
Towards Timely ACID Transactions in DBMS

Marco Vieira1, António C. Costa2, Henrique Madeira1

1 CISUC - University of Coimbra, Polo II,

3030 Coimbra, Portugal
{mvieira, henrique}@dei.uc.pt

2 FC – University of Lisbon,

Lisbon, Portugal
casim@di.fc.ul.pt

Abstract. On-time data management is becoming a key difficulty faced by the
information infrastructure of most organizations. In fact, database applications
for critical areas are increasingly giving more importance to the timely
execution of transactions. Database applications with timeliness requirements
have to deal with the possible occurrence of timing failures, when the
operations specified in the transaction do not complete within the expected
deadlines. In spite of the importance of timeliness requirements in database
applications, typical commercial DBMS do not assure any temporal properties,
not even the detection of the cases when the transaction takes longer than the
expected/desired time. This paper discusses the problem of timing failure
detection in database applications and proposes a transaction programming
approach to help developers in programming database applications with time
constraints. The paper illustrates the proposed programming model with a
practical example using the Oracle 10g DBMS running a performance
benchmark for real-time database applications.

Keywords: Databases, transaction processing, performance, timely transactions

1 Introduction

Developing database applications with timeliness requirements is a very difficult
problem as current database technology does not provide easy programming support
that help engineers and programmers in dealing with timing issues. This is true for all
the programming layers of a typical database application: the database management
system (DBMS), the middle layer software (e.g., web-server, application-server, etc),
and the client application. Nevertheless, real database applications very often have to
cope with the possible occurrence of timing failures, when the operations specified in
a transaction do not complete within the expected deadlines. Without adequate
support to help designers and programmers to solve timing requirements, the
development of these applications is a very complex task.

The notion of time is completely absent from the classical DBMS transactional
model, which is based on the ACID properties (Atomicity, Consistency, Isolation, and
Durability) [1]. In this paper we discuss the problem of timing failure detection in

database applications and propose a transaction programming approach to help
developers in programming database applications with time constraints. According to
the timing requirements we classify database applications in different classes, namely:
traditional (no temporal requirements), fail-safe, time-elastic, and fail-operational. To
implement these classes we propose the following types of transactions, which
support different temporal requirements: transactions with no temporal requirements
(typical ACID transactions), transactions with strict temporal requirements, and
transactions with relaxed temporal requirements.

This paper proposes a new approach for transaction programming, which allows
concurrent detection of timing failures during execution, including for distributed
transactions. Timing failure detection can be performed at the database clients’
interface, in the database server, or in a distributed manner. An application
programming interface (API) that implements this new transaction programming
approach is provided. It can be used by database programmers to easily implement
applications with timeliness requirements. All source code, including an example of
utilization, is available at [http://gbd.dei.uc.pt/downloads.php] for public use.

The structure of the paper is as follows. The following section discusses the
problem of timing failure detection in database applications and proposes a
classification for database transactions and database applications. Section 3 proposes
a new transactions programming approach and presents the application programming
interface developed. Section 4 presents the experimental and Section 5 concludes the
paper.

2 Timeliness Requirements in Database Applications

In many situations timeliness is as important as correctness and atomicity. For
instance, in a database application designed to manage information about a critical
activity, e.g., air traffic control, a transaction that reads and stores the current reading
from a positioning radar must be executed in a short time (i.e., the longer it takes to
execute the transaction the less useful the reading is). In other words, in many
applications, a transaction that does not complete before a specified deadline becomes
useless and this situation must be reported to the application/business layer in order to
be handled in an adequate manner. But worse than becoming useless, the delayed
execution of a transaction can compromise safety properties of a system. In such
cases, the detection of a violated deadline would allow the execution of fall-back or
recovery actions, isolating and avoiding the propagation of the failure to other
components and, consequently, the occurrence of more severe failures.

Real-time databases have emerged some years ago. However, these databases have
been designed and implemented for very specific applications [2], [3]. To support
real-time applications, real-time databases relax the ACID requirements to allow
better support for temporal consistency while maintaining support for data
consistency [4], [5]. Semantic information is used to determine to what degree the
ACID properties must be enforced.

In real-time DBMS the ACID properties are normally applied only to parts of the
transaction. Nevertheless, important features such as timing failure detection or, more

generically, timing fault-tolerance, have been completely neglected, which also
restricts the application areas for such DBMS. The problem is even worse if we
consider the possibility of deploying distributed DBMS over wide-area or open
environments. Such environments exhibit poor baseline synchrony and reliability
properties, thus making it more difficult to deal with timeliness requirements.
Obviously, this uncertainty and lack of timeliness will directly affect the execution of
transactions, which, as an immediate effect, will be delayed. However, more severe
effects may also be observed on the account of timing failures.

The environments we consider in this paper can be characterized, essentially, as
environments of partial synchrony. In fact, their basic synchrony properties are only
cluttered from time to time, or by specific parts of the structure. Several partial
synchrony models have been proposed, with different solutions to address application
timeliness requirements. The idea of using failure detectors that encapsulate the
synchrony properties of the system was first proposed in [6]. The work in [7]
introduces the notion of Global Stabilization Time (GST), which limits the
uncertainty of the environment. The Timed model, proposed in [8], allows the
construction of fail-aware services, which always behave timely or else provide
awareness of their failure.

Our proposal is to bring timing failure detection to the typical ACID transactions
implemented by most commercial DBMS, putting together classic database
transactions management and distributed timely computing. The goal is to extend the
typical transaction programming approach in order to support transactions with ACID
properties together with timing failure detection.

In order to add timing failure detection to the typical ACID transactions, we
propose that the basic toolset to be offered to database application programmers
should include the following classes of transactions:
– Transactions with no temporal requirements: typical ACID transactions
implemented by classic database management systems. The database clients do not
expect any timeliness guarantees, not even the detection of timing failures.
– Transactions with strict temporal requirements: for this class, the database
clients can specify a time frame in which the transaction has to be concluded to
succeed. In this class, the system must at least provide timing failure detection, even
in distributed transactional environments. The transaction is rolled back if it does not
commit in the specified time and the client database application is notified in order to
cope with the occurrence of the timing failure.
– Transactions with relaxed temporal requirements: in this class, the transactions
are always executed independently of the specified time frame. However, if the dead-
line is reached before the transaction commits, the client application is nevertheless
informed. This allows the application to execute any task related to the occurrence of
the timing failure (e.g., notify the DBA) and continue the execution of the transaction.

Real database applications very often have to deal with different timing
requirements, whose execution must be supported by one or more of the classes of
transactions proposed before. The following points present our classification for
database applications concerning timing constraints, and give some examples of
applications from real scenarios:
– Traditional applications class: typical applications with no temporal requirements.
– Fail-safe class: applications that can switch to a fail-safe state when there is a

timing failure. When a transaction is submitted the application waits for the
transaction response or a notification that a timing failure has occurred. The
application must be informed about a timing failure occurrence as soon as the
deadline specified for the transaction is exceeded. In this case the application executes
some conforming actions and enters a fail-safe state. These database applications can
be implemented based on transactions with strict temporal requirements. Typical
examples include manufacturing industrial processes (electronic industry, automotive
manufacturing industry, etc) where it is possible to stop the manufacturing chain in
case of delay in the database transaction execution (that fail-safe state is in general
necessary because of mechanical issues of manufacturing processes).
– Time-elastic class: applications able to adapt timing constraints during execution.
In this case, the collection of information about timing failures and the temporal
execution of transactions can be used to feed a monitoring component or to tune
specific application parameters in order to adapt its behavior to the actual load
conditions of the system. The application may decrease the transaction submission
rate, increase the transactions deadline if possible, or postpone the execution of
transactions to a latter time. In environments with replicated databases, the application
can also perform load balancing based on timing failure detection. These applications
can be implemented based on transactions with strict temporal requirements or based
on transactions with relaxed temporal requirements. Examples of this class include
databases that control mobile communication systems, where connection
establishment can tolerate some delays (or may be refused) and billing transactions
can be postponed, or continuous manufacturing processes such as chemical processes.
– Fail-operational class: applications that continue executing transactions without
adapting timing constraints during execution, regardless of the timing failures
detected. The client application should be notified about the occurrence of the timing
failure but the execution of the transaction does not stop. Timing failure detection is
used by the application to perform specific actions (e.g., notify the database
administrator) when the execution of transactions exceed the deadline. These
applications can be implemented based on transactions with strict temporal
requirements or transactions with relaxed temporal requirements. Examples of this
class include pay-per-view television applications and video streaming.

3 New Transactions Programming Approach

Transactions in typical database application are executed by submitting one
command at a time or using batches of commands. After submitting a command (or a
batch of commands) the client application waits for the corresponding response. The
database server can be a single machine or a distributed set of replicated servers. An
important aspect is that neither the client layer nor the database server are concerned
about the detection of timing failures.

In order to provide transactions with temporal requirements we need a new
approach for transaction programming. Our proposal is to modify the typical database
environment in order to include timing failure detection capabilities. Three
possibilities can be considered: detection in the client layer, detection in the database

server, and distributed detection. To measure the duration of both local and
distributed actions we have adopted the Timely Computing Base (TCB) model [9],
which is based on an improved round-trip technique that guarantees not only
bounded, but also almost stable measurement errors. Informally speaking, the TCB
Distributed Duration Measurement service can be used for monitoring the duration of
local or distributed actions. It is the responsibility of the application to indicate the
beginning and the end of the action. Local actions are measured in the same site, and
in the case of distributed actions the measurement is made in a distributed way, using
different TCB instances.

3.1 Timing Failure Detection in the Client Database Interface Layer

In a typical database environment the client application communicates with the server
through a database interface layer (e.g., Oracle Call Interface). This layer is specific
for each DBMS and is responsible for managing all the communication with the
database server. The detection of timing failures in the client requires the modification
of this layer. As changing the database interface layer itself is difficult (this is
normally a piece of proprietary software) our proposal is to add a wrapping layer
through which all the communications between the client application and the database
interface layer must go by. We call this layer Transactions Timing Failure Detection
(TTFD) layer.

Figure 1 shows the architecture we propose for timing failure detection in the client
interface layer. In order to implement timing failure detection capabilities, we propose
the use of two connections between the client application and the TTFD layer: one to
submit commands and receive results and the other to control timing definitions (e.g.,
the deadline and the type of the transaction) and receive timing failure notifications.
These notifications are sent in the form of exceptions that must be handled by the
client application. Note that, the TTFD layer can be used to abstract any particular
implementation of a timing failure detection service. Therefore, it is possible to
generate timing failure notifications at this layer, independently of the specific
notification mechanism provided by the specific TTFD service implementation.

Fig. 1. Environment for timing failure detection in the database interface layer.

When the client application begins a time critical transaction (i.e., submits the first
SQL command in the transaction) and provides the class of the transaction (strict
temporal requirements or relaxed temporal requirements) and the deadline for the
execution, the TTFD layer starts counting the elapsed time. The Duration
Measurement service of the TCB is used for time measurement. The time critical
transaction ends when the application executes a commit or rollback. If the deadline is

violated before the end of the execution of the transaction an exception is generated
and thrown to the client. If the transaction has strict temporal requirements it is
automatically rolled back, otherwise, the transaction execution continues normally.

From the client point-of-view, the measured execution times includes the delays
due to client-server network communication. This means that some false positives
may occur due to the extra time that it takes for the response to travel from the server
to the client. Timing failure detection in the database interface layer should be used in
scenarios where it is important to take in consideration the time the client application
waits for the response to the last command in the transaction (e.g., when the client
application is able to perform load balancing at the network level). However, other
solution is needed in scenarios where timeliness requirements apply to timed
executions that terminate on the server side.

3.2 Timing Failure Detection in the Database Server

The second approach we propose consists on detecting timing failures at database
server side. In this case the transactions execution time is measured from the server
point-of-view. To provide the detection of timing failures in the database server we
need to modify the DBMS implementation or to use a DBMS proxy that intercepts all
the messages arriving to and leaving from the database server (see Figure 2). The
database proxy also implements timing failure detection and the TCB is used to
measure time. In the client side we also need the layer through which all the
communications between the client application and the database interface layer must
go by (TTFD layer). In this architecture this layer does not deal with timing failure
detection. It receives timing definitions from the client application and forwards them
to the database proxy. When the proxy detects a timing failure it notifies the TTFD
layer, which raises the corresponding exception to the client application.

An important aspect is that all the communication between the TTFD layer and the
DBMS proxy is performed using a communication channel different from the one
used to send the SQL commands and results. The timing definitions and timing failure
notifications are sent using this channel. Figure 2 presents the environment that we
propose for timing failure detection in the database server. As mentioned before, the
database server can be a single machine or a set of replicated servers.

DB Server

DBMS

DB Client

Client Application

TTFD
SQL/Results

Database Interface Layer

Control/Failure

SQL

Results

Failures
Network

Network

Timing definitions

TCB
Fig. 2. Environment for timing failure detection in the database server.

When the client application begins a time critical transaction (i.e., submits the first
SQL command) and provides the class of the transaction and the deadline for the

execution, the DBMS proxy starts counting the elapsed time using the TCB. If the
deadline is exceeded before the end of the execution of the transaction an exception is
sent to the client application through the TTFD layer. Transactions with strict
temporal requirements are automatically rolled back. On the other hand, for
transactions with relaxed temporal requirements the execution continues normally.
Note that, rolling back the transaction is not influenced by any timing constraints as
the state of the database only changes if the transaction commits.

Timing failure detection from the server point-of-view does not consider the
amount of time that goes from the moment when the client submits the first command
and the moment the server receives that command. This means that the transaction
execution time is counted only after the first command is received by the DBMS
proxy. Thus, if the communication between the client and the server is slow, there are
some cases where a timing failure is not detected because the client/server
communication time is not considered. Timing failure detection in the database server
is useful in scenarios where the network delays should not be taken into account or
are always so small that, from the client application point-of-view, have no impact in
the transaction execution. It may also be useful if one decides to enrich the database
server with real-time modules that are autonomously and immediately executed by the
TCB upon failure detection.

3.3 Distributed Detection of Timing Failures

A transaction starts when the client application submits the first command and ends
immediately after the server finishes the execution of the last command (and not when
the client application receives the response). Thus, some database applications may
require the execution time to be counted from the moment when the client submits the
first command and the moment when the execution of last command ends at the
server side. In this case the two solutions proposed before cannot be applied. It is
necessary to use a form of timing failure detection based on distributed duration
measurements. We will simply call it distributed timing failure detection.

An obvious problem raised by this approach is the distributed measurement of
time. As it is well known, it is quite difficult to have synchronized clocks in different
machines. To solve this problem we have decided to use the Duration Measurement
service of the TCB model [9]. This service obviously requires local clocks of TCB
modules to be read, and timestamps to be used and disseminated among relevant
nodes of the system. Unlike the measurement of local actions, measuring distributed
durations is quite more difficult because simply reading the clocks to get two
timestamps is not sufficient. The distributed duration measurement service of the
TCB is based on an improved round-trip technique [9] that guarantees not only
bounded, but also almost stable measurement errors.

As shown in Figure 3, to provide distributed detection of timing failures we need to
modify the DBMS implementation or to use a DBMS proxy and to include an
additional layer in the database client that handles all the communications between
the client application and the database interface layer (TTFD layer). This layer does
not detect timing failures. It receives timing definitions from the client application and
instructs the TCB to start measuring the time. Timing definitions are sent to the

DBMS proxy that detects timing failures using the distributed duration measurement
capabilities of the TCB. When a timing failure is detected the DBMS proxy notifies
the TTFD layer, which raises the corresponding exception to the client application.

As in the solutions proposed before, two connections are needed between the client
application and the TTFD layer and the communication between the TTFD layer and
the DBMS proxy also uses a communication channel different from the one used to
send the SQL commands and receive the responses.

Fig. 3. Environment for distributed timing failure detection.

3.4 Transactions Programming Interface

In order to allow database programmers to easily implement applications with
timeliness requirements we have developed an application programming interface
(API) that implements the new transaction programming approach proposed in this
paper. In this work we have implemented this interface for JAVA and we are now
starting to implement it for other languages (C++ and Delphi). An important aspect is
that this API is as close as possible to the ones normally used by the programmers
when implementing typical database applications. In fact, we tried to implement
classes and methods similar to the ones typically used by programmers in terms of the
names, parameters, and form of use (see example in section 4). Table 1 presents the
most important methods provided.

4 Practical Example of Implementation

The example presented in this section has resulted from the study meant to
demonstrate and evaluate the usefulness of the transactions programming approach
proposed. As we are particularly interested in the aspects related to transaction
execution time, we have decided to use a performance benchmark for real-time
database systems for telecommunications [10]. This benchmark represents a
telecommunications operator that includes several service providers, each one having
its own database in a distributed environment.

The benchmark has been implemented using both the standard Java Database
Connectivity (JDBC) API and the API proposed in this paper (considering both strict
temporal requirements and relaxed temporal requirements). The first goal is to
evaluate the effort needed to migrate from the traditional approach to the approach

proposed in this paper. Table 2 presents a simple example of the use of timing failure
detection in the benchmark.

As we can see, the TACID implementation is very similar (in both structure and
commands) to the typical implementation, which facilitates the database programmers
work. During the benchmark implementation we have observed a similar
implementation time for both approaches. In fact, an experienced programmer tokes
around two days for each implementation. Obviously this implementation time
depends strongly on the programmer’s experience.

In order to evaluate the efficiency of the time failure detection approaches, we have
performed several experiments. The basic experimental platform consists of three
machines. Two machines are used as database servers and one as database client. The
machines are connected using two dedicated fast-Ethernet networks. One is used for
the SQL/results communication and the other is used by the TCB. Six service
providers are considered, by implementing three databases in each database server.

The Oracle™ DBMS is one of the leading databases in the market and as one of
the most complete and complex database it represents very well all the sophisticated
relational DBMS available today. For that reason we have chosen Oracle 10g [11],
which has been tuned based on the results from a previous work on the evaluation of
the Oracle performance and recoverability [12].

The performance benchmark used has been implemented using the traditional
approach (no timing failure detection) and considering timing failure at the three

Table 1. API provided for JAVA programmers. All source code, including an example of
utilization, is available at [http://gbd.dei.uc.pt/downloads.php] for public use.

TACID Method JDBC Method Short Description
TACIDConnection
getConnection(String URL, int
approach)

Connection
getConnection(String url)

Establishes a new TACID connection to the database. url
represents the name of the database. approach is the ti-
ming failure detection level (client, server, or distributed)

void close() throws
SQLException

void close() throws
SQLException Closes the database connection

void commit() throws
SQLException,
TACIDTimeoutException

void commit() throws
SQLException

Commits the transaction. Throws an timeout exception if
a timing failure has occurred meanwhile

void rollback() throws
SQLException,
TACIDTimeoutException

void rollback() throws
SQLException

Rollbacks the transaction. Throws an timeout exception
if a timing failure has occurred meanwhile

ResultSet startTimeQuery(int
type, int timeout, String sql)
throws SQLException,
TACIDTimeoutException

ResultSet
startTimeQuery(int type, int
timeout, String sql) throws
SQLException

Starts a new time critical transaction. SQL represents the
first command (select command) in the transaction. type
is the type of the transaction (strict temporal
requirements or relaxed temporal requirements). timeout
represents the deadline for the transaction Returns the
result of the command in a result set

int startTimeUpdate(int type, int
timeout, String sql) throws
SQLException,
TACIDTimeoutException

int executeUpdate(String
sql) throws SQLException

Starts a new time critical transaction. SQL represents the
first command (insert, update or delete command) in the
transaction

ResultSet executeQuery(String
sql) throws SQLException,
TACIDTimeoutException

ResultSet
startTimeQuery(int type, int
timeout, String sql) throws
SQLException

Executes a query. The time critical transaction has
already been started by another command

int executeUpdate(String sql)
throws SQLException,
TACIDTimeoutException

int executeUpdate(String
sql) throws SQLException

Executes an insert, update, or delete command. The time
critical transaction has already been started by another
command

ResultSet getResultSet() – Returns the result of the last query executed
int getResultUpdate() – Get the result of the last insert, update, or delete executed
long getExecTime() – Returns the execution time for the last transaction

layers (clients’ interface, database server, and distributed). Both transactions with
strict temporal requirements and transactions with relaxed temporal requirements
have been implemented. The performance benchmark was executed five times for
each configuration (a total of 35 runs) with a duration of 10 minutes for each run.

Table 2. TACID implementation vs typical implementation: excerpt from the update subscriber
transaction. The TACID implementation uses transactions with strict temporal requirements.

TACID Implementation Typical Implementation
...
// Establish the connection
Class.forName(driverName);
con = TACIDDriverManager.getConnection

(db, distributedDetection);

...
// Establish the connection
Class.forName(driverName);
con = DriverManager.getConnection (db);
Statement con = con.createStatement();

try {
// First command (timeout 100ms)
sql="select addr from profile where

sid="+sid;
rs=con.startTimeQuery(strictTempReq,100,sql);
...

try {
// First command
sql="select addr from profile where

sid="+sid;
rs=con.executeQuery(sql);
...

sql="update profile set addr=’Coimbra’
where sid="+sid;

recCount = con.executeUpdate(sql);

sql="update profile set addr=’Coimbra’
where sid="+sid;

recCount = con.executeUpdate(sql);
con.commit(); con.commit();

} }
catch(TACIDTimeoutException e) { ... }

... ...

Results have shown that timing failure detection does not introduce any overhead in
transactions execution. For example, for the baseline configuration we have observed
an average of 3769.9 transactions per minute (with a standard deviation of 23.17
transactions), while for timing failure detection at the client interface layer we have
observed an average of 3784.5 transactions per minute (with a standard deviation of
38.96 transactions). The small deviations in the measures in successive runs are
normal and just reflect the asynchronous nature of transactions. For the other layers
(server and distributed) similar results have been observed.

Concerning execution time, the average using the baseline configuration was of
46.62 milliseconds (with a standard deviation of 0.25 milliseconds), while the average
with timing failure detection at the client interface layer is around 41.58 milliseconds
(with a standard deviation of 0.35 ms). This shows that the execution time when using
time failure detection at the client interface layer is lower than the one observed for
traditional transactions. This is due to the fact that when a transaction exceeds the
deadline it is immediately rolled back and the client application continues the
execution to the next transaction. Similar results were observed for the other layers.

Figure 4 presents an example of the execution profile for one of the transactions
(roaming user) during one run of the benchmark using timing failure detection at the
client interface layer and strict temporal requirements (similar profiles were observed
for the other layers of timing failures detection). As we can see some transactions
exceed the deadline, however in all the cases the timing failure was detected and the
client application notified. These transactions are automatically rolled back. As show
in the figure, the transactions that exceed the deadline are detected a little bit after the
deadline. This is due to the small latency of the detection mechanism (less than 20
milliseconds). Note that, database applications are characterized by long execution

times (in some cases several seconds), thus a latency of 20 ms is quite acceptable.
Another important aspect is that, by the analyses of the results shown in Figure 4

we can see that even in sophisticated DBMS like Oracle 10g it is quite difficult to
predict the execution time of the transactions. In fact, although most of the
transactions are executed in before the deadline some of them exceeded that deadline.
This demonstrates the importance of timing failure detection in database applications.

Roaming User

0

100

200

300

400

500

600
ms

Fig. 4. Execution profile using timing failure detection. The horizontal line represents the
deadline (500 ms) and each vertical bar represents the execution time of a single transaction.
The vertical bars that cross the horizontal line represent transactions that exceeded the deadline.

To further understand the behavior of the timing failure detection mechanism we have
executed the benchmark in the presence of an additional load that stresses the network
and the server machines. This way, we have executed the real-time performance
benchmark and, in random moments, we have executed the additional workload
during a random amount of time. The additional workload has been adopted from the
TPC-C performance benchmark [13] (this workload has been chosen due to practical
reasons and any other workload could have been selected). The average number of
transactions executed per minute decreased about 40%) and the average transactions
execution time increased around 30%. The latency remained the same.

Figure 5 presents the execution profile for the roaming user transaction during one
execution of the benchmark in the presence of the additional load. Note that, there are
now many more transactions whose execution times exceed the deadline or gets
closer to it. Nevertheless, all the timing failures were detected.

Roaming User

0

100

200

300

400

500

600
ms

Fig. 5. Execution profile using timing failure in the presence of an additional database load.

5 Conclusion

This paper discussed the problem of timing failure detection in database applications
and proposes a transaction programming approach to help developers in programming

database applications with time constraints. Three classes of transactions are
considered concerning temporal requirements: transactions with no temporal
requirements (typical ACID transactions), transactions with strict temporal
requirements, and transactions with relaxed temporal requirements. The approach
proposed implements these classes of transactions by allowing concurrent detection of
timing failures during transaction execution. Timing failure detection can be
performed at the database clients’ interface, in the database server, or in a distributed
manner. The paper illustrates the proposed programming models in a practical
example using the Oracle 10g DBMS. A performance benchmarks for real-time
database applications is used to validate the approach and to show the advantage of
timing failure detection.

From the results presented in this paper it is clear that it is useful to consider a new
transaction programming approach aimed at supporting timing specifications for the
execution of transactions. On the other hand, the work done so far was instrumental to
uncover some of the problems that must be addressed to solve the temporal issues
related to timing failure detection is DBMS settings. We intend to pursue this work
and redesign or complement the mechanisms provided by the TCB for timing failure
detection, so they become better suited to support the several classes of timed
transactions that we identified as the fundamental ones.

References

1. J. Gray and A. Reuter, “Transaction Processing: Concepts and Techniques”, The Morgan
Kauf-mann Series in Data Management Systems, Jim Gray, 1993.

2. K. Ramamritham, "Real-Time Databases", Intl Journal of Distributed and Parallel Databases,
1996.

3. G. Ijzsoyoilu, R. T. Snodgrass, “Temporal and Real-Time Databases: A Survey”, IEEE
Transactions On Knowledge and Data Engineering, 1995.

4. L. DiPippo, V. Wolfe, “Real-Time Databases”, Database Systems Handbook, Multiscience
Press, 1997.

5. SIGMOD Record, Special Section on Advances in Real-Time Database Systems, Vol 25,
number 1, pp.3-40, 1996.

6. T. Chandra, S. Toueg, Unreliable Failure Detectors for Reliable Distributed Systems, Journal
of the ACM, 43(2), 225–267, 1996.

7. L. Dwork, L. Stockmeyer, “Consensus in the Presence of Partial Synchrony”, Journal of the
ACM, 1988.

8. F. Cristian, C. Fetzer, “The Timed Asynchronous Distributed System Model”, IEEE
Transactions on Parallel and Distributed Systems, 1999.

9. P. Veríssimo, A. Casimiro, “The Timely Computing Base Model and Architecture”, Trans.
on Computers - Special Issue on Asynch. Real-Time Systems, 2002.

10. J. Lindström and T. Niklander, Benchmark for Real-time Database Systems for Telecom.,
VLDB 2001 Intl Workshop on DB in Telecom. II, Rome, Italy, 2001.

11. Oracle Corporation, “Oracle® Database Concepts 10g Release 1 (10.1)”, 2003.
12. M. Vieira and H. Madeira, “Recovery and Performance Balance of a COTS DBMS in the

Presence of Operator Faults”, Intl Performance and Dependability Symposium (jointly
organized with DSN-2002), IPDS2002, Bethesda, Maryland, USA, June 2002.

13. Transaction Processing Performance Council, “TPC Benchmark C, Standard Specification,
Version 5.4”, 2005, available at: http://www.tpc.org/tpcc/.

