a curve (also called the tube
of this curve) is a polyhedrally bounded set. The curve’s length is defined
to be that of the minimum-length polygonal curve (MLP) fully contained
and complete in the tube of the curve. So far only one general algorithm
called rubber-band algorithm was known for the approximative calcula-
tion of such a MLP. There is an open problem which is related to the
design of algorithms for calculation a 3D MLP of a cube-curve: Is there a
simple cube-curve such that none of the vertices of its 3D MLP is a grid
vertex? This paper constructs an example of such a simple cube-curve.
We also characterize this class of cube-curves.

1 Introduction

The analysis of cube-curves is related to 3D image data analysis. A cube-curve is,
for example, the result of a digitization process which maps a curve-like object
into a union S of face-connected closed cubes. The length of a simple cube-
curve in 3D Euclidean space is based on the calculation of the minimal length
polygonal curve (MLP) in a polyhedrally bounded compact set [3, 4].

The computation of the length of a simple cube-curve in 3D Euclidean space
was a subject in [5]. But the method may fail for specific curves. [1] presents
an algorithm (rubber-band algorithm) for computing the approximating MLP
in S with measured time O(n), where n is the number of grid cubes of the given
cube-curve.

The difficulty of the computation of the MLP in 3D may be illustrated by
the fact that the Euclidean shortest path problem (i.e., find a shortest obstacle-
avoiding path from source point to target point, for a given finite collection
of polyhedral obstacles in 3D space and a given source and a target point) is
known to be NP-complete [7]. However, there are some algorithms solving the
approximate Euclidean shortest path problem in 3D with polynomial-time, see
[8]. The Rubber-band algorithm is not yet proved to be always convergent to
the correct 3D-MLP.

Recently, [6] develope of an algorithm for calculation of the correct MLP
(with proof) for a special class cube-curves. The main idea is to discompose the
cube-curve into some arcs by finding some ”end angles” (see Definition 4 below).



There is an open problem (see [2, page 406]) which is related to designing
algorithms for the calculation of the 3D MLP of a cube-curve: It there a simple
cube-curve such that none of the vertices of its 3D MLP is a grid vertex? This
paper constructs an example of such a simple cube-curve, and generalises this
by characterizing the class of such cube-curves.

Following [1], a grid point (i, j, k) ∈ Z3 is assumed to be the center point of
a grid cube with faces parallel to the coordinate planes, with edges of length 1,
and vertices as its corners. Cells are either cubes, faces, edges, or vertices. The
intersection of two cells is either empty or a joint side of both cells. A cube-curve
is an alternating sequence g = (f0, c0, f1, c1, . . . , fn, cn) of faces fi and cubes ci,
for 0 ≤ i ≤ n, such that faces fi and fi+1 are sides of cube ci, for 0 ≤ i ≤ n and
fn+1 = f0. It is simple iff n ≥ 4 and for any two cubes ci, ck ∈ g with |i− k| ≥ 2
(mod n + 1), if ci

⋂
ck 6= φ then either |i− k| ≥ 2 (mod n + 1) and ci

⋂
ck is an

edge, or |i− k| ≥ 3 (mod n + 1) and ci

⋂
ck is is a vertex.

A tube g is the union of all cubes contained in a cube-curve g. A tube is
a compact set in R3, its frontier defines a polyhedron, and it is homeomorphic
with a torus in case of a simple cube-curve. A curve in R3 is complete in g iff it
has a nonempty intersection with every cube contained in g. Following [3, 4], we
define:

Definition 1. A minimum-length polygon (MLP) of a simple cube-curve g is
a shortest simple curve P which is contained and complete in tube g. The length
of a simple cube-curve g is defined to be the length l(P ) of an MLP P of g.

It turns out that such a shortest simple curve P is always a polygonal curve,
and it is uniquely defined if the cube-curve is not only contained in a single layer
of cubes of the 3D grid (see [3, 4]). If contained in one layer, then the MLP is
uniquely defined up to a translation orthogonal to that layer. We speak about
the MLP of a simple cube-curve.

A critical edge of a cube-curve g is such a grid edge which is incident with
exactly three different cubes contained in g. Figure 1 shows all the critical edges
of a simple cube-curve.

Definition 2. If e is a critical edge of g and l is a straight line such that e ⊂ l,
then l is called a critical line of e in g or critical line for short.

Definition 3. Let e be a critical edge of g. Let P1 and P2 be the two end points
of e. If one of coordinates of P1 is less than that of P2, then P1 is called the first
end point of e in g. Otherwise P1 is called the second end point of e in g.

Definition 4. Assume a simple cube-curve g and a triple of consecutive critical
edges e1, e2, and e3 such that ei ⊥ ej, for all i, j = 1, 2, 3 with i 6= j. If e2 is
parallel to the x-axis (y-axis, or z-axis) implys the x-coordinates (y-coordinates,
or z-coordinates) of two vertices (i.e., end points) of e1 and e3 are equal, then
we say that e1, e2 and e3 form an end angle, and g has an end angle, denoted
by ∠(e1, e2, e3); otherwise we say that e1, e2 and e3 form a middle angle, and g
has a middle angle.



Figure 1 shows a simple cube-curve which has 5 end angles ∠(e21, e0, e1),
∠(e4, e5, e6), ∠(e6, e7, e8), ∠(e14, e15, e16)), ∠(e16, e17, e18), and many middle an-
gles (e.g., ∠(e0, e1, e2), ∠(e1, e2, e3), or ∠(e2, e3, e4)).

Definition 5. A simple cube-curve g is called first class iff each critical edge of
g contains exactly one vertex of the MLP of g.

This paper focuses on first-class simple cube-curves.

Definition 6. Let S ⊆ R3. The set {(x, y, 0) : ∃z(z ∈ R ∧ (x, y, z) ∈ S)} is the
xy-projection of S, or projection of S for short. Analogously we define the yz-
or xz-projection of S.

Definition 7. If e1, e2, . . ., em are consecutive critical edges of a cube-curve g
and e0 ⊥ e1, em ⊥ em+1, and ei ‖ ei+1, where i equals 1, 2, . . ., and m − 1,
m ≥ 2, then {e1, e2, . . ., em } is a set of maximal parallel critical edges of g,
and critical edge e0 or em+1 is called adjacent to this set.

Figure 1 shows a simple cube-curve which has 2 maximal parallel critical
edge sets: {e11, e12} and {e18, e19, e20, e21}. The two adjacent critical edges of
{e11, e12} are e10 and e13, they are on two different grid planes. The two adjacent
critical edges of {e18, e19, e20, e21} are e17 and e0, they are on two different grid
planes as well.

The paper is organized as follows: Section 2 describes theoretical fundamen-
tals for constructing our example. Section 3 presents the example. Section 4 gives
the conclusions.

Fig. 1. Example of a first-class simple cube-curve which has middle and end angles.



2 Basics

We provide mathematical fundamentals used for constructing a simple cube-
curve such that none of the vertices of its 3D MLP is a grid vertex. We start
with citing a basic theorem from [1]:

Theorem 1. Let g be a simple cube-curve. Critical edges are the only possible
locations of vertices of the MLP of g.

Let de(p, q) be the Euclidean distance between points p and q.
Let e0, e1, e2, . . ., em and em+1 be m + 2 consecutive critical edges in a

simple cube-curve, and let l0, l1, l2, . . ., lm and lm+1 be the corresponding three
critical lines. We express a point pi(ti) = (xi + kxi

ti, yi + kyi
ti, zi + kzi

ti) on li
in general form, with ti ∈ R, where i equals 0, 1, . . ., or m + 1.

Lemma 1. If e1 ⊥ e2, then ∂de(p1,p2)
∂t2

can be written as (t2−α)β, where β > 0,
and β is a function of t1 and t2, α is 0 if e1 and the first end point of e2 are on
the same grid plane, and α is 1 otherwise.

Proof. Without loss of generality, we can assume that e2 is parallel to z-axis.
In this case, the parallel projection (denoted by g′(e1, e2)) of all of g’s cubes,
contained between e1 and e2, is illustrated in Figure 2, where AB is the projective
image of e1, and C is that of one of the end points of e2.

Case 1. e1 and the first end point of e2 are on the same grid plane. Let the
two end points of e2 be (a, b, c) and (a, b, c + 1). Then the two end points of e1

are (a−1, b+k, c) and (a, b+k, c). Then the coordinates of p1 and p2 are (a−1+
t1, b+k, c) and (a, b, c+ t2) respectively, and de(p1, p2) =

√
(t1 − 1)2 + k2 + t2

2.

Fig. 2. Illustration of the proof of Lemma 1.



Therefore ∂de(p1,p2)
∂t2

= t2√
(t1−1)2+k2+t22

. Let α = 0 and β = 1√
(t1−1)2+k2+t22

.

This proves the lemma for Case 1.
Case 2. e1 and the first end point of e2 are on different grid planes (i.e., e1 and

the second end point of e2 are on the same grid plane). Let the two end points of
e2 be (a, b, c) and (a, b, c+1). Then the two end points of e1 are (a−1, b+k, c+1)
and (a, b+k, c+1). Then the coordinates of p1 and p2 are (a−1+ t1, b+k, c+1)
and (a, b, c + t2) respectively, and de(p1, p2) =

√
(t1 − 1)2 + k2 + (t2 − 1)2.

Therefore ∂de(p1,p2)
∂t2

= t2−1√
(t1−1)2+k2+(t2−1)2

. Let α = 1 and

β = 1√
(t1−1)2+k2+(t2−1)2

. This proves the lemma for Case 2.
ut

Lemma 2. If e1 ‖ e2, then ∂de(p1,p2)
∂t2

can be written as (t2− t1)β, where β > 0,
and β is a function of t1 and t2

Proof. Without loss of generality, we can assume that e2 is parallel to z-axis.
In this case, the parallel projection (denoted by g′(e1, e2)) of all of g’s cubes
contained between e1 and e2 is illustrated in Figure 3, where A is the projective
image of one of the end points of e1, and B is that of one of the end points of
e2.

Case 1. e1 and e2 are on the same grid plane. Let the two end points of e2

be (a, b, c) and (a, b, c + 1). Then the two end points of e1 are (a, b + k, c) and
(a, b + k, c + 1). Then the coordinates of p1 and p2 are (a, b + k, c + t1) and
(a, b, c + t2) respectively, and de(p1, p2) =

√
(t2 − t1)2 + k2.

Therefore ∂de(p1,p2)
∂t2

= t2−t1√
(t2−t1)2+k2

. Let β = 1√
(t2−t1)2+k2

. This proves the

lemma for Case 1.
Case 2. e1 and e2 are on different grid planes. Let the two end points of e2

be (a, b, c) and (a, b, c+1). Then the two end points of e1 are (a−1, b+k, c) and

Fig. 3. Illustration of the proof of Lemma 2.



(a− 1, b + k, c + 1). Then the coordinates of p1 and p2 are (a− 1, b + k, c + t1)
and (a, b, c + t2) respectively, and de(p1, p2) =

√
(t2 − t1)2 + k2 + 1.

Therefore ∂de(p1,p2)
∂t2

= t2−t1√
(t2−t1)2+k2+1

. Let β = 1√
(t2−t1)2+k2+1

. This proves

the lemma for Case 2.
ut

This Lemma will be used when we prove Lemma 6 later.
Let di = de(pi−1, pi) + de(pi, pi+1), where i equals 1, 2, . . ., or m.

Theorem 2. If ei ⊥ ej, where i, j = 1, 2, 3 and i 6= j, then e1, e2 and e3 form
an end angle iff the equation ∂(de(p1,p2)+de(p2,p3))

∂t2
= 0 has a unique root 0 or 1.

Proof. Without loss of generality, we can assume that e2 is parallel to z-axis.
(A) If e1, e2 and e3 form an end angle, then by Definition 4, the z-coordinates

of two end points of e1 and e3 are equal.
Case A1. e1, e3 and the first end point of e2 are on the same grid plane. By

Lemma 1, ∂(de(p1,p2)
∂t2

= (t2 − α1)β1, where α1 = 0 and β1 > 0, and ∂(de(p2,p3)
∂t2

=

(t2 − α2)β2, where α2 = 0 and β2 > 0. So we have ∂(de(p1,p2)+de(p2,p3))
∂t2

=

t2(β1 + β2). Therefore the equation ∂(de(p1,p2)+de(p2,p3))
∂t2

= 0 has a unique root
t2 = 0.

Case A2. e1, e3 and the second end point of e2 are on the same grid plane. By
Lemma 1, ∂(de(p1,p2)

∂t2
= (t2 − α1)β1, where α1 = 1 and β1 > 0, and ∂(de(p2,p3)

∂t2
=

(t2 − α2)β2, where α2 = 1 and β2 > 0. So we have ∂(de(p1,p2)+de(p2,p3))
∂t2

=

(t2− 1)(β1 +β2). Therefore, equation ∂(de(p1,p2)+de(p2,p3))
∂t2

= 0 has a unique root
t2 = 1.

(B) Conversely, if equation ∂(de(p1,p2)+de(p2,p3))
∂t2

= 0 has a unique root 0 or
1, then e1, e2 and e3 form an end angle. Otherwise, e1, e2 and e3 form a middle
angle. By Definition 4, the z-coordinates of two end points of e1 are not equal to
z-coordinates of two end points of e3 (Note: Without loss of generality, we can
assume that e2 ‖ z-axis.). So e1 and e3 are not on the same grid plane.

Case B1. e1 and the first end point of e2 are on the same grid plane, while
e3 and the second end point of e2 are on the same grid plane. By Lemma 1,
∂(de(p1,p2)

∂t2
= (t2−α1)β1, where α1 = 0 and β1 > 0, while ∂(de(p2,p3)

∂t2
= (t2−α2)β2,

where α2 = 1 and β2 > 0. So we have ∂(de(p1,p2)+de(p2,p3))
∂t2

= t2β1 + (t2 − 1)β2.

Therefore t2 = 0 or 1 is not a root of the equation ∂(de(p1,p2)+de(p2,p3))
∂t2

= 0. This
is a contradiction.

Case B2. e1 and the second end point of e2 are on the same grid plane,
while e3 and the first end point of e2 are on the same grid plane. By Lemma 1,
∂(de(p1,p2)

∂t2
= (t2−α1)β1, where α1 = 1 and β1 > 0, while ∂(de(p2,p3)

∂t2
= (t2−α2)β2,

where α2 = 0 and β2 > 0. So we have ∂(de(p1,p2)+de(p2,p3))
∂t2

= (t2 − 1)β1 + t2β2.

Therefore, t2 = 0 or 1 is not a root of the equation ∂(de(p1,p2)+de(p2,p3))
∂t2

= 0. This
is a contradiction as well.

ut



Theorem 3. If ei ⊥ ej, where i, j = 1, 2, 3 and i 6= j, then e1, e2 and e3 form
a middle angle iff the equation ∂(de(p1,p2)+de(p2,p3))

∂t2
= 0 has a root t20 such that

0 < t20 < 1.

Proof. If e1, e2 and e3 form a middle angle, then by Definition 4, e1, e2 and e3

do not form an end angle. By Theorem 2, 0 or 1 is not a root of the equation
∂(de(p1,p2)+de(p2,p3))

∂t2
= 0. By Lemma 1, ∂(de(p1,p2)+de(p2,p3))

∂t2
= (t2−α1)β1 +(t2−

α2)β2, where α1, α2 are 0 or 1, β1 > 0 is a function of t1 and t2, and β2 > 0
is a function of t2 and t3. So α1 6= α2. (i.e., α1 = 0 and α2 = 1 or α1 = 1 and
α2 = 0). Therefore the equation ∂(de(p1,p2)+de(p2,p3))

∂t2
= 0 has a root t20 such that

0 < t20 < 1.
Conversely, if the equation ∂(de(p1,p2)+de(p2,p3))

∂t2
= 0 has a root t20 such that

0 < t20 < 1, then by Theorem 2, e1, e2 and e3 do not form an end angle. By
Definition 4, e1, e2 and e3 do form a middle angle.

ut

Assume that e0 ⊥ e1, e2 ⊥ e3, and e1 ‖ e2. Assume that p(ti0) is a vertex of the
MLP of g, where i equals 1 or 2. Then we have

Lemma 3. If e0, e3 and the first end point of e1 are on the same grid plane,
and ti0 is a root of ∂di

∂ti
= 0, then ti0 = 0, where i equals 1 or 2.

Proof. By Figure 4, since p0(t0), p1(0), p2(0) and p3(t3) are on the same grid
plane, so we have

min{de(p0(t0), p1(t1)) + de(p1(t1), p2(t2)) + de(p2(t2), p3(t3)) : t1, t2 ∈ [0, 1]}
≥ de(p0(t0), p1(0)) + de(p1(0), p2(0)) + de(p2(0), p3(t3))

ut

Assume that we have e0 ⊥ e1, em ⊥ em+1, and ei ‖ ei+1, (i.e., the set {e1,
e2, . . ., em } is a set of maximal parallel critical edges of g, and e0 or em+1 is an
adjacent critical edge of this set). Futhermore, let p(ti0) be a vertex of the MLP
of g, where i = 1, 2, . . ., m− 1. Analogously, we have the ollowing two lemmas:

Lemma 4. If e0, em+1 and the first point of e1 are on the same grid plane, and
ti0 is a root of ∂di

∂ti
= 0, then ti0 = 0, where i = 1, 2, . . ., m.

Fig. 4. Illustration of the proof of Lemma 3.



Lemma 5. If e0, em+1 and the second end point of e1 are on the same grid
plane, and ti0 is a root of ∂di

∂ti
= 0, then ti0 = 1, where i = 1, 2, . . ., m.

Lemma 6. If e0 and em+1 are on different grid planes, and ti0 is a root of
∂di

∂ti
= 0, where i = 1, 2, . . ., m. Then 0 < t1 < t2 < . . . < tm < 1.

Proof. Assume that e0 and the first end point of e1 are on the same grid plane,
and em+1 and the second end point of e1 are on the same grid plane. Then
by Lemmas 1 and 2, ∂di

∂ti
, where i = 1, 2, . . ., m, have the following forms:

∂d1
∂t1

= t1b11 + (t1 − t2)b12 ,
∂d2
∂t2

= (t2 − t1)b21 + (t2 − t3)b22 ,
∂d3
∂t3

= (t3 − t2)b31 +

(t3 − t4)b32 , . . ., ∂dm−1
∂tm−1

= (tm−1 − tm−2)bm−11 + (tm−1 − tm)bm−12 , and ∂dm

∂tm
=

(tm− tm−1)bm1 +(tm−1)bm2 , where bi1 > 0, and bi1 is a function of ti and ti−1,
and bi2 > 0, and bi2 is a function of ti and ti+1, i = 1, 2, . . ., m.

If t10 < 0, then by ∂d1
∂t1

= 0, we have t10b11 + (t10 − t20)b12 = 0. Since b11 > 0
and b12 > 0, so we have t10−t20 > 0, (i.e., t10 > t20). Analogously, by ∂d2

∂t2
= 0, so

(t20 − t10)b21 + (t20 − t30)b22 = 0. Then we have t20 > t30 . Analogously, we have
t30 > t40 , . . ., tm−10 > tm0 . Therefore, by ∂dm

∂tm
= (tm − tm−1)bm1 + (tm − 1)bm2 ,

we have tm0 − 1 > 0. So we have 0 > t10 > t20 > t30 > . . . > tm0 > 1. This is a
contradiction.

If t10 = 0, then by ∂d1
∂t1

= 0 we have t20 = 0. Analogously, by ∂d2
∂t2

= 0
we have t30 = 0. Analogously, we have t40 = 0, . . ., tm0 = 0. But, by ∂dm

∂tm
=

(tm − tm−1)bm1 + (tm − 1)bm2 , we have ∂dm

∂tm
= (tm − 1)bm2 = −bm2 < 0. This is

in contradiction to ∂dm

∂tm
= 0.

If t10 ≥ 1, then by ∂d1
∂t1

= 0, we have t10b11 + (t10 − t20)b12 = 0. Due to
b11 > 0 and b12 > 0 we have t10 − t20 < 0, (i.e., t10 < t20). Analogously,
by ∂d2

∂t2
= 0 it follows that (t20 − t10)b21 + (t20 − t30)b22 = 0. Then we have

t20 < t30 . Analogously, we have t30 < t40 , . . ., tm−10 < tm0 . Therefore, by
∂dm

∂tm
= (tm− tm−1)bm1 +(tm−1)bm2 , we have tm0 −1 < 0. So we have 1 ≤ t10 <

t20 < t30 < . . . < tm0 < 1. This is a contradiction.
ut

Let ti0 be a root of ∂di

∂ti
= 0, where i = 1, 2, . . ., m. We apply Lemmas 4, 5

and 6 and obtain

Theorem 4. e0 and em+1 are on different grid plane iff 0 < t10 < t20 < . . . <
tm0 < 1.

3 An Example

We provide one example to show that there is a simple cube-curve such that
none of the vertices of its 3D MLP is a grid vertex. See Table 1, which lists the
coordinates of the critical edges e0, e1, . . . , e19 of g.

Let v(t0), v(t1), . . . , v(t19) be the vertex of the MLP of g such that v(ti)
is on ei and ti is in [0, 1], where i = 0, 1, 2, . . . , 19. By Appendix we can
see that there is not any end angle in g. In fact, There are 6 middle angles:



Fig. 5. A simple cube-curve such that none of the vertices of its 3D MLP is a grid
vertex.

∠(e2, e3, e4)), ∠(e3, e4, e5)), ∠(e6, e7, e8)), ∠(e9, e10, e11)), ∠(e10, e11, e12)), and
∠(e13, e14, e15)). By Theorem 3, we have t3, t4, t7, t10, t11 and t14 are in (0, 1).

By Figure 5 we can see that e1 ‖ e2 and e0 and e3 are on different grid planes.
By Theorem 4, we have t1 and t2 are in (0, 1).

Analogously, we have t5 and t6 are in (0, 1); t8 and t9 are in (0, 1); t12 and
t13 are in (0, 1); t15, t16 and t17 are in (0, 1); and t18 and t19 are in (0, 1).

Therefore, each ti is in (0, 1), where i = 0, 1, . . . , 19. So g is a simple
cube-curve such that none of the vertices of its 3D MLP is a grid vertex.

4 Conclusions

We have constructed a non-trivial simple cube-curve such that none of the ver-
tices of its 3D MLP is a grid vertex. Indeed, by Theorems 2 and 4, and Lemmas 5
and 6, we can come to the conclusion that given a simple first class cube-curve
g, none of the vertices of its 3D MLP is a grid point iff g has not any end angle



Critical edge xi1 yi1 zi1 xi2 yi2 zi2

e0 -1 4 7 -1 4 8
e1 1 4 7 1 5 7
e2 2 4 5 2 5 5
e3 4 5 4 4 5 5
e4 4 7 4 5 7 4
e5 5 7 2 5 8 2
e6 7 7 2 7 8 2
e7 7 8 4 8 8 4
e8 8 10 4 8 10 5
e9 10 10 4 10 10 5
e10 10 8 5 11 8 5
e11 11 7 7 11 8 7
e12 12 7 7 12 7 8
e13 12 5 7 12 5 8
e14 10 4 8 10 5 8
e15 9 4 10 10 4 10
e16 9 0 10 10 0 10
e17 9 0 8 10 0 8
e18 9 1 7 9 1 8
e19 -1 2 7 -1 2 8

Table 1. Coordinates of endpoints of critical edges in Figure 5.

and for every set of maximal parallel edges of g, its two adjacent critical edges
are not on the same grid plane.

Appendix: List of ∂di

∂ti
(i = 0, 1, . . ., 19)

We compute ∂di

∂ti
(i = 0, 1, . . ., 19) for g as shown in Figure 5.

dt0 =
t0√

t0
2 + t1

2 + 4
+

t0 − t19√
(t0 − t19)2 + 4

(1)

dt1 =
t1√

t0
2 + t1

2 + 4
+

t1 − t2√
(t1 − t2)2 + 5

(2)

dt2 =
t2 − t1√

(t2 − t1)2 + 5
+

t2 − 1√
(t2 − 1)2 + (t3 − 1)2 + 4

(3)

dt3 =
t3 − 1√

(t2 − 1)2 + (t3 − 1)2 + 4
+

t3√
t3

2 + t4
2 + 4

(4)

dt4 =
t4√

t3
2 + t4

2 + 4
+

t4 − 1√
(t4 − 1)2 + t5

2 + 4
(5)



dt5 =
t5√

(t4 − 1)2 + t5
2 + 4

+
t5 − t6√

(t5 − t6)2 + 4
(6)

dt6 =
t6 − t5√

(t6 − t5)2 + 4
+

t6 − 1√
(t6 − 1)2 + t7

2 + 4
(7)

dt7 =
t7√

(t6 − 1)2 + t7
2 + 4

+
t7 − 1√

(t7 − 1)2 + t8
2 + 4

(8)

dt8 =
t8√

(t7 − 1)2 + t8
2 + 4

+
t8 − t9√

(t8 − t9)2 + 4
(9)

dt9 =
t9 − t8√

(t9 − t8)2 + 4
+

t9 − 1√
(t9 − 1)2 + t10

2 + 4
(10)

dt10 =
t10√

(t9 − 1)2 + t10
2 + 4

+
t10 − 1√

(t10 − 1)2 + (t11 − 1)2 + 4
(11)

dt11 =
t11 − 1√

(t11 − 1)2 + (t10 − 1)2 + 4
+

t11√
t11

2 + t12
2 + 1

(12)

dt12 =
t12√

t11
2 + t12

2 + 1
+

t12 − t13√
(t12 − t13)2 + 4

(13)

dt13 =
t13 − t12√

(t13 − t12)2 + 4
+

t13 − 1√
(t13 − 1)2 + (t14 − 1)2 + 4

(14)

dt14 =
t14 − 1√

(t13 − 1)2 + (t14 − 1)2 + 4
+

t14√
t14

2 + (t15 − 1)2 + 4
(15)

dt15 =
t15 − 1√

t14
2 + (t15 − 1)2 + 4

+
t15 − t16√

(t15 − t16)2 + 16
(16)

dt16 =
t16 − t15√

(t16 − t15)2 + 16
+

t16 − t17√
(t16 − t17)2 + 4

(17)

dt17 =
t17 − t16√

(t17 − t16)2 + 4
+

t17√
t17

2 + (t18 − 1)2 + 1
(18)

dt18 =
t18 − 1√

t17
2 + (t18 − 1)2 + 1

+
t18 − t19√

(t18 − t19)2 + 101
(19)

dt19 =
t19 − t18√

(t19 − t18)2 + 101
+

t19 − t0√
(t19 − t0)2 + 4

(20)
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