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Abstract

This paper describes computationally e$cient methods of solving the two-stream plane-parallel equation
of radiative transfer in multi-layered media using adjoint perturbations in combination with selection rules.
Semi-analytical results are obtained for the perturbed #uxes in atmospheres illuminated by solar radiation.
The perturbation approach is useful in media dominated by multiple scattering whereas selection rules apply
when absorption is dominant or if the media is weakly scattering. Selection rules can be applied with
conventional two-stream solvers to reduce the number of radiative transfer calculations. For example, clear
sky broadband #uxes computed with selection rules for a 30 layer atmosphere using the k-distribution
method were obtained in about one-seventh the time taken by the standard solvers. An 12-fold increase in
computational speed over the standard solvers was achieved when selection rules were used with the
perturbation method for the same atmosphere. Fluxes so computed were within 10% of those calculated
using standard, full up two-stream radiative transfer codes. ( 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The need for simple, robust and computationally e$cient methods for solving a variety of
radiative transfer problems has been underscored by Gabriel et al. [1]. The method of adjoint
perturbations used here to obtain approximate solutions to the two-stream #uxes was introduced
to the atmospheric science community by Box et al. [2], and Gerstel [3], although its theoretical
development arose from neutron transport studies [4]. The technique has been applied to the
computation of monochromatic #uxes in optically thin atmospheres (e.g. [5]). Perturbations were
de"ned by changing the composition of the atmosphere through changes in the ozone or aerosol
pro"les from given base-state pro"les. Those studies showed the approach to be surprisingly
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c

Fig. 1. (a) Conceptual overview of the adjoint perturbation method. The base state is denoted by $
i
. Optical properties

of the base state are denoted by s
i
. The arguments of s

*
depend on the scattering, and extinction coe$cients as well as the

asymmetry factor of the layers. Function s is used in the de"nition of a speci"c two-stream model. Associated with the
base state are the boundary conditions, F

"#
, the #ux distribution, F

0
, the adjoint #ux, F

0
, and other functions of the

optical properties required by the perturbation, denoted by O
i
. The transition operator that takes $

i
into the "nal state

$
&
is *¸[s

&
!s

i
], a simple matrix of the di!erence between the "nal and base state optical properties. The #uxes of the

"nal state, F
0
#*F, are calculated by the inner product shown in the arrow. The lower "gure illustrates the sequence of

steps required to calculate the perturbed #uxes. In the "rst box are speci"ed the base-state optical properties and the
boundary conditions. In the second box, the base-state #uxes and adjoint #uxes are calculated. The transition operator is
then used to compute the inner product from which follows the perturbed #ux. The inner product is computed as shown
in the upper "gure. (b) Illustration of the labelling convention used in the development of the adjoint perturbation
method. The values of z increase from the base to the top of the atmosphere. The arrows shown in layer two emphasize
that the upwelling and downwelling #uxes and adjoint #uxes associated with layers 1 and 2 must match at the interface
located at z"z

2
. Such matchings, in fact, occurs at all internal boundaries and are the key to obtaining the

semi-analytical solutions for the #uxes and adjoint #uxes described in the text.

accurate over a large range of perturbations. More recently, Box et al. [6] calculated spectrally
integrated ultra violet #uxes at the surface and introduced perturbations as a way of dealing with
spectrally varying ozone absorption. The objective of the present work is to understand and use the
properties of the adjoint perturbation to calculate broadband #uxes in multi-layer atmospheres. It
is an extension of the work of Gabriel et al. [1] who applied the method successfully in obtaining
broadband #uxes in a single-layer medium.

The adjoint perturbation model is presented in three sections: Section 2 introduces terminology
and focuses on obtaining a continuous solution for the #uxes in a form required to derive the
adjoint perturbations, Section 3 formulates and solves the adjoint equation, and Section 4 develops
the perturbation approximation from the de"nition of both physical and adjoint #uxes. Section 5
introduces a new semi-empirical algorithm called the selection rules method applicable to those
problems dominated by absorption. Selection rules eliminate the need for performing detailed
radiative transfer computations and can be used with either standard methods for computing the
#uxes or in conjunction with the adjoint perturbation method. Section 6 compares #ux pro"les
obtained by the adding algorithm to those obtained by the combined perturbation and selection
rules methods. A summary and conclusion is provided in Section 7.

2. Base state

The goal of the perturbation method is to calculate #uxes e$ciently by performing radiative
transfer calculations only once on what is termed the base state. The #uxes associated with
a di!erent optical pro"le (the "nal state) are then determined by perturbing those of the base state
with a transition operator that contains information about the desired, "nal state. The base state
$ is de"ned collectively by an initial #ux pro"le F

0
, the initial distribution of optical properties X

i
,

and boundary conditions FB
"#

. Functions that are dependent the initial distribution of optical
properties are also considered as a part of the base state. For example, the adjoint operator F

0
and

the Greens function G
0

are associated with the base state, and it is understood that #ux pro"les of
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the "nal state will respect the boundary conditions of the base state. Box et al. [7] shows how the
base state is used to compute a "nal #ux pro"le in terms of di!erences in the distribution of optical
properties. This concept is illustrated in Fig. 1a. The transition operator denoted by *¸ in the
"gure is a matrix whose detailed structure is given later in this paper.
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The in"nite series from which the perturbation approximation derives was obtained by
Box et al. [7]. The series is

F"F
0
!SF

0
, *¸F

0
T#SF

0
,*¸G

0
*¸F

0
T!SF

0
, *¸G

0
*¸G

0
*¸F

0
T#2 . (1)

The brackets containing vector arguments X and >, SX,>T indicate the taking of their inner, or
dot product. If all the terms in the series are considered, Eq. (1) yields the exact solution for the
"nal-state #uxes. In what follows, only the "rst two terms of the series will be retained. The
omission of higher-order terms constitutes the perturbation approximation. Higher-order terms
require the calculation of the Greens function, and although this function can be derived, the
inclusion of such terms will compromise computational e$ciency. However, as will be discussed in
Section 3, there is a semi-empirical correction that can improve the accuracy, but at the expense of
introducing additional computations of exponential terms.

2.1. Continuous yux solution

This section develops a continuous analytic solution for the #uxes in an inhomogeneous
multilayer atmosphere. The solution to this problem is, of course, well known and is usually given
in dimensionless optical depth coordinates. However, in the calculation of the perturbations, the
solution must be expressed in physical coordinates. Since the analytical form of the solution to the
perturbation method depends on that of the two-stream #uxes, derivation of the latter is necessary
for understanding and reproducing the formulae to be presented. Finally, the solution of the
adjoint parallels that of the solution of the physical #ux, and this helps to reduce the length of that
section. Calculation of the two-stream #uxes (herein limited to the solar problem but extended in
a later paper to infrared transfer), begins with the canonical form of the di!erential equation that
de"nes them. Beginning with a single layer, with its upper boundary at z

t
and its lower boundary at

z"z
1
, we have

¸F
0
"Q

0
, (2)

where F
0

is the vector

F
0
"A

F`(z)

F~(z)B
of upwelling F`(z) and downwelling F~(z) #uxes at level z. The solar source vector is given by

Q
0
"A

c
3

!c
4
B f

0
exp[i(z!z

t
)], (3a)

where i"p
e
/k

0
, c

3
"0.25(2!3gk

0
) and c

4
"0.25(2#3gk

0
), while the two-stream operator is

¸"I
d
dz

!A. (3b)
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Here I is the identity matrix and matrix A is a 2]2 attenuation operator de"ned by

A"A
!c

1
c
2

!c
2

c
1
B (3c)

with c
1
"0.25(7p

%
!p

4
(4#3g)) and c

2
"!0.25(p

%
!p

4
(4!3g)).

The solution for a single homogeneous layer can be determined by pre-multiplying Eq. (2) by the
integrating factor exp[!Az] and using the expansion:

d
dz

(exp[!Az]F
0
)"exp[!Az]A

dF
0

dz
!AF

0B (4)

which yields

d
dz

(exp[!Az]F
0
)"exp[!Az]Q

0
. (5)

Integrating this expression results in the #ux:

F
0
"exp[Az]C#(iI!A)~1Q

0
. (6)

The components of vector C in Eq. (6) may be determined from the boundary conditions that the
di!use #ux must satisfy at the base and top of the medium. The exponential matrix can be
evaluated by using the Cayley}Hamilton Theorem. It may also be calculated by using fundamental
roperties of the two-stream A matrix, namely

Am"jmI, m"0, 2, 4,2, (7a)

An"jnI, n"1, 3 ,5,2, (7b)

AB#BA"2(c
1
g
1
!c

2
g
2
)I, (7c)

where matrix B is isomorphic to A, having elements

B"A
!g

1
g
2

!g
2

g
1
B.

Expression (7a) and (7b) are used in the computation of the matrix exponential and inverse
matrix in (6) when those terms are expanded in a Taylor series about the origin. The results are:

exp[Az]"cosh(jz)I#
sinh(jz)

j
A (7d)

and

(iI!A)~1"A
b
1,1

b
1,2

b
2,1

b
2,2
B, (7e)
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where

b
1,1

"

c
1
!i
*

, b
1,2

"

!c
2

*
,

b
2,1

"

c
2
*

, b
2,2

"

c
1
!i
*

(7f)

with the eigenvalue j2"c2
1
!c2

2
and *"j2!i2. Although expression (7c) is not used, it is

reported here because it enters in the solution of the more general problem of solving the #uxes
when the A matrix is not constant as above, but rather is dependent on z explicitly. The analytical
solution made possible by this relation is the subject of another study. The two-stream solution for
a single layer is

A
F`(z)

F~(z)B"A
e
1,1

(z) e
1,2

(z)

e
2,1

(z) e
2,2

(z)BA
C`
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b
1,1

b
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b
2,1

b
2,2
BQ0

, (8a)

where the components of the exponential matrix are given by

e
1,1

(z)"p
1

exp(jz)#p
2

exp(!jz),

e
1,2

(z)"p
3
(exp(jz)!exp(!jz)),

e
2,1

(z)"p
3
(exp(!jz)!exp(jz)),

e
2,2

(z)"p
2

exp(jz)#p
1

exp(!jz).

The constants in the above expressions are

p
1
"

(j!c
1
)

2j
, p

2
"

(j#c
1
)

2j
, p

3
"

c
2

2j

and satisfy

p
1
p
2
#p2

3
"0, p2

1
#p2

2
!2p2

3
"1.

The boundary conditions:

F`(z
1
)"R

g
(F~(z

t
)#exp(i(z

t
!z

1
))), (8b)

F~(z
t
)"F

$08/
(8c)

determine the coe$cient vector C. Di!use radiation entering the upper boundary is denoted by
F
$08/

, and the re#ection of the lower boundary (assumed Lambertian) is denoted by R
g
. Although

the solution is mathematically complete, its numerical properties are unacceptable because of the
presence of the growing exponential terms in the upwelling and downwelling #uxes. For a direct
beam of unit strength, the #uxes must lie between zero and unity. This constraint will be violated
when the optical thickness becomes large. A stable solution can be obtained, however, by
reformulating the solutions in terms of re#ection and transmission functions. This will be
a straightforward task using the development already presented and will now be described for
multiple layers.
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Fig. 1b de"nes the multi-layered plane-parallel atmosphere used throughout this work. Level
quantities are speci"ed by z

i
. The optical properties are taken to be constant within all layers, but

may di!er from layer to layer. Fluxes are speci"ed using two indicies. For example, F`
1

(z
2
)

designates the upwelling hemispherical #ux associated with layer one at altitude z
2
. Optical

properties, and functions of these properties (e.g. j
i
, i

i
, etc.) are labelled by a single index, i that

denotes the ith layer. Such an arrangement is necessary since the #ux must be determined at any z,
not just on boundaries. This goal is attainable if the equation of transfer is solved in every layer,
keeping in mind that the source term at position z is determined by the vertical distribution of the
extinction above z. To "x these ideas, the di!erential equations that de"ne the #uxes in the ith layer
are:

dF`
i
(z)

dz
"!ci

1
F`

i
#ci

2
F~

i
#ci

3
f
0
=

i
(z), (9a)
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dz
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2
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i
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1
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i
!ci

4
f
0
=

i
(z), (9b)

=
i
(z)"=

i`1
(z) exp(i

i
(z!z

i`1
)), (9c)

where=
N
(z

N`1
)"=

N`1
(z

N`1
)"1. The quantity=

i
(z) accounts for the depletion of the direct

beam (of magnitude given by f
0

at the top of the atmosphere) by the previous layers and is
calculated by iteration with=

N`1
(z

n`1
)"1. The solution for the #uxes in the ith layer may now

be written analogously to (8a):

F`
i
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i
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i

(z)"C`
i
ei
2,1
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(z), (10b)

where the sources associated with the upwelling and downwelling #uxes are S`
i

(z) and S~
i
(z),

respectively. The coe$cients C`
i

and C~
i

are arbitrary constants for the ith layer having dimensions
of #ux.

Two kinds of boundary conditions must be imposed to determine C`
i

and C~
i

. The "rst requires
that the #uxes be continuous accross the internal boundaries. The second speci"es external
boundary conditions. Continuity requires:

F`
i

(z
i
)"F`

i~1
(z

i
), (11a)

F~
i

(z
i
)"F~

i`1
(z

i
), (11b)

while the external boundary conditions are as given in (8b) with z
t
replaced by z

N`1
.

Applying the internal boundary conditions to Eqs. (10a) and (10b) and Cramer's rule, the
coe$cients C`

i
and C~

i
are obtained. These coe$cients are inserted back into (10a) and (10b), and

with the aid of composition rules that relate the e
i,j

(z), the #uxes are obtained. One example of
a composition rule is e

1,1
(x)e

2,2
(y)!e

2,1
(x)e

1,2
(y)"e

1,1
(x!y). Such relations are derived as
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needed and are a part of the algebraic process that leads to the following form for the #uxes:

F`
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(z)"¹i
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(z
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1
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i
(z), (12a)
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¹i
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i
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3
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i
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i
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))#pi
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Eqs. (12) and (13) are statements of the interaction principle. Functions Ri
1
(z) and Ri

2
(z) are the

global re#ection functions of the ith layer, and ¹i
1
(z), ¹i

2
(z) are the global transmission functions.

Since z must lie between z
i
and z

i`1
, the global re#ection and transmission functions are bounded

by zero and unity. The #uxes range bewteen zero and f
0
, hence Eqs. (12a) and (12b) form a stable

system that allow the boundary #uxes F`
i

(z
i
) and F~

i
(z

i
) to be calculated e$ciently via a tri-

diagonal solver. Note the use of F`
0

(z
1
)"F`

1
(z

1
) (clearly there is no layer 0) when i"1 as required

by (11a). Then the #ux at any position may be solved to within the accuracy a!orded by the
particular kind of two-stream model employed. The form of solution given by (12a) and (12b) is
more e$cient than the conventional adding method if evaluations of the #ux are required at several
arbitrary locations within a layer. In this case, the adding method would have to introduce
additional layers so that the required positions lie on interfaces.

Selection of a two-stream model should be approached with some caution as it is possible to
violate certain physical constraints. For example, the global re#ection and transmission functions
must be positive irrespective of position or the local optical properties. That this is not always the
case is easily seen if attention is directed to the single layer with z

1
"0 and z

2
"z

t
. It is seen that

R
1
(z)"

p
3
[exp(j(z!z

t
))!exp(j(!z!z

t
))]

p
1

exp(!2jz
t
)#p

2

.

The quantity in square brackets in the numerator is always positive. The denominator is also
positive, since p

2
'p

1
and p

1
is negative, as may be seen from the relations that the p

i
satisfy. For

the Delta}Eddington method, R
1
(z) will become negative when

1
(4!3g)

!

p
4

p
%

'0.

Quantities p
%

and p
4
denote the extinction and scattering coe$cients of the layer. Similarly, R

2
(z)

also becomes negative, while transmission functions retain positivity. If the aforementioned
condition is true, upwelling and downwelling #uxes can be positive, but their accuracy may be
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impaired. For example, when the asymmetry factor g"0, the single-scattering albedo cannot be
less than 0.25 without violating positivity requirements. These conditions can be encountered in
clear sky radiative transfer. In multi-layer media, the e!ect of local violations of the aforementioned
conditions on the accuracies of the computed #uxes is much more di$cult to access. In these cases,
even if the #uxes are everywhere positive, they may not be accurate at all positions due to
long-range couplings of the global re#ection and transmission functions. An example of this will be
given in Section 4.

The preceeding discussion is relevant to the de"nition of the perturbations described below in as
much as the accuracy of the perturbed #uxes depends on the base state #uxes. Not only are the
internal #uxes required, but computation of the adjoint operators depend on accurate #uxes
emerging from the boundaries of the medium. Finally, to complete this section, the form of solution
for the di!use #uxes used in the perturbation calculation is

F`
i

(z)"¹i
1
(z)C1

i
#Ri

1
(z)C2

i
#C3

i
X

i
(z), (14a)

F~
i

(z)"Ri
2
(z)C1

i
#¹i

2
(z)C2

i
#C4

i
X

i
(z), (14b)

where X
i
(z)"exp(i

i
(z!z

i`1
)). Eq. (14a) is the factored form of (12a).

Eq. (14b) is obtained from (12b) by adding to the latter the direct beam: k
0
f
0
=

j
exp(i

i
(z!z

i`1
)).

Coe$cient C4
i

is then identi"ed as the factor multiplying the exponential. The downwelling direct
radiation is added to the di!use #ux (i.e. (14b)) to yield the total #ux.

2.2. Broadband solutions

Eqs. (14a) and (14b) can be used to calculate either spectral or broadband #uxes. The broadband
#ux vector F

"
(z) follows from the spectral #uxes using the k-distribution method (e.g. [8])

according to

F
"
(z)"P

j.!9

j.*/

Fj (z) dj&
N"!/$4

+
i/1

Ni

+
j/1

w
j
F

j
(z). (14c)

Thus, broadband #uxes are obtained as a weighted sum over a discrete number of spectral intervals
(or bands) and over a discrete number of radiative transfer computations for each interval. The
relevant parameters are the number of bands denoted by N

"!/$4
, the number of absorption

coe$cients in each band that determine the optical properties and hence the number of radiative
transfer calculations N

i
, and the weights w

j
whose sum is unity. The optical properties, although

not explicitly stated in (14c), are implied in the calculation of F
j
(z). The results presented later

employ the Fu and Liou k-distribution model [9]. For this model, a total of 54 independent #ux
calculations are required to compute the broadband solar #uxes and the properties of the model
are summarized in Table 1.

3. Multi-layer adjoint solution

This section develops the adjoint solution of monochromatic transport on a multi-layer scatter-
ing and absorbing media as required in the perturbation approximation. The analytical properties
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Table 1
Spectral division used in the calculation of broadband solar radiation.
There are a total of 54 spectral lines

Band number Wave number range (cm~1) N
i

1 50 000}14 500 10
2 14 500}7700 8
3 7700}5250 12
4 5250}4000 7
5 4000}2850 12
6 2850}2500 5

of the adjoint #uxes are also explored to address issues concerning numerical stability. Use of the
term `adjoint #uxa, hereafter designated by the symbol F

0
, is a misnomer since it is more

appropriate to interpret F
0

as an operator. However, in keeping with the the nomenclature
established in Gabriel et al. [1], usage of this term will be retained. The adjoint operator
formulation for a multi-layer medium can be derived by expanding the inner product,

P
zN`1

z1

(F
0
(z),¸F

0
(z)) dz,

as follows:

P
zN`1

z1

(F
0
(z),¸F

0
(z)) dz"

N
+
i/1

P
zi`1

zi

(F
0,i

(z),¸
i
F
0,i

(z)) dz, (15a)

where F
0

is the 2]1 vector (F (z),F(z))T, ¸ is a 2]2 matrix and ¸F
0

is equivalent to the source
function by de"nition (2). The preceeding sum associates the adjoint #uxes, adjoint operator ¸s and
physical #uxes with the optical properties that characterize the ith layer. Next, each inner product
is evaluated using integration by parts. For the ith layer, the result is

P
zi`1

zi

(F
0,i

(z),¸
i
F
0,i

(z)) dz"F`
i

(z)F`
i

(z)Dzi`1
zi

#F~
i

(z)F~
i
(z)Dzi`1

zi

#P
zi`1

zi

(¸s
i
F

0,i
(z),F

0,i
(z)) dz. (15b)

The operator ¸s
i

is the adoint operator:

¸s
i
"!I

d
dz

!AT
i
. (16)
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If Eq. (15b) is used repeatedly in (15a), all the internal bilinear concomitants cancel in pairs, with the
exception of those at the upper and lower boundaries:

P
zN`1

z1

(F
0
(z),¸F

0
(z)) dz"(F`

N
(z

N`1
)F`

N
(z

N`1
)#F~

N
(z

N`1
)F~

N
(z

N`1
))

!(F`
1
(z

1
)F`

1
(z

1
)#F~

1
(z

1
)F~

1
(z

1
))

#

N
+
i/1
P

zi`1

zi

(¸s
i
F

0,i
(z),F

0,i
(z)) dz. (17)

The inner product on the left side of the equality in (15a) can be used to calculate the physical #uxes
through the identity ¸F

0
"Q

0
, "rst setting the two bilinear concomitants in (15b) or (17) to zero

and then letting

¸s
i
F

0
(z, z

0
)"d(z!z

0
)h, (18)

where h is a vector having components (h`, h~)T. This vector determines whether the upwelling or
downwelling #ux is to be calculated. If the upwelling #ux is desired then h`"1 and h~"0. For
the downwelling #ux h`"0 and h~"1. The delta function causes the sum in (15a) to vanish
unless z

0
, the position where the physical #ux is to be calculated lies between levels z

i
and z

i`1
. The

solution to (18) is

F`
i
(z, z

0
)"A`

i
ei
2,2

(z)#A~
i

ei
1,2

(z)!(ei
2,2

(z!z
0
)h`#ei

1,2
(z!z

0
)h~)H(z!z

0
), (19a)

F~
i
(z, z

0
)"A`

i
ei
2,1

(z)#A~
i

ei
1,1

(z)!(ei
2,1

(z!z
0
)h`#ei

1,1
(z!z

0
)h~)H(z!z

0
). (19b)

The solutions involve the Heaviside function. It is de"ned as

H(z)"G
1, z50,

0, z(0.
(20)

Coe$cients A`
i

and A~
i

are the arbitrary constants associated with the solution to the coupled
"rst-order equations (18). They may be eliminated by asserting continuity in the adjoint #uxes:

F`
i
(z

i
, z

0
)"F`

i~1
(z

i
, z

0
), (21a)

F~
i
(z

i
, z

0
)"F~

i~1
(z

i
, z

0
). (21b)

Use of Cramer's rule to eliminate the coe$cients leads to the interaction form of the solution,
analogous to (12) for physical #uxes:

F`
i
(z, z

0
)"T1

i
(z)F`

i~1
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0
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# (ei
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0
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!z
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)

! (ei
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0
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)

# (ei
2,1

(z
i`1

!z
0
)h`#ei

1,1
(z

i`1
!z

0
)h~)R1

i
(z)H(z

i`1
!z

0
), (22a)
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F~
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i
, z

0
)#T1

i
(z)F~
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! (ei
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), (22b)

where the adjoint global re#ection R and transmission functions T are:
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))#pi

1
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i
!z

i`1
))#pi

1

, (23a)
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Ti
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1
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exp(2j
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i
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Ri
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(z)"
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3
(exp(j

i
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i
#z!2z

i`1
))!exp(j

i
(z

i
!z)))

pi
2

exp(2j
i
(z

i
!z

i`1
))#pi

1

. (23d)

Eqs. (22) are similar to those that describe the physical #uxes. Hence they form a tri-diagonal
system that can be solved with the bilinear concomitant providing the external boundary condi-
tions. A check on the correctness of the results is possible via the relation

F
0
(z)"

N
+
i/1

P
zi`1

zi

(F
0,i

(z),Qi
0
(z)) dz, (24)

which calculates the physical #ux. The formula is obtained from the left-hand side of Eq. (15a) as
a sum over layers. Thus N

z
locations where the #ux is to be calculated will require N

z
solutions.

Since there are two coe$cients per layer, the computational complexity will be of order 2N2
z
.

However, the tri-diagonal system of Eqs. (22a) and (22b) does not require 2N2
z

evaluations of the
matrix of adjoint coe$cients because z

0
is present only in the adjoint sources. In terms of an ¸;

factorization of the adjoint coe$cent matrix, this factorization need only be performed once.
While a complete analytic solution is possible, such an undertaking is not necessary for this

discussion. Formulae (22a)}(23d) have been veri"ed and reproduce the physical #uxes via (24)
EXACTLY for both upwelling and downwelling di!use #uxes using the general boundary condi-
tions speci"ed in Section 1. It should be noted that in formulas for the downwelling hemispherical
#ux, the direct beam contribution will be absent. Total #ux requires that the direct beam be added
after F~

1
(z

1
) is determined.

Although Eqs. (22) and (23) do not appear to have a simple physical interpretation, it is clear that
F is an operator that acts on the source function as in (24) to yield the #uxes. Eq. (18) is the Greens
function for the adjoint. It di!ers from the conventional Green's function by the way boundary
conditions are used. The conventional Green's functions is obtained by simply replacing the
spatially varying source with a delta function. The response is obtained by employing the same
boundary conditions that are required for the solution of the two-stream #uxes. The adjoint #ux or
adjoint Greens function requires for its solution the physical #uxes emerging from the boundaries
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of the medium (i.e. that the two-stream problem be solved). Hence the adjoint di!erential equation
by itself cannot be used to determine the physical #uxes from the prescribed distribution of optical
properties and physical boundary conditions.

The preceeding observations demonstrate that the adjoint is calculable for non-zero physical
#uxes exiting the boundaries. The tri-diagonal solver can fail or may incur large numerical errors
when the absorption and optical depth in the medium become large. The numerical behaviour of
the global adjoint re#ection and transmission functions (23a)}(23d) is worthy of note under these
conditions. These functions are related to those of the physical #ux by a simple exchange of
parameters: p

1
Pp

2
and p

2
Pp

1
. The consequence is that R and T can become negative, or

exceed unity, and in the limit of complete absorption, all approach zero. The components of
Eqs. (22a) and (22b) that do not contain F

i`1
or F

i~1
will be termed adjoint sources, as they are

produced in response to the delta function stimulus and constitute the inhomogeneous solution to
(18). This stimulus is applied at position z

0
. The adjoint source will not be zero if z

0
does not lie

within the (z
i
, z

i`1
) interval. As long as z

0
is less than z

i
, the step functions will be unity, and the

components of the exponential matrix ei
l,m

will be present. These elements are unbounded and can
lead to numerical instability.

Although the aforementioned analyses may suggest that there is no advantage to using the
adjoint solution, the following considerations must be borne in mind: (a) the purpose of the adjoint
is not to calculate the #uxes directly, but to be used as a device to de"ne #ux perturbations,
(b) failure of the adjoint is caused by strong absorption. However, when absorption dominates,
multiple scattering is minimal and the complexity of the radiative transfer problem for determining
the #uxes is reduced signi"cantly, as will be shown in Section 5, (c) when multiple scattering
prevails in a medium, even if the latter is optically thick, tests show that the adjoint #ux can be
calculated without numerical di$culties. To complete this section, Eqs. (22a) and (22b) can be
factored in terms of R(z), T(z) and the Heaviside function H(z) in preparation for use in
perturbations. The result is

F`
0,i
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0
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i
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i
(z)#(ei
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), (25a)
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(z!z

0
)h~)H(z!z

0
). (25b)

One "nal shorthand notation will be employed in the development of the perturbation method
by de"ning the adjoint source functions in (25a) and (25b) in terms of two functions, h1

i
(z) and h2

i
(z)

given by

h1
i
(z)"(ei

2,2
(z!z

0
)h`#ei

1,2
(z!z

0
)h~)H(z!z

0
), (25c)

h2
i
(z)"(ei

2,1
(z!z

0
)h`#ei

1,1
(z!z

0
)h~)H(z!z

0
). (25d)

4. Perturbations

The prescription for calculating perturbations to the base state is contained in (1). It is now
a matter of carrying through the integrations required by the "rst-order correction term:

*F(z
0
)"SF

0
, *¸F

0
T. (26a)
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For multi-layer media, the integral implied in (26a) is replaced by the sum

*F(z
0
)"

N
+
i/1
P
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(F
0,i

, *¸
i
F

0
(z)) dz. (26b)

The integrand of the ith term may be expanded as follows:

F
0,i

(z)*¸
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2
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2
(z), (26c)

where the expressions for the % terms are:
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The integrals of %i
1

and %i
2

required for the perturbations are associated with the base
state. These integrals were evaluated manually and checked for algebraic correctness using
Mathematica [10]. The transition operator is de"ned as

*¸
i
"A

!dci
1

dci
2

!dci
2

dci
1
B, (28a)

where

dci
1
"ci

1,&
!ci

1,"
, (28b)

dci
2
"ci

1,&
!ci

2,"
. (28c)

The subscripts f and b in (28) refer to the "nal and base state, respectively. From (26c), it is seen that
the "rst-order correction to the #ux requires two multiplications and one addition per layer.
Computational e$ciency is achieved by calculating the base state only once at the required levels
and storing the results in a database for subsequent use. The possibility of improving the accuracy
of the "rst-order correction has been demonstrated in [1]. The correction, suggested by Box et al.
[6] is

F(z)"F
0
(z) expC

!*F(z)
F
0
(z) D (29)

and is applicable to the multi-layer case. A Taylor expansion of (29) recovers the "rst-order result.
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The neglect of higher-order terms in (1) on the approximation can only be ascertained through
numerical experimentation. Two issues that such experimentation may help resolve are those
connected with the domain of applicability of (29) and to what extent conservation of energy may
be violated. Such violation is not surprising even for the linear approximation, since only the "rst
term of an in"nite series in (1) is retained. For the application at hand, namely broadband
computations in the presence of absorption, the perturbation method in concert with selection
rules described in Section 5, has been found useful.

In the formulation presented, the perturbations only involve the attenuation matrix and not the
sources. It is possible to incorporate changes in the latter that results in a physically more correct
approach to the problem as indicated in Eq. (1) of Gabriel et al. [1]. The "rst term, SF

0
Q

&
T,

requires the source function of the "nal state. While this is easily formed, and an analytic expression
for the ith layer can be written, the computational expense is high because every layer requires the
evaluation of several coe$cients and two exponentials that are functions of the "nal state. Because
the results obtained without the inclusion of source term perturbations are promising, and because
the evaluation of these terms adds signi"cantly more computational burden, source term perturba-
tions will not be pursued further.

5. Selection rules

The development of a rule-based algorithm to accelerate broadband radiative transfer calcu-
lations is an alternative to general purpose algorithms. For example, by examining the optical
properties of atmospheres generated by the k-distribution method, a set of simple rules can be
formulated that specify under what conditions full two-stream calculations are necessary, and
under what conditions the direct beam solution is su$cient. This heuristic approach is a com-
promise that trades generality for speed with a possible reduction in accuracy. As such, facility in
selecting the parameters described below that set the rules is, to some extent, a trial and error
process.

Fig. 2 illustrates the optical properties of a typical midlatitude summer atmospheric pro"le for
the cloudless sky calculated by the Fu and Liou k-distribution model [9]. The "rst column shows
the variation in q

4
, q

%
and u

0
as functions of altitude for the region of the spectrum extending from

50000 to 14 500 cm~1 (band one). The second and third columns display the same information
except that they represent data in the 14 500}7700 and 7700}5250 cm~1 (bands two and three,
respectively). In band one, there are three radiatively important gases: nitrogen, oxygen and ozone.
Nitrogen and oxygen give rise to molecular or Rayleigh scattering. Ozone is an absorbing gas.
Therefore q

4
is equal to only the sum of the scattering cross sections of nitrogen and oxygen. The

extinction, being the sum of the absorption and the scattering cross sections of the three gases,
exhibits large variation due to the rapid change of the ozone absorption cross section with
frequency.

With reference to Fig. 2, in the "ve sub-bands of band 1 that are circled, the single-scattering
albedo is near unity (u

0
'0.975) below 15 km and the extinction optical depths increase with

decreasing altitude. The direct solar radiation su!ers little attenuation above 15 km. Below this
altitude, q

4
+q

%
'0.001. These conditions make necessary the calculation of the di!use #ux. The

threshold of 0.001 is indicated by the broken line in the "rst row of Fig. 2. In the remaining
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Fig. 2. Pro"les of clear sky optical properties for the "rst three bands generated by the Fu and Liou k-distribution
method. The plots show variations of the scattering optical depth, extinction optical depth and single-scattering albedo
with altitude. The bundled curves in band one do not satisfy the threshold criteria used in the selection rules. The
thresholds were set to u

T
"0.975 and q4

T
"0.001 (vertical dotted line in the topmost plots). Selection rule violations

occur in the lower atmosphere (below 10 km). The other curves in band one (or the sub-bands), satisfy the selection rule
criteria, the need to perform the normally required, detailed multiple-scattering calculations is eliminated. In bands two
and three the selection rule criteria are satis"ed. For example, even though the single-scattering albedo can exceed that
speci"ed by u

T
above 6 km, the scattering optical depth is less than q4

T
. Below 6 km, u(u

T
. Thus, multiple scattering

will not contribute to either the upwelling or downwelling #uxes signi"cantly. The selection rules criteria are satis"ed
everywhere for bands four to six. The optical pro"les for these bands are not shown.
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sub-bands, u
0

decreases while q
%

increases. The attendant reduction of q
4

diminishes the
importance of multiple scattering, as the radiative transfer is dominated by absorption. In
columns two and three, the active absorber is water vapour. The scattering cross sections decrease
according to Rayleigh's law as the inverse fourth power of the wavelength. The scattering cross
sections also decrease rapidly with altitude as may be seen from Fig. 2. The re#ected and
transmitted #uxes are then determined by the optically thin regime, wherein di!use #uxes essential-
ly rise from "rst order scattering and are dependent only on q

4
. Similar considerations apply also to

band 3.
In the continuum bands where u

0
is small (smallness here must be placed within the context of

a speci"c application), the optical depth alone determines the accuracy of the #uxes (assuming
that the asymmetry factor here is g"0). In the limit of zero u

0
, there is no multiple scattering.

As u
0

increases from zero, the contribution by multiple scattering to the #uxes increases,
reaching some asymptotic limit at a rate determined by q

%
. An examination of the optical

properties of several atmospheres produced by the k-distribution shows that most of the
contribution to the re#ected #uxes is attributable to bands 1 and 2. These tendencies suggest
that detailed radiative transfer calculations of #uxes need not be carried out for all bands. Instead,
the direct beam will be the main contribution if the following conditions are met in an N layer
medium:

N
+
i/1

(q4
i
(q4

T
Xu

i
(u

T
)"N. (30)

The quantity in parentheses is a logical operation that returns unity if the condition indicated is
true for the ith layer. Otherwise a zero is returned. Control over the logical condition is exerted by
the selectable thresholds q4

T
and u

T
. By summing the returned values over all layers, the optical

properties can be catagorized. If the sum equals the number of layers, then the medium is either
everywhere weakly scattering, everywhere strongly absorbing or both strongly absorbing and
weakly scattering. These conditions disfavour full two-stream calculations to the extent determined
by the thresholds. A single violation of the logical condition ensures that a full two-stream
calculation will be performed. In all of the results to be presented, the scattering optical depth
q4
T

was set to 0.001 while u
T

varied as indicated.
To test the ideas just described, broad band #uxes computed using the selection rule method

included into a two-stream model were compared against those obtained by a standard two-stream
solver which computes a full two-stream solution for each of the 54 sub-intervals of the Fu and
Liou k-distribution model [9] in a 30 layer atmosphere whose pro"le of optical properties were
speci"ed by the Colorado State University (CSU) global circulation model (GCM). This latter
calculation is considered here as the benchmark, or `trutha. The results of these calculations are
presented in Fig. 3a. Illustrated are the upwelling and downwelling broadband #uxes and the #ux
divergences for clear sky, overhead sun and no surface re#ection for two extremely di!erent
thresholds of u

T
. Fig. 3b. illustrates the di!erences (in W m~2) between the true and approximate

results. In general, the pro"les of the #uxes and the #ux divergences can be seen to be in excellent
agreement.

Figs. 3c, d and e, f show the e!ect of introducing a Lambertian lower re#ecting surface with an
albedo, R

g
"0.2. In the case when full two-stream calculations are not required, the contributions
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Fig. 3. (a) Three plots compare broadband upwelling and downwelling #uxes and the derived #ux divergence calculated
from full up multiple-scattering calculations to those calculated using selection rules in combination with a standard
two-stream solver for the clear sky. The threshold for the scattering optical depth was set to 0.001. The thresholds for
u

T
were set to 0.001 and 0.975. Zero di!use radiation was incident on either the upper or lower boundaries and the sun

was placed overhead. The atmosphere was speci"ed by the CSU GCM and partitioned into 30 layers. (b) Absolute
di!erences between upwelling #uxes, downwelling #uxes and #ux divergences calculated from full up multiple-scattering
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calculations (Fig. 3a) and those calculated from selection rules in combination with standard two-stream solvers.
Thresholds and boundary conditions as in Fig. 3a. (c) As in Fig. 3a but with an isotropically re#ecting lower surface with
R

g
"0.2. (d) Absolute errors in the upwelling #uxes, downwelling #uxes and #ux divergence computed from Fig. 3c.

(e) As in Fig. 3a but with an isotropically re#ecting lower surface with R
g
"0.2 and solar zenith angle of 603. (f ) Absolute

errors in the upwelling #uxes, downwelling #uxes and #ux divergence computed from Fig. 3e.
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Fig. 3. (continued )
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to the upwelling #uxes by surface re#ection can be approximated in two ways. The "rst uses the
direct radiation that impinges on the re#ecting boundary, multiplies it by R

g
, and then attenuates

the result by weights Exp(!qi
%
) of the ith layer. The product of these weights yields the upwelling

#ux contribution at all positions throughout the medium.
The other approximation is cruder, faster and is based on the assumption that the gases (and

clouds) in the lower atmosphere are strongly absorbing when the selection criterion applies. In this
case, the magnitude of the direct beam is small. The extent of the attenuation is a strong function of
the slant path of the solar radiation. The larger the solar zenith angle, h

0
, the smaller will be the

magnitude of the direct beam. Therefore, the simplest correction is to ignore the attenuation of the
re#ected upwelling #ux of the ith layer and to treat the re#ected radiation as a constant throughout
all the layers. Fig. 3c shows the accuracy that can be obtained when the sun is overhead (h

0
"03).

Fig. 3d shows the errors as a function of u
T
. Note that the broadband #uxes are calculated with

accuracy, while the #ux divergences at the lower boundary of the atmosphere exhibit some errors.
The results obtained in Figs. 3e and f show how the errors in the #ux divergences are reduced for
large h

0
(here h

0
"603).

Other atmospheres studied yielded results comparable to those shown here. Of the 54 indepen-
dent two-stream calculations that appear to be required, the selection rule method speci"ed the
need for only "ve di!use calculations. The computational speed increase was just under a factor
of 7. Changing u

T
from a value of 0.975}0.01 increased the number of calculations to 15 and

decreased the computational gain to a factor of 3.5. The improvement in accuracy in the #ux
divergences is, however, negligible with this change in the albedo threshold. For the case of the
overhead sun (or small solar zenith angles) and strongly re#ecting lower surface, the smaller
single-scattering threshold gives the greatest accuracy, as expected.

The selection rule method makes use of the extent of absorption and "rst-order scattering in an
atmosphere to decide whether the di!use #ux is to be calculated. When clouds are present and the
selection rule method applies, its e!ectiveness depends on the location of the clouds. If the clouds
are situated within the lower atmosphere, the e!ect of gaseous absorption is to reduce the amount
of direct radiation entering its boundaries in nearly all the sub-bands. Photons will not only be
strongly absorbed by the interstitial gas, but by the cloud particles as well. At higher altitudes
similar principles apply, however, the lower concentrations of absorbing gases increases the
amount of energy reaching these clouds. Since the scattering optical depth of the cloud is much
greater than that of the clear atmosphere, the determining factor that turns on or o! full
two-stream calculations is u

T
.

If u
T

is small, then small computational gains are realized, but high accuracy is attained. If u
T

is
too large, then speed will be obtained, but the accuracy of the broadband #uxes and #ux
divergences eroded. Large errors in the #ux divergences can be caused by small errors in the di!use
#uxes because the #ux divergences are computed as di!erences between #uxes entering and leaving
a layer divided by the layer thickness. Smaller values of u

T
may be required if accurate calculation

of the #ux divergences is the primary goal. The e!ect of reducing u
T

is to increase the accuracy of
the computed internal #uxes. In applications that do not require heating rates such as in surface
energy budgets, where only the surface #ux is required, larger u

T
may be tolerable, if computa-

tional speed is important.
Broadband #uxes and #ux divergences calculated by the selection rule method are compared to

those computed from standard two-stream solver for an atmosphere containing a layered cirrus
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Fig. 4. (a) Comparison of broadband upwelling and downwelling #uxes and the derived #ux divergence calculated from
full up multiple scattering calculations to those calculated using selection rules in combination with a standard
two-stream solver. A cirrus cloud extending from 12 to 13 km was embedded in the atmosphere used to calculate Fig. 1a.
In band one the optical depth of this cloud was 3.7. The threshold for the scattering optical depth was set to 0.001. The
thresholds for u

T
were set to 0.920, 0.950 and 0.975. Zero di!use radiation was incident on either the upper or lower

boundaries and the sun was placed overhead. (b) Absolute errors in the upwelling #uxes, downwelling #uxes and #ux
divergence computed from Fig. 4a.

cloud in Figs. 4a and b. In these tests, the surface was non-re#ecting and h
0

was 03. The
atmospheric pro"le was generated, as in the examples just discussed, by the CSU GCM. The
cirrus cloud extends from 12 km (209 mb) to 13 km (179 mb) and has a scattering optical depth
of 3.7 in band one. The extinction optical depth varies as a function of the wavelength due in part
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Fig. 5. (a) Comparison of broadband upwelling and downwelling #uxes and the derived #ux divergence calculated from
full up multiple scattering calculations to those calculated using selection rules in combination with a standard
two-stream solver. A water cloud extending from 3 to 4 km was embedded in the atmosphere used to calculate Fig. 1a. In
band one the optical depth of this cloud was 3.7. The threshold for the scattering optical depth was set to 0.001. The
thresholds for u

T
were set to 0.920, 0.950 and 0.975. Zero di!use radiation was incident on either the upper or lower

boundaries and the sun was placed overhead. (b) Absolute errors in the upwelling #uxes, downwelling #uxes and #ux
divergence computed from Fig. 4a.

to the presence of water vapour and ozone, hence is sub-band dependent. The asymmetry factor is
also sub-band dependent and is de"ned as an appropriate mixture of Rayleigh and cloud particle
asymmetry factors. Of the normally required 54 radiative transfer calculations, 32 or 29
full two-stream calculations were performed using u

T
"0.920 and 0.975, respectively, with
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corresponding compuational gains of 1.68 and 1.84. It was surprising that when u
T
"0.95, the

number of full two-stream calculations was equal to that of the u
T
"0.920 threshold.

Similar results for low-level water clouds are presented in Figs. 5a and b. The setup is for
a single-layer cloud extending between 3 to 4 km or between 710 and 628 mb, overhead sun and no
ground re#ections. The accuracy of the #uxes increases with decreasing u

T
as is also evident

from Fig. 5b. The computational gains are 2.13, 2.42 and 3.29 corresponding to u
T

values of 0.920,
0.950 and 0.975, respectively. Fluxes are calculated accurately for all values of u

T
(the largest

relative error in the upwelling #ux is 3%, in the downwelling #ux it is under 2%) while the #ux
divergence for u

T
"0.975 su!ers an error exceeding 30%. Thus the #ux divergence is calculated

poorly, but #uxes at the boundaries may be of acceptable accuracy for certain applications. The
inclusion of surface re#ections did not a!ect the accuracy of the computed #uxes perceptibly.
Increasing the solar zenith angle to 603 also did not signi"cantly change the nature of the
comparisons.

6. Adjoint perturbations with selection rules

This section describes the adjoint perturbation method used in conjunction with selection rules.
These computational acceleration methods compliment each other: selection rules as de"ned in
this paper cannot account for multiple scattering, while stability considerations restrict the
perturbation approximation to media characterized by a high degree of multiple scattering. It is
however the selection rule method that orchestrates the broadband calculation. Even so, there is an
issue that concerns the optimal selection of the base states. Given that the selection speci"es the
sub-bands where a full multiple-scattering treatment is required, it is neccessary to select perhaps
one or two of these sub-bands to carry out the perturbations for that (entire) band. It has been
observed that the attainable accuracy depends on the selection of base states. In the case of the clear
sky, that dependence is weak. For the cloudy sky, it may be signi"cant. To explore some of these
issues, this section "rst shows the dynamic range of the perturbations that can be accommodated
followed by an example application where broadband calculations are performed for the con-
tinuum.

Table 2a depicts the optical properties of a hypothetical, vertically inhomogeneous 19 layer
medium used to produce the results discussed below. The benchmark #uxes and the perturbed
#uxes are given in Table 2b. Calculations were performed for overhead sun and a surface re#ection
of 0.2. No di!use radiation entered the upper boundary, and the incident, direct radiation was set
to unity. The scale factors indicated, multiply both the extinction and scattering coe$cients. Scale
factors of unity de"ne the base state. For example, when the scale factor is 1.25, the base state
extinction and scattering coe$cients are multiplied by that factor, and the adjoint perturbation
calculates the #uxes for this new optical pro"le from the base state. The asymmetry factors of the
base state were maintained in the perturbations.

6.1. Monochromatic yux calculations with adjoint perturbations

To begin this discussion, it will be observed that the upwelling #ux in layer 2 is negative (see
Table 2b with scale factor"1.0). This is not an error, but occurred as a result of the violation of the
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Table 2a

Layer z
l

z
h

p
%

p
4

g

01 00.0 01.0 0.20000 0.19000 0.00
02 01.0 02.0 1.00000 0.09000 0.85
03 02.0 03.0 0.20000 0.19000 0.00
04 03.0 04.0 0.15000 0.14900 0.00
05 04.0 05.0 0.15000 0.14900 0.00
06 05.0 06.0 0.15000 0.14900 0.00
07 06.0 07.0 3.00000 2.99999 0.85
08 07.0 08.0 0.15000 0.14999 0.00
09 08.0 09.0 0.15000 0.14999 0.00
10 09.0 10.0 0.15000 0.14999 0.00
11 10.0 11.0 0.10000 0.09999 0.00
12 11.0 12.0 0.15000 0.14999 0.00
13 12.0 13.0 0.10000 0.09999 0.00
14 13.0 14.0 0.10000 0.09999 0.00
15 14.0 16.0 0.05000 0.04999 0.00
16 15.0 16.0 0.05000 0.04999 0.00
17 16.0 17.0 0.05000 0.04999 0.00
18 17.0 18.0 0.05000 0.04999 0.00
19 18.0 20.0 0.05000 0.04999 0.00

Optical properties of an arti"cial 19 layer atmosphere containing two clouds in layers
2 and 7. This data set constitues the base state for the adjoint perturbations used to
compute the #uxes in Table 2b and to compute #uxes in Fig. 7. Parameters z

l
and

z
h

specify the position of the lower and upper levels of the ith layer.

Table 2b

z F`
536%

F`
1%35

F~
536%

F~
1%35

Scale factor"0.50

19.999990 0.36110 0.32420 1.00000 1.00000
18.000010 0.34935 0.32303 0.99884 0.98823
17.000010 0.34325 0.32158 0.99739 0.98211
16.000010 0.33700 0.31959 0.99541 0.97586
15.000010 0.33061 0.31708 0.99291 0.96946
14.000010 0.31742 0.31064 0.98647 0.95626
13.000010 0.30370 0.30244 0.97827 0.94253
12.000010 0.28948 0.29264 0.96847 0.92831
11.000010 0.26727 0.27527 0.95111 0.90609
10.000010 0.25192 0.26212 0.93795 0.89073
09.000010 0.22810 0.24030 0.91614 0.86690
08.000010 0.20340 0.21631 0.89214 0.84220
07.000010 0.17789 0.19044 0.86627 0.81668
06.000010 0.11567 0.11852 0.79435 0.75445
05.000010 0.08646 0.08561 0.76094 0.72457
04.000010 0.05682 0.05205 0.72686 0.69430
03.000010 0.02675 0.01794 0.69222 0.66366
02.000010 !0.01154 !0.02591 0.64281 0.62022
01.000010 0.01788 0.02171 0.25163 0.32475
00.000010 0.00000 0.00000 0.22661 0.30439
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Table 2b (continued )

z F`
536%

F`
1%35

F~
536%

F~
1%35

Scale factor"1.00

19.999990 0.54263 0.54263 1.00000 1.00000
18.000010 0.53214 0.53214 0.98947 0.98947
17.000010 0.52604 0.52064 0.98334 0.98334
16.000010 0.51939 0.51939 0.97668 0.97668
15.000010 0.51224 0.51224 0.96950 0.96950
14.000010 0.49648 0.49648 0.95372 0.95372
13.000010 0.47897 0.47897 0.93619 0.93619
12.000010 0.45968 0.45968 0.91705 0.91705
11.000010 0.42853 0.42853 0.88570 0.88570
10.000010 0.40606 0.40606 0.86322 0.86322
09.000010 0.37029 0.37029 0.82743 0.82743
08.000010 0.33234 0.33234 0.78946 0.78946
07.000010 0.29252 0.29252 0.74962 0.74962
06.000010 0.17874 0.17874 0.63581 0.63581
05.000010 0.13244 0.13244 0.58810 0.58810
04.000010 0.08561 0.08561 0.54002 0.54002
03.000010 0.03830 0.03830 0.49164 0.49164
02.000010 !0.02112 !0.02112 0.42362 0.42362
01.000010 0.01904 0.01904 0.09818 0.09818
00.000010 0.00000 0.00000 0.08552 0.08552

Scale factor"1.50

19.999990 0.64902 0.68825 1.00000 1.00000
18.000010 0.64440 0.67155 0.99531 0.98322
17.000010 0.64023 0.66234 0.99110 0.97397
16.000010 0.63494 0.65260 0.98577 0.96419
15.000010 0.62860 0.64234 0.97940 0.95389
14.000010 0.61310 0.62038 0.96385 0.93189
13.000010 0.59426 0.59655 0.94497 0.90813
12.000010 0.57255 0.57134 0.92323 0.88277
11.000010 0.53547 0.53069 0.88611 0.84210
10.000010 0.50823 0.50203 0.85884 0.81340
09.000010 0.46426 0.45695 0.81483 0.76828
08.000010 0.41724 0.40970 0.76777 0.72100
07.000010 0.36778 0.36057 0.71828 0.67184
06.000010 0.21770 0.21887 0.56817 0.53012
05.000010 0.16201 0.16366 0.51036 0.47287
04.000010 0.10605 0.10798 0.45260 0.41546
03.000010 0.04985 0.05187 0.39493 0.35792
02.000010 !0.01965 !0.01794 0.31464 0.27749
01.000010 0.00508 0.00376 0.03123 !0.00413
00.000010 0.00000 0.00000 0.02528 !0.00854

This table explores the dynamic range that the adjoint perturbation method can accomo-
date for the base-state pro"le given in Table 2a for selected scale factors. True upwelling
#uxes F`

536%
and downwelling #uxes F~

536%
are compared to those calculated by the adjoint

perturbation method F`
1%35

and F~
1%35

, repectively, when both the extinction coe$cients
p
%

and the scattering coe$cients are multiplied everywhere by the indicated scalefactor.
The boundary conditions specify no surface re#ections and no di!use #ux entering the
upper boundary. The solar zenith angle was set to 0 degrees.
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positivity requirements described in Section 3 for that layer. This may bring into question the
accuracy of the base-state #uxes, since these are obtained from a coupled system of equations, and
the manner by which errors are distributed is unknown. But it is not the absolute accuracy of the
base-state #uxes that is the focus of this section, rather the focus is on comparing the approximated
#uxes to the true #uxes. The negative #ux result will not a!ect the comparisons because the adjoint
coe$cients reproduce the physical #uxes exactly at all locations in the medium, even if they are
negative. As long as the two-stream model entering into the calculation of the adjoint and physical
#uxes is identical, the computed #uxes will be identical. Fig. 6a shows the absolute di!erences
between the true #uxes and those calculated using linear and exponential corrections to the
base-state #uxes. The #ux at the top of the atmosphere was set to one unit. The exponential
corrections were calculated by using Eq. (29). Also, shown are the true #ux divergences and their
absolute di!erences from those calculated using the aforementioned corrections to the base-state
#uxes. The upwelling #uxes appear to be calculated accurately (with errors lying between #0.06
and !0.06) for scale factors spanning the range 0.50}1.75. A more quantiative assesment can be
made by examining the relative errors shown in Fig. 6b. Perturbations between 0.85 and 1.12 cause
the upwelling #uxes calculated by linear corrections to the base state to be in error by less than
10%. In fact, the situation is much better than this because the true #uxes below 6 km are less than
0.1. By comparison, exponential corrections to base-state #uxes cause the error to be less than 10%
below the region where the cloud is situated for scale factors in the range 0.25}0.85. For the
upwelling #uxes, the linear correction works well when the deviations from the base state are small
or if the medium is everywhere optically thin, in which case large perturbations can be ac-
comodated. Similar considerations apply to exponential corrections, except that the range spanned
by the perturbations in the optical properties where good accuracy (less than 10%) is obtainable, is
extended. Downwelling #uxes are calculated more accurately than the upwelling #uxes for both
linear and exponential corrections. This is consistent with the "ndings reported by Gabriel et al. [1]
for the single-layer medium. The linear correction is more accurate when the optical thickness of
the layers constituting the medium is reduced. The exponential correction extends greatly the range
of the perturbations, favouring increasing departures in the optical depth from the base state. For
the #ux divergences, only di!erences between the benchmarks and those derived by the linear and
exponential corrections to the base state #uxes are shown. The reason for not showing the relative
errors is that the plots appear very busy due to the possibility of the #ux divergences going
negative, complicating interpretations. In any case, the signi"cance of accuracy in the #ux
divergences becomes a moot point, only resolvable by global circulation or single-column models
of the atmosphere.

A "nal example that explores the di!erences between linear and exponential corrections to the
base-state #uxes is illustrated in Fig. 7. Here, the #uxes were calculated using the data in Table 2a.
Instead of perturbing both the extinction and scattering coe$cients by the same, constant scale
factor, the extinction coe$cient was left unchanged and only the scattering coe$cient of layer two
was multiplied by the scale factors shown. This hypothetical example introduces a large amount
of absorption in the "nal-state optical pro"le. This tests the accuracy of the physical #uxes
calculated by the adjoint perturbation method when the base state is characterized by weak
absorption and shows how errors in #uxes propagate to the other layers. The relative errors in the
upwelling #ux are less than 10% at all locations for linear corrections to the base-state #uxes
when the scattering coe$cient is multipled by scale factors less than three (the base state scattering
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Fig. 6. (a) These graphics explore the sensitivity of #uxes calculated by the adjoint perturbation method to large
departures from the base-state optical properties. The sensitivity is expressed in terms of an absolute error, calculated as
the di!erence between #uxes obtained from a standard two-stream solver and #uxes computed from the adjoint
perturbation method. Also shown are the exponential corrections to the base state #uxes discussed in the text. The scale
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factor that labels the ordinate indicates the multiplicative factor applied to both the exinction and scattering coe$cients.
(b) Comparison of the relative errors in the upwelling and downwelling #uxes computed from Fig. 6a for linear and
exponential corrections to the base-state #uxes.
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b

Fig. 7. These graphics explore the sensitivity of #uxes calculated by the adjoint perturbation method to large local
departures from the base-state optical properties. The atmospheric pro"le given in Table 2a is perturbed only in the
second layer by maintaining the given extinction coe$cient but multiplying the scattering coe$cient by the indicated
scale factor. Sensitivity is expressed in terms of a relative error. Also shown are the exponential corrections to the
base-state #uxes discussed in the text. The scale factor that labels the ordinate indicates the multiplicative factor applied
to both the exinction and scattering coe$cients.

coe$cient for layer 2 is 0.09). The exponential correction to the base-state upwelling #uxes
yields results that are similar to those using linear corrections. However, the exponential
corrections constrain the propagation of errors. The improvement is dramatic for the downwelling
#uxes, where the relative errors fall under 10% everywhere for perturbations exceeding a factor
of eight.

6.2. Synthesis of broadband yuxes

Broadband calculations performed for the clear sky, which use both selection rules and adjoint
perturbations, have been performed on test cases using optical pro"les identical to those used in the
calculation of Figs. 3}5. The selection rule threshold for u

T
was set to 0.975, requiring a total of "ve

full radiative transfer calculations, all in band one (see Section 4). Numerical experiments showed
that broadband #uxes and #ux divergences exhibit a small sensitivity to the base state. The result of
one experiment is illustrated in Figs. 8a and b for overhead sun and an absorbing surface. Two
comparisons against the benchmarks are shown: #uxes calculated by selection rules in combination
with the adding method and #uxes computed by combining the adjoint perturbations with the
selection rule method. In all cases the results are in good agreement. Increasing the surface
re#ection to 0.2 (Figs. 9a and b) but maintaining the solar zenith angle (h

0
"03) yields slightly

diminished accuracy. The quantity most a!ected is the upwelling #ux. It will be observed that the
selection rules method is slightly more accurate than when it is used with adjoint perturbations. In
fact, errors in the #uxes computed using the latter technique are attributable to the selection rule
method and the way it treats surface re#ections as seen in Figs. 10a and b which applies to the case
of h

0
"603. Errors in the computed #uxes for the case of an oblique sun are substantially smaller

than in the overhead sun case for the reasons discussed in Section 4. Errors introduced by the
adjoint perturbations are comparable to or smaller than those introduced by the selection rule
method operating in combination with the adding method. Although only three calculations
involving perturbations are required for the case given, the bands where the perturbations are
performed contain a great deal of energy and thus contribute signi"cantly to the broadband #uxes.

7. Summary and conclusions

This paper describes computationally e$cient techniques for solving two-stream spectral and
broadband #uxes in multi-layered media. The methods developed involve a perturbation approach
that requires a solution to the adjoint of the two-stream equation and a selection rule method that
determines when multiple-scattering solutions are required. The development of the adjoint
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Fig. 8. (a) Broadband #uxes for the clear sky calclulated by the adjoint perturbation method in combination with
selection rules and selection rules in combination with standard #ux solvers. The threshold u

T
"0.975. No di!use

radiation was incident on the boundaries of the atmosphere and the solar zenith angle was 03 or overhead sun. The
optical pro"les of the base state were supplied by the CSU GCM. (b) Absolute di!erences between the true and
approximate broadband #uxes calculated from Fig. 8a.

perturbation method proceeds in three stages: (1) The two-stream equations are solved analyti-
cally. The solution presented in this paper di!ers from that given by the standard adding approach
in that the #uxes can be calculated continuously at any point within the medium, not only at layer
interfaces. This formulation of #uxes is required for the evaluation of the perturbation integrals.
(2) The adjoint solution, which constitutes a part of the base state, is obtained. This is an operator
that has no simple physical interpretation. Unlike Greens function, the adjoint requires the
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Fig. 9. (a) As in Fig. 8a with the exception that the underlying surface albedo was 0.2. (b) Absolute errors in broadband
#uxes computed from Fig. 9a.
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Fig. 10. (a) As in Fig. 8a with the exception that the underlying surface albedo was 0.2 and solar senith angle was 603
(b) Absolute errors in broadband #uxes computed from Fig. 10a.
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solution of the physical #uxes for its determination. The practical consequence is that the adjoint is
susceptible to numerical instabilities for optically thick, absorbing media. Numerical experiments
suggest that the adjoint can be calculated accurately when multiple scattering prevails. (3) The
physical #ux and the adjoint #ux are used to calculate perturbations. The technique derives from
Eq. (1), and retains only "rst-order corrections to the base state. The latter consists of functions of
the starting optical properties and is computed only once. Transitions to the "nal, desired state are
accomplished via simple linear corrections. The aforementioned procedures lead to a semi-
analytical solution. The numerical component enters twice through the calculation of coe$cients
required by the #ux and adjoint. These coe$cients are found by a tri-diagonal solver. The
computational complexity of the adjoint is 2N2

L
, where N

L
designates the number of layers. The

problem associated with numerical instability was in large measure overcome by developing
selection rules. These rules can be used with either a standard two-stream solver or with adjoint
perturbations. The method is useful in broadband calculations and is based on the idea that if
absorption is dominant everywhere inside a medium, or if the medium is optically thin in all of its
layers, then multiple scattering can be turned o! and only the direct beam contribution need be
calculated. The accuracy is determined by selecting an u

T
and p

4
. If a layer is strongly absorbing or

weakly scattering, then a counter is incremented. This test is performed for all layers, and if the
count is equal to the number of layers, only the direct beam is calculated. The perturbation-
selection rules method has been applied successfully to atmospheres whose optical properties were
speci"ed according to the Fu and Liou's k-distribution model [9]. Based on the cases presented, we
conclude that: (1) For the clear sky, the relative accuracy attainable in the broadband #uxes (using
conventional adding) have been observed to be within 7% of the benchmark, while the computa-
tional gain was greater than an order of magnitude over the full up two-stream treatment. The
sensitivity of the broadband #uxes to the selection of the base state was low. (2) For the cloudy sky,
broadband #uxes show some sensitivity to the selection of the base state because the accuracy the
adjoint #uxes can be calculated is related to the amount of absorption. However, use of selection
rules with the conventional adding method yields gains spanning the range from 1.8 to nearly
a 7-fold increase in speed. The adjoint-perturbation technique has also been demonstrated in
a spectral application. In this application an entire atmospheric column, comprised of 19 layers was
shown to yield accurate #uxes when both the scattering and extinction coe$cients were everywhere
perturbed by (the same) factors spanning the range 0.5}1.75. In this series of numerical experiments,
multiple scattering was dominant. If the time taken for the computation of the base state is
excluded, computational gains of 12 were observed per radiative transfer calculation. This com-
putational gain assumes that #uxes are calculated at all layers, as they must if the conventional
approach is used. However, if #uxes are required at fewer positions, the compuational gains
increase. Unlike the standard adding method, the adjoint-perturbation method does not require
that #uxes be calculated simultaneously everywhere. The problem of selecting an optimal base
states for the cloudy atmosphere is the subject of ongoing research.
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