
Buzzword Compliance and OO – 1 –
02/08/99 Copyright © 1998, Essential Strategies, Inc. 10:33 PM

ACHIEVING BUZZWORD COMPLIANCE IN OBJECT ORIENTATION

David C. Hay
Essential Strategies, Inc
13 Hilshire Grove Lane

Houston, TX 77055
(713) 622-7400

[The first of two articles.]

The data processing industry in the nineties is sitting at the confluence of several important
trends. Information engineering represents the integration of the first three: (1) the
development of structured system development techniques, (2) the change in orientation
from program processes to data structure, and (3) the development of relational database
systems. It remains to take full advantage of the insights gained from a fourth: object
oriented programming and systems analysis.

Contrary to the publicity they have received, the techniques of object orientation do not
represent as much of a departure from the way things have been done in the past as their
proponents would suggest. As with many “revolutionary” changes in our industry, a large
part of the changes have simply been in vocabulary. This paper is a discussion of those
object oriented concepts which represent simply renamed extensions of information
engineering and relational database design, and those that represent radical departures
from them.

About information engineering

Information engineering was a logical extension of the structured techniques that were
developed during the 1970’s. Structured programming led to structured design, which in
turn led to structured systems analysis. These techniques were characterized by their use
of drawings (structure charts for structured design, and data flow diagrams for structured
analysis), both to aid in communication between users and developers, and to improve the
analyst’s and the designer’s discipline. Until about 1980, though, the drawings had to be
done by hand — significantly reducing their appeal to those who had to do them, and
reducing also their responsiveness to change. During the 1980’s, tools began to appear
which both automated the drawing of the diagrams, and kept track of the things drawn in
a data dictionary.

After the example of computer-aided design and computer-aided manufacturing
(CAD/CAM), the use of these tools was named computer-aided systems engineering
(CASE).

Even as CASE tools made it easier to create data flow diagrams to represent business
processes, it was clear that this didn’t really address what was needed to model a business.
Among other things, business processes had a tendency to change frequently. Systems
based on data flow diagrams were vulnerable to frequent changes. It became apparent,

Buzzword Compliance and OO – 2 –
02/08/99 Copyright © 1998, Essential Strategies, Inc. 10:33 PM

however, that the structure of business data did not change as much, and systems whose
architecture was based on this data structure tended to be more stable.

At the same time that data structure began attracting interest, relational theory and the
technology for implementing relational database management systems became practical.
The relational approach provided great flexibility and allowed systems to be developed
that would respond to future requirements not anticipated when the system was built.

In 1976 Peter Chen developed the first version of data (“entity/relationship”) modeling,1

and numerous alternative versions of data modeling have followed. Data modeling soon
replaced data flow modeling as the technique of choice for understanding a business.

One of these versions of data modeling techniques is the Oracle Method (previously called
“CASE*Method”). Figure 1 is an example of a data model using this notation. It asserts
that a PURCHASE ORDER must be either to a PERSON or to an ORGANIZATION, and may be
composed of one or more LINE ITEMS, each of which must be for an ITEM FOR SALE. An
ITEM FOR SALE must be either a PRODUCT or a SERVICE.

to

PURCHASE

ORDER

LINE ITEM

PRODUCT

to

recipient of

part of

composed of

for

bought
via

ORGAN-

IZATION

PERSON

. Unit Price

. Actual Unit Price

recipient of

SERVICE

ITEM FOR SALE

Figure 1: A Data Model

Data modeling supported the relational approach, and information engineering supported
data modeling.

One problem, however, is that, as defined in information engineering, the functional side
does not have the thoroughness and rigor of the data side. Information engineering and
relational theory provide clear guidance as to how to translate a data model into a
database design, but, aside from suggesting that modules are derived from business
functions, it provides little guidance as to how to translate the function model into

1 Chen, P. P. “The Entity-relationship Model — Toward a Unified View of Data,” ACM Transactions
on Database Systems, 1,(1), 1976, pp. 9-36.

Buzzword Compliance and OO – 3 –
02/08/99 Copyright © 1998, Essential Strategies, Inc. 10:33 PM

program design. In the 1970’s Ed Yourdon’s and Larry Constantine’s principles of
structured design2 provided real guidance in defining modules, with rules for defining each
module’s use of data. Unfortunately, however, the rules were defined in terms of third-
generation programming languages, such as COBOL, FORTRAN, and Pascal, and the
rules don’t quite apply to fourth generation and other new application languages.

To some extent the Yourdon and Constantine structured guidelines are less necessary now
as well — at least as they were originally formulated. Where third generation systems
consisted of complex programs to be executed in sequence, modern systems consist of
databases that are hit asynchronously by many different kinds of (often simple)
transactions. Moreover, the code that used to make up the bulk of FORTRAN and
COBOL programs was concerned with the mechanics of input and output (now handled
by the database management system), so the remaining code to be defined in terms of the
business aspects of each transaction is relatively small.

The biggest use of the function hierarchy has turned out to be as a guide for designing
menu structures.

Still, programs multiply, even in this decade, and the lack of clear guidelines for defining
program structure has kept us from being as effective as designers as we should be.

Object Orientation

Enter object orientation. While part of the information systems community had been
pursuing systems analysis via entity/relationship diagrams, the programmers were
chugging along with structured design and confronted with the limitations it presented.
Somewhere along the line they picked up on some programming techniques developed
back in the 1960’s in the computer simulation world: They discovered that in
programming, if you organized the problem around the data being manipulated, instead of
around the processes being performed, your life became much easier. Languages such as
SmallTalk and C++ were developed specifically to support this.

As the name suggests, this approach treats the programming world as being composed of
objects, and objects of the same type may be grouped into classes. Program code is then
organized around these classes as class “behavior”.

In the last ten years or so, the object oriented programming world stuck its head up and
realized that perhaps they had something to say to the people who were analyzing
requirements. The requirements analysts could look at the world in terms of objects as
well, and perhaps their lives would also be made easier by virtue of this approach.3

2 Yourdon, E, and L. Constantine. Structured Design (Englewood Cliffs, New Jersey: Prentice-Hall,
1979).

3 For example, Rumbah, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented
Modeling and Design (Englewood Cliffs, New Jersey: Prentice-Hall, 1991).

Buzzword Compliance and OO – 4 –
02/08/99 Copyright © 1998, Essential Strategies, Inc. 10:33 PM

The problem is that the information engineers had already been doing this all along.

Object orientation’s classes, when applied to the business world, look suspiciously like
entities — defining things of significance about which we wish to hold information.
Object models, then, differ from data models only in their terminology and syntax. An
object class is equivalent to an entity, and an entity occurrence is an object.

An “object model”, then, is really an entity/relationship (data) model in disguise. The
advent of object orientation took the array of a dozen or so data modeling notations that
were available and added half a dozen more. Fortunately, Unified Modeling Language
(UML) has arrived on the scene to at least reduce the number of object modeling
notations. It remains to be seen whether it will replace data modeling overall.4

Now it should be said that while many concepts are similar with merely a change of
names, and some concepts in object orientation represent mere manipulations or
constraints on information engineering techniques, it is the case that some concepts and
approaches are truly new and different. Moreover, there is a difference in attitude
between the practitioners of information engineering and the more object oriented
practitioners. The rest of this article describes the superficial and serious changes, plus
that difference in attitude.

Terminology change

So, the object in the object oriented approach turns out to be not new at all. A model of
objects in a business is nothing other than a data model in new clothes. As described
above, where object orientation speaks of an object as a thing in the world (tangible or
intangible), and groups these things into classes, information engineering calls such a class
an entity (or, as some would have it, “entity type”). What the object oriented crowd calls
objects, information engineering calls occurrences of an entity. Entities and object classes
are equivalent. Entity occurrences and objects are the same thing.

Entity types and object classes both have attributes. The object oriented literature points
out that an attribute is defined for its class, whereas its value is assigned for each
occurrence (object). A particular object’s use of an attribute is also called an instance
variable.5

Data/Object model variations

Some aspects of object orientation reflect not changes to entity modeling itself but simply
additional constraints applied to it. Some of these constraints are already reflected in the
practices of many data modelers.

4 Hay, D. “UML Misses the Boat”, http://www.essentialstrategies.com/publications/modeling/uml.htm.

5 The terminology of the two approaches is brought together well in Schmidt, Bob. Data Modeling for
Information Professionals (Englewood Cliffs, New Jersey: Prentice-Hall PTR, 1999).

Buzzword Compliance and OO – 5 –
02/08/99 Copyright © 1998, Essential Strategies, Inc. 10:33 PM

First, while data modelers and relational database designers have argued for some time
about the virtue of system-generated unique keys, object oriented designers come down
firmly on the side of using them. All objects are identified uniquely by an internal key that
is not visible to the user. The database manager should be able to manage the data in such
a way as to allow the user to refer to objects in whatever way he or she chooses, without
having to know the identifier that maintains the internal integrity of the database.
Relational theory calls such an identifier artificial (a so-called “surrogate key”) and would
have all things identified by visible attributes, but the usefulness of system-generated keys
has been widely demonstrated, and the object oriented folks have made it official.

Object orientation extends data modeling with the concept of a “class variable”. Where
the value of an attribute of STUDENT is called by object orientation an “instance variable”,
the definition of a class object allows specification of a “class variable”, which describes
all students in the class. Information engineers have to put such an attribute into an
explicitly defined parent entity. In the STUDENT example, such an entity might be SCHOOL.

Certain patterns widely recognized in data models have special significance in the object
oriented world. Among them is the idea of aggregation. That is, each group must be
composed of one or more members. Many relationships are of this form, and the object
oriented theory has given it a name. Figure 2 shows the UML6 notation for aggregation,
as compared with that described by the Oracle Method.7 Aggregation presumes a
“nullify” referential integrity constraint. That is, if the parent is deleted, the child records
continue to exist. The “restricted” constraint, not allowing the parent to be deleted if
there are children, constitutes composition, also shown in Figure 2. The information
engineering approach treats referential integrity constraints as a separate topic, that may or
may not be shown explicitly on the model.

6 For example, as described in Fowler, M. UML Distilled: Applying the Standard Object Modeling
Language (Englewood Cliffs, NJ: Prentice-Hall, 1997), pp. 80–82.

7 Barker, R. CASE Method: Entity Relationship Modeling (Harlow, England: Addison-Wesley, 1990).

Buzzword Compliance and OO – 6 –
02/08/99 Copyright © 1998, Essential Strategies, Inc. 10:33 PM

Aggregation in UML

Entity/relationship model

part of

composed of
LINE ITEM PURCHASE

ORDER

LINE ITEM PURCHASE
ORDER

* 1

Composition in UML

LINE ITEM PURCHASE
ORDER

* 1

Figure 2: Aggregation

The concept of super-type and sub-type is important in object orientation, especially the
notion that entities inherit attribute and relationship values from their super-type. Object
models (like other kinds of data models) do not show this as overlapping symbols the way
the Oracle notation does, but as separate boxes with one to one “isa” relationships
connecting them. (See Figure 3.)

Whatever the notation, the attributes of ITEM FOR SALE would be inherited by PRODUCT

and by SERVICE, but the attributes of PRODUCT and SERVICE would not apply either to
ITEM FOR SALE, or to each other.

In UML, the reference to “complete” shows that, in this case, every occurrence of ITEM

FOR SALE is either an occurrence of PRODUCT or SERVICE. There are no other kinds of
ITEM FOR SALE. The “disjoint” means that PRODUCT and SERVICE are mutually exclusive.
That is, no ITEM FOR SALE can be both an PRODUCT and a SERVICE. These are the
constraints that always apply in the Oracle Method, but UML allows for other alternatives
to be possible. That is, the set of sub-types might not be exhaustive, and they may
overlap.

Buzzword Compliance and OO – 7 –
02/08/99 Copyright © 1998, Essential Strategies, Inc. 10:33 PM

ITEM FOR SALE

SERVICEPRODUCT

Oracle Notation

UML Notation

ITEM FOR
SALE

PRODUCT SERVICE

{disjoint, complete}

Figure 3: Inheritance

Object oriented literature adds to the language the concept of generalization and
specialization. If you have an entity which you subsequently decide to break into sub-
entities, you have “specialized” it. If you start with a group of entities which you decide
to group into a super-type, you have “generalized” it. It is not clear what adding these
terms to our vocabulary contributes to the discourse.

In this, by the way, the entity modeling of information engineering is closer to object
orientation than it is to the relational system developed from the models. While a data
model can represent the object oriented concept of sub- and super-types, a relational
database cannot. One way or another, a database designer must make compromises to
convert these hierarchical structures to relational tables: he or she must decide whether to
convert these to one or several tables.

On the other hand, object oriented programs, in theory at least, deal with inheritance from
super-types directly. That is “in theory”, since object oriented programming doesn’t
actually address database design issues at all. (More on this, below.)

One issue which is still controversial in the object oriented world is whether it is
appropriate to describe a sub-type as being a member of more than one super-type
(“multiple inheritance”). To do so is to assert that an object which is a member of the class
may be a member of more than one other class, potentially inheriting attributes from each.
Figure 4 shows that PERSON and ORGANIZATION are sub-classes of both CUSTOMER and
VENDOR.

The Oracle Method — as well as some object oriented theorists — does not permit
multiple inheritance. This is claimed by practitioners of the method to be unnecessary if
the problem is simply stated differently.

Buzzword Compliance and OO – 8 –
02/08/99 Copyright © 1998, Essential Strategies, Inc. 10:33 PM

CUSTOMER VENDOR

ORGANI-
ZATION

PERSON

Figure 4: Multiple Inheritance

For example, the situation shown in Figure 4 can be handled with better definitions of
entities and relationships: ORGANIZATION and PERSON are sub-types, but of something
called PARTY. PARTY, however, says nothing about the roles they play. A PARTY may be
both a VENDOR and a CUSTOMER: If it is a vendor in a PURCHASE ORDER, it is a vendor. If
it is also a customer in a SALES ORDER, it is also a customer. (See Figure 5.) It turns out
that “vendorness” and “customerness” are not characteristics of the entity itself, but of its
relationship to other entities.

ORGANI-
ZATION

PERSON

PARTYPURCHASE
ORDER

SALES
ORDER

to

from

vendor in

customer in

Figure 5: An Alternative to Multiple Inheritance

The attributes which in the multiple inheritance example are inherited by ORGANIZATION

from its being a VENDOR are more properly attributes of the PURCHASE ORDER, not of the
organization itself.

If need be, a SUPPLY ROLE, linking one or more PRODUCTS to a company, may be defined
where the “vendorship” exists without any purchase orders.

Buzzword Compliance and OO – 9 –
02/08/99 Copyright © 1998, Essential Strategies, Inc. 10:33 PM

Some object oriented languages support multiple inheritance, while others do not. Those
which do are very complex. It is easier to redefine the problem so that multiple inheritance
is not necessary.

This raises a point that is implicit in the way some authors address object orientation:
inheritance can be viewed as being not just from super-types but from any entity to which
the entity in question is related. For example, in Figure 6, a PURCHASE ORDER is described
not only by its own attributes but also by the attributes of the PERSON or ORGANIZATION to
which it is related. This is particularly important when dealing with default values. For
example, the “(standard) unit price” of a product is inherited by LINE ITEM, even though it
may be overridden by an “actual unit price”.

In general, object orientation presumes that the classification of objects into sub-types and
super-types is dynamic, and the facility for changing them should be available. In
relational databases, once a data structure has been defined to accommodate this structure,
it is not easy to change.

ORGANI-
ZATION

PERSONPURCHASE
ORDER

LINE ITEM
to

to

part of

for

recipient of

recipient of

bought
via

composed of

ITEM FOR SALE

SERVICEPRODUCT

Figure 6: Inheritance Across Entities

[Next month: New Concepts, Attitudes, and a Bibliography.]

