
Approximate Matching for Peer-to-Peer Overlays with Cubit

Bernard Wong∗

bwong@cs.cornell.edu

Aleksandrs Slivkins†

slivkins@microsoft.com

Emin Gün Sirer∗

egs@cs.cornell.edu

Abstract
Keyword search is a critical component in most content

retrieval systems. Despite the emergence of completely

decentralized and efficient peer-to-peer techniques for

content distribution, there have not been similarly effi-

cient, accurate, and decentralized mechanisms for con-

tent discovery based on approximate search keys. In this

paper, we present a scalable and efficient peer-to-peer

system called Cubit with a new search primitive that can

efficiently find the k data items with keys most similar to

a given search key. The system works by creating a key-

word metric space that encompasses both the nodes and

the objects in the system, where the distance between two

points is a measure of the similarity between the strings

that the points represent. It provides a loosely-structured

overlay that can efficiently navigate this space. We eval-

uate Cubit through both a real deployment as a search

plugin for a popular BitTorrent client and a large-scale

simulation and show that it provides an efficient, accu-

rate and robust method to handle imprecise string search

in filesharing applications.

1 INTRODUCTION
Peer-to-peer data distribution techniques have recently

become widely deployed because they are efficient, scal-

able and resilient to attacks. Recent studies indicate that

at least 71% of the data volume on long-haul links is due

to peer-to-peer filesharing applications [31]. Yet locating

content in a peer-to-peer system poses significant prob-

lems. Imprecision stemming from partial specifications

of keywords, common variations of search terms and

misspellings are common. For instance, approximately

20% of all Google queries for “Britney Spears” misspell

the artist’s name [1]. Efficiently routing a query to a set

of objects whose keys are close but not identical to the

search key is a difficult problem known as approximate

matching.

∗Dept. of Computer Science, Cornell University, Ithaca NY, 14853.
†Microsoft Research, Mountain View, CA 94043.

Modern peer-to-peer substrates do not provide effi-

cient primitives for approximate matching. Unstruc-

tured peer-to-peer systems such as [2] provide a search

primitive, which is typically based on query broad-

cast 1. Gnutella nodes receiving the search query match

it against their database of known items using a fuzzy

similarity metric to yield approximate matches. Such

broadcast-based approaches are inefficient as they may

take up to N hops in the worst case, where N is

the number of hosts, and place a superlinear aggregate

load on the network. In contrast, structured peer-to-

peer systems [37, 39, 46, 33, 28, 23] provide an efficient

lookup primitive that can typically locate a target within

O(log N) hops. While these systems provide strong

worst-case bounds, the lookup operation does not per-

mit approximate matching. Naive approaches to layer

approximate matching on top of a DHT lookup, by in-

serting each object under all possible key variations or

performing every query in parallel with all variants of the

search key, lead to highly inefficient solutions. Systems

that permit range lookups [10, 15] can perform a lookup

within a range defined by numeric coordinates, but are

difficult to adopt for use with approximate string match-

ing. Overall, existing systems provide inefficient and ap-

proximate search or efficient and precise lookup, but not

efficient and approximate match. As a result, the highly

popular BitTorrent distribution mechanism still relies on

centralized components called torrent aggregators for the

initial search, rendering it vulnerable to a variety of at-

tacks.

In this paper, we present Cubit, a scalable peer-to-peer

system that can efficiently find the k closest data items

for any search key. The central insight behind Cubit is to

create a keyword metric space that captures the relative

similarity of keywords, to assign portions of this space to

nodes in a light-weight overlay and to resolve queries by

1Optimizations, such as supernodes and expanding ring search,

make the broadcast process more efficient, but the primitives are still

based fundamentally on flooding.

1

efficiently routing them through this space. The system

comprises a protocol for object and node assignment, a

gossip-based protocol for maintaining the overlay, and a

routing protocol to efficiently route queries.

An efficient algorithm, based on small-worlds [24], for

navigating this keyword metric space enables Cubit to

quickly identify approximately matching objects. Cubit

assigns a random location in space to each overlay node,

and each node maintains the set of objects for which it is

the closest. Objects are further replicated to a few clos-

est peers to ensure high availability. Each node keeps

track of neighbors in a concentric ring structure based

on edit-distance that provides a node with near authori-

tative information about its local region, and with suffi-

cient amount of out-pointers such that it can forward the

query towards more authoritative nodes. Cubit discovers

the nodes with keywords that are similar to the target by

first examining its local ring members, and retrieving ad-

ditional candidate nodes from these selected members.

These new candidates are closer to the target and have

more information in the proximity of the targeted region

than the previous node. This protocol quickly converges

to the closest nodes with high success rate.

Empirical studies show that search terms typically fol-

low a Zipf 2 rather than a uniform distribution [12],

which leads to a naturally skewed load distribution. Con-

sequently, nodes whose IDs lie in the vicinity of pop-

ular keywords can become quickly overwhelmed. Tra-

ditional load-balancing techniques for DHTs that repli-

cate objects to nearby neighbors cannot be used for ap-

proximate matching, as queries cannot be safely short-

circuited unless an exact match is found. We introduce

a novel load-balancing technique based on virtual nodes

to disperse hot-spots in keyword popularity that supports

short-circuiting queries for approximate matches.

We evaluate Cubit through both a real deployment in a

search plugin for Azureus, a popular BitTorrent client,

and large-scale simulations. Cubit outperforms DHT-

based approximate search techniques, requiring an or-

der of magnitude fewer RPCs; it can successfully answer

40% more queries than DHTs using Soundex hashing,

and can accommodate any language for which a word

similarity metric can be defined.

Overall, this paper makes three contributions. First,

it describes a keyword space that captures the similarity

of keywords, and outlines a scalable and efficient pro-

tocol for routing queries to nodes that are closest to a

search term in the space, thus yielding a DHT with an ap-

proximate match primitive. Second, it obtains provable

guarantees on the performance of this protocol, using a

novel small-world technique which, unlike the notions

from prior work, applies to the keyword space. Finally,

2There is also evidence for a flattened Zipf distribution in file-

sharing networks [21].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

F
ra

c
ti
o
n
 o

f
W

o
rd

 P
a
ir
s

Edit Distance of Word Pairs

Figure 1: The edit distance between pairs of keywords in

the Netflix data set: most distances are very small.

the paper demonstrates through both a real deployment

and large-scale simulations that the system is accurate,

efficient, and robust. In particular, it can place the tar-

get object in the top 20 results for more than 92% of the

queries even with a high degree of perturbation in the

search terms.

The rest of the paper is structured as follows. Sec-

tion 2 describes the keyword space and Cubit’s general

approach to provide an approximate match primitive.

Section 3 defines Cubit’s routing framework, and Sec-

tion 4 specifies the query routing protocols that make use

of the framework. Section 5 provides a theoretical anal-

ysis of the search algorithm in Cubit, proving that it can

find the near neighbors to a search term with high proba-

bility. Section 6 evaluates the accuracy and performance

of Cubit, Section 7 discusses related work and Section 8

summarizes our contributions.

2 APPROACH

A keyword is any word that appears in the title of an ob-

ject stored in Cubit. In order to fully specify the prob-

lem of approximate string matching, we need to choose a

notion of distance between two keywords, or more gen-

erally between two text strings. Such distance should

correspond to our intuition on which strings are similar

and which strings are very different. In particular, the

distance between a given keyword and its misspelling

should be small.3 Cubit uses the most common notion of

distance on strings, the Levenshtein distance, commonly

known as the edit-distance. It is equal to the minimum

number of insertions, deletions and substitutions needed

to transform one string to another. The keywords then

intrinsically lie in the keyword space, a metric space in-

duced on keywords by the edit distance.

3In principle we could use any such distance as long as it is a met-

ric, i.e. a non-negative symmetric function σ that obeys (σ(a, b) =
0 ⇐⇒ a = b) and triangle inequality σ(a, c) ≤ σ(a, b) + σ(b, c).

2

Figure 2: The edit-distance between keywords: a set of

five keywords which cannot be embedded into a plane.

Let us consider a typical keyword space taken from

the movie database released by Netflix [4] consisting of

about 12, 000 keywords from 17, 770 movie titles. By

definition, all edit-distances are integer values. Since

most keywords are short, distances in the keyword space

tend to be small (see Figure 1). This implies that, for any

keyword u, the number of keywords within edit-distance

r from u grows very fast with r, so the keyword space

is very different from a low-dimensional grid. More-

over, it is a known theoretical fact that a low diame-

ter metric space is very different from any point set in

a low-dimensional Euclidean space. To appreciate the

difficulty of embedding edit distances into a Euclidean

space, consider an example in Figure 2 with a set of five

keywords which cannot be embedded into a plane. The

embedding becomes increasingly more difficult with ad-

ditional keywords, even if we allow more dimensions.4

Phrase Matching. Search queries typically consist of

more than one search term. For example, a user may

search for a long movie title using only a misspelled sub-

set of the many keywords in the original title. A phrase

distance that closely tracks the user’s intent, as a func-

tion of the search terms and the object keywords, is not

as well defined as it is for single keywords. In Cubit, we

introduce a simple phrase distance metric which we call

Additive Minimum Edit-Distance (AMED). In AMED,

the distance is the sum of the minimum edit-distance of

each search term across the set of object keywords.

Node ID Assignment. Cubit nodes are distributed in the

same space as keywords. Each node in Cubit is assigned

a unique string ID chosen from the set of keywords as-

sociated with previously inserted objects in the system.

4While we did not investigate whether the keyword space is close to

a point set in a high-dimensional Euclidean space (more precisely, d-

dimensional for some d ≪ #keywords), even such a weak property

seems unlikely due to the highly irregular nature of edit distances.

The ID of a node determines its “position” in the key-

word space. This position determines how a given node

is used in Cubit. First, each Cubit node is responsible

for storing the set of keywords for which it is the clos-

est node. Second, Cubit implements a distributed proto-

col which navigates through nodes in the keyword space,

gradually zooming in on a neighborhood of a given (pos-

sibly misspelled) keyword, and thus locates nodes that

store possible matches. The details of the protocol are

not critical at this stage; the crucial point is that the nav-

igation happens within the keyword space rather than on

a ring or some other highly structured artificial routing

space of a typical structured peer-to-peer network.

Node IDs are chosen to provide a good coverage of

the keyword space. A natural approach is to choose node

IDs at random. Since the distribution of words in a hu-

man language is known to be very different from that of

random strings, we choose node IDs at random among

keywords. Specifically, at join time each node indepen-

dently selects a random keyword, ensuring uniqueness

by detecting ID collisions.

Navigation. The navigation protocol is the core compo-

nent of Cubit. To support this protocol, Cubit creates and

maintains a multi-resolution overlay network on nodes

such that each node has several peers at every distance

from itself; the peers at a given distance are chosen to

maximize the coverage of that region. Such overlay de-

sign is inspired by the small-world construction [24, 25]

in which a grid is augmented by a sparse set of randomly

chosen edges, with roughly the same number of edges

for each distance scale. In the resulting graph a simple

greedy routing algorithm (which on each step minimizes

the distance to target) succeeds in finding short routes to

any given target.

In Cubit, the distance scales are linear rather than ex-

ponential because the keyword space has a very small

diameter. The small-world-like overlay is created via

an underlying low-overhead gossiping protocol under

which nodes randomly exchange peer identifiers and thus

randomize their peer sets. Since the distance to the tar-

get can be easily computed from the corresponding node

ID, the greedy routing algorithm requires very little state

and is easy to implement in practice. Both the overlay

creation and the small-world navigation happen, essen-

tially, in the keyword space. In Section 5 we discuss how

the small-world navigation is affected by the properties

of this space.

Rejected Alternative: Hyperspace embedding. In pre-

vious work [44], we advocated representing keywords

as points in a low-dimensional Euclidean space, termed

a hyperspace. One approach to achieve such an em-

bedding is to label each axis of the hyperspace with a

string, and define each virtual coordinate of a given key-

3

word as the edit-distance to the corresponding axis label.

For instance, for axes aaa, cbc, abd, the keys abc, abd

and ddd would map to the points 〈2, 1, 1〉, 〈2, 2, 0〉 and
〈3, 3, 2〉 respectively. This virtual coordinate assignment

captures the relative similarities of the strings through

the edit-distance to the string labels. In essence, axis la-

bels act as anchor points, and each component of an ob-

ject’s coordinate provides the distance of the object from

that anchor point. Much like the Post Office metric on

normed vector space [3], the distance from each anchor

point clusters similar objects to the extent differentiable

by that axis label, assigning them similar coordinates.

The intuition is that similar strings will have similar edit-

distance to the corresponding axis labels, especially if the

axis labels are well-chosen, for instance, by randomly se-

lecting from the keywords themselves.

Once nodes and keywords are embedded into a hy-

perspace, a number of different techniques can be used

to navigate through the space. CAN [33] can find the

closest node to a coordinate in dN1/d hops (where d is

the dimension) given a uniform distribution of nodes in

the space. We previously examined the feasibility of a

design based on Meridian [43] that is light-weight and

achieves log N hop routing with high probability given

similar assumptions.

However, a hyperspace embedding introduces intrin-

sic embedding errors, as the keyword space can not

be perfectly mapped into even a high-dimensional Eu-

clidean space. Moreover, increasing the dimensionality

can improve the distinguishing power of the embedding,

but may also cause overfitting and degrade performance.

While even a distorted embedding can potentially result

in a metric space that provides good recall accuracy and

simplifies routing, we observed that Cubit achieves much

higher accuracywithout the embedding. In this paper, we

bypass the embedding and present a modified approach

that routes within the keyword space directly without

computing coordinates for nodes or objects.

3 FRAMEWORK

The basic Cubit routing framework relies on multi-

resolution rings to organize peers, a ring membership

replacement scheme to maximize the usefulness of ring

members, and a gossip protocol for node discovery and

membership dissemination. Additionally, the framework

has mechanisms to proactively maintain object replica-

tion for improved resiliency in highly dynamic peer-to-

peer systems.

3.1 Multi-Resolution Rings

Each Cubit node organizes its peers into a set of con-

centric rings. In each ring, a node retains a fixed num-

ber, kring , of neighbors whose distance to the host lies

within the ring boundaries. This ring structure enables a

Figure 3: A Cubit node organizes its peers into a set of

concentric rings, each with a fixed number of nodes. In

this example, the solid circles represent peers in nodeA’s

peer-set, the empty circles represent other peers, and the

squares represent object keywords in the system. The

shaded region depicts the sub-space that is closer to A
than any other node. The master record for each keyword

in the shaded region is stored at node A.

Cubit node to retain a relatively large number of pointers

to other nodes within its vicinity, while also providing a

sufficient number of pointers to far-away peers.

The Cubit ring structure is illustrated in Figure 3. The

ith ring has inner radius ri = αi and outer radius Ri =
α(i+1), for i ≥ 0, where α is a constant that determines

ring-width. Each node keeps track of a finite number

of rings; all rings i > i∗ for a system-wide constant i∗

are collapsed into a single, outermost ring that spans the

range [αi∗,∞].

In addition to the multi-resolution rings, each node

maintains a small leaf set, a set of nodes used for ob-

ject replication management and collision detection on

node joins. The leaf-set contains a node’s (βfrepl)-closest
neighbors, where β ≥ 1 is a parameter and frepl is the
replication factor; that is, the number of nodes at which

each keyword is replicated.

3.2 Ring Membership Management

The number of nodes per ring, kring, represents a trade-

off between accuracy and overhead. A large value of kring
allows each node to retain more information for better

route selection during query routing, but requires addi-

tional overhead in bothmemory and bandwidth. The util-

ity of a ring member is in relationship to the amount of

diversity it can provide to the ring. Diverse ring members

provide better coverage and minimize “holes” in the key-

word space, reducing the likelihood that a node is over-

looked in query routing.

For each ring, the node retains a constant number lring

4

Algorithm 1 MAINTENANCE PROTOCOL

Require:

E: Timeout event R: Local ring set

L: Local node O: Object repository

H: Leaf set Y: Replication factor

1: if E.TYPE() = GossipTimer then

2: W ← R.SELECTRANDOMNODES()

3: for all N in W do

4: N.SEND(GossipRequest, (W - N + L))

5: W ← H.GETNODES()

6: for all N in H.GETNODES() do

7: N.SEND(GossipRequest, (H.GETNODES() - N + L))

8: else if E.TYPE() = ReplacementTimer then

9: D← R.GETRANDOMRINGINDEX()

10: A← R.GETPRIMARY(D) + R.GETSECONDARY(D)

11: B← {}
12: while A.LENGTH() > R.MAXNODESPERRING() do

13: M, V← NIL, 0

14: for all N in A do

15: S← POLYTOPEVOLUME(A - N)

16: if M = NIL or S > V then

17: M,V← N, S

18: A, B← A - M, B + M

19: R.SETRING(D, A, B) {Set A to primary, B to secondary}
20: else if E.TYPE() = ReplicaTimer then

21: M← O.GETALLMASTERREPLICAS(H.GETNODES())

22: for all C in M do

23: for all N in H.GETCLOSEST(Y-1, C) do

24: N.SEND(CheckKeyRequest, C)

of additional nodes that serve as potential ring candi-

dates. During ring membership selection, an infrequent

periodic event, the node selects a the subset of kring ring
members from the kring + lring candidates. The goal is

to achieve a good coverage of the corresponding annulus

in the keyword space. The specific heuristic used to ac-

complish this is to assign each candidate node a point in

the (kring + lring)-dimensional space, where each dimen-

sion represents its distance to one of the candidate nodes,

and choose a subset of kring nodes that forms a polytope

with the largest hypervolume. The quality of the local

embedding used in the polytope computation is not criti-

cal. Any heuristic for picking a geometrically diverse set

of peers would suffice; the polytope volume provides a

principled way to select such diverse peers [43].

3.3 Gossip Based Node Discovery

A standard anti-entropy push-pull protocol [18] provides

node discovery and dissemination between Cubit nodes.

At each gossip round, a Cubit node collects a random

selection of its ring members, and pushes this collection

alongwith its own node information to a randommember

in each of its rings. At the same time, it pulls back a

random selection of nodes from each of the selected ring

members. The exchanged nodes are kept as members in

the appropriate ring or as replacement candidates if the

ring is full.

Additionally, nodes exchange their leaf-set with their

leaf-set members periodically at a more frequent rate, to

ensure that changes to the leaf-set are disseminated more

quickly than changes to more distant neighbors.

3.4 Replication Management

In Cubit, objects are replicated in order to provide high

availability. The number of replicas of an object natu-

rally falls over time as nodes exit the system. We intro-

duce a simple replication management protocol to main-

tain the number of replicas at the desired level frepl.
The primary node for a given keyword is the one clos-

est to the keyword, with a fixed tie-breaking rule. This

node is responsible for the keyword and its associated

objects, and the replication thereof. Each node period-

ically checks if it is the primary node for the keywords

currently at the node. This check can be performed lo-

cally by comparing the keywords with the node IDs of

the nodes in the leaf-set.5 Each node ensures that an ob-

ject is replicated at the frepl − 1 closest leaf-set members

for each of its keywords that map to that node. Missing

replicas are re-created from the primary copy and dis-

seminated to the appropriate nodes. Algorithm 1 illus-

trates Cubit’s periodic maintenance operations.

4 QUERY ROUTING

The following sections describe protocols that make use

of the basic infrastructure described in Section 3 to pro-

vide the necessary primitives for performing approxi-

mate keyword matching.

4.1 Object Insert

An object in Cubit is fully described by a set of key-

words. In the case of our BitTorrent implementation,

these keywords are taken from the filename and embed-

ded comments in the torrent file. A copy of the object

descriptor is replicated at the r closest nodes to each of

its keywords. The form of the object descriptor is un-

restricted; in our BitTorrent implementation, we cache

torrent files wholesale, which are typically small and uni-

form in size. For large objects, the overlay could be ex-

tended to cache a pointer to the owner of the actual ob-

ject.

When a Cubit node receives an object insertion re-

quest, it concurrently issues a closest node search for

each keyword using the search protocol described below.

4.2 Search Protocol

The desired property of the search protocol is to obtain

the kclosest objects to the set of keywords, as measured by

the phrase distance metric, where kclosest is a parameter

in the system. For each keyword in the search phrase,

the protocol obtains the kclosest closest objects from each

5It is possible (though unlikely) that for a brief time interval two or

more nodes will consider themselves primary for the same keyword.

Such behavior does not reduce accuracy of the search protocol. At

worst, it can only increase replication level.

5

Algorithm 2 SEARCH PROTOCOL

Require:
E: Search event R: Local ring set

U: Outstanding queries H: Leaf set

1: N← E.GETREMOTENODE()

2: K← E.GETFANOUT()

3: D← E.GETDISTANCEBOUND()

4: T← E.GETKEYWORD()

5: if E.TYPE() = SearchRequest then

6: A← GETNODESWITHINBOUND(T, D, R + H)

7: if A.LENGTH() < K then

8: A← GETKCLOSESTNODES(T, K, R + H)

9: N.SEND(SearchReply, E.QID(), T, A)

10: else if E.TYPE() = SearchReply then

11: B← S.GETSEARCHQUERY(I)

12: B.CHECKED = B.CHECKED + {N}
13: B.PENDING = B.PENDING - {N}
14: if DISTANCE(N, T) ≤ D then

15: N.SEND(FetchObjRequest, E.QID(), B.SEARCHTERMS())

16: B.FETCHED = B.FETCHED + {N}
17: for all V in E.GETCLOSEST()- B.CHECKED do

18: B.PENDING = B.PENDING + {V}
19: A← B.CHECKED + B.PENDING

20: A← GETKCLOSESTNODES(T, K, A)

21: if A ⊆ B.CHECKED then

22: for all V in A - B.FETCHED do

23: V.SEND(FetchObjRequest, E.QID(), B.SEARCHTERMS())

24: B.FETCHED = B.FETCHED + {V}
25: else

26: for all V in A ∩ B.PENDING do

27: V.SEND(SearchRequest, E.QID(), K, D, T)

node which meets the following edit distance criterion:

its ID is within an edit-distance of q from the keyword,

where q is the product of the keyword length and the ex-

pected number of perturbations per character (which is a

parameter in the system). The protocol selects nmin clos-

est nodes if fewer than nmin nodes meet the edit-distance

criterion, where nmin is called the search fan-out.

The protocol runs from a fixed node, called the local

node. It maintains three lists: the checked list of nodes

that have already been queried, the pending list of nodes

waiting to be checked, and the failed list of nodes such

that the corresponding RPC failed or timed out. Initially

all three lists are empty.

The protocol inserts the local node into the pending

list and enters the following loop. If there exists a node

i in the pending list that meets the edit-distance criterion

or is closer to the keyword than the closest nmin nodes in

the checked list, the local node performs an RPC to node

i for some of the members in its ring sets: either for all

nodes that meet the the edit-distance criterion or for the

lmin closest neighbors to the keyword, for some constant

lmin ≥ nmin, whichever is larger. If the RPC fails or times

out, node i is moved from the pending list to the failed

list. Otherwise, it is relocated to the checked list and the

new nodes are placed in the pending list unless they have

already been checked or have failed a previous RPC. The

loop terminates if such node i does not exist.
The kclosest closest objects to the set of keywords are

retrieved either from all checked nodes that meet the

edit-distance criterion, or from the nmin closest checked

nodes, whichever set is larger. The collected objects for

all the search terms are ordered by their phrase distance

and the kclosest closest objects are returned as the result of
the search.

Algorithm 2 is the pseudo-code for the search proto-

col, and Figure 4 illustrates an example search query.

4.3 Node Join

A new node first contacts its given seed nodes to obtain

their node IDs and, through a random walk, discovers

additional nodes in the network and obtains random key-

words from each node. After collecting a sufficient num-

ber of nodes, it issues a closest node search for each re-

ceived keyword. If the closest node’s ID is different

from the keyword used in the search, then the keyword

is used as the node ID for the new node. Simultaneous

node joins can, with a very small probability, result in

more than one node with the same ID. In this case, the

leaf-set discovery will ultimately alert the nodes of the

collision, and the node with the lower IP address will

drop out and rejoin the system.

Once a unique ID is selected, the new node obtains

additional ring members from the ring members of its

closest node. It also retrieves the keywords and their as-

sociated objects from nodes that are closer to it than the

nodes they are currently at. The protocol for this op-

erates iteratively. It asks each of its k closest nodes if

there are any objects that should be copied to the new

node that it does not already have. If at least one key-

word is closer, the protocol repeats with a larger k until

no new keywords that should be copied are discovered.

The new node can optionally, for each object that was

copied, request the furthest node with a copy of the ob-

ject to remove the object from its repository. This can

assist the underlying replication management protocol in

maintaining the desired replication level.

4.4 Load Balancing

Since search terms tend to follow a Zipf distribution,

the resulting skewed load distribution can lead to ex-

cess routing load on nodes within the vicinity of popular

keywords. Traditional DHT-based load balancing tech-

niques [32,16,36] based on object caching by intermedi-

ate nodes are not applicable to Cubit, as an intermediate

node can not safely short-circuit a search query unless it

can find an exact match. We introduce a load-balancing

technique that supports short-circuiting of queries for ap-

proximate matches.

In Cubit, if the load generated by queries for a popular

keyword w overwhelms the available resources of node

i, the node can send an off-loading request to its moff

closest neighbors (where moff is called the offload fan-

6

Figure 4: The Cubit search protocol operates iteratively to collect more and more information of the target region. In

this example, x is the location of the search term in the keyword space, the solid circles are node A’s peers, empty

circles are additional nodes in the space, and the circle around x are all nodes within edit-distance q of x. Node A first

finds the nmin = 2 closest nodes to x from its peer-set, and request their nmin closest nodes. In this example, two new

closer nodes are discovered and subsequently sent the same query. The protocol terminates when all nodes within the

circle around x, or the nmin closest nodes have been discovered. These nodes are queried for their closest objects to x.

out) requesting them to create a synthetic node located

at w. Nodes receiving such a request create a synthetic

node at w whose IP address and port correspond to their

own, thus enabling queries for that portion of the key-

word space to be terminated at any one of the moff neigh-

bors. The original requester is then tasked with keeping

the moff virtual nodes updated with changes to objects in

the off-loaded region as well as changes to its leaf-set. If

one of the moff nodes becomes overwhelmed, it can re-

quest node i to increase the off-loading factor moff. Vir-

tual nodes are not disseminated via gossip and thus do

not skew the node distribution. This off-loading oper-

ation disperses hot-spots in keyword popularity without

requiring global information or coordination. Figure 5

illustrates the protocol.

4.5 Security

For deployments in adversarial environments, small

changes to the Cubit query routing protocol are necessary

to protect the system against attacks on overlay networks.

These changes may incur small performance penalties to

query routing.

KeywordHijacking. An attacker can arbitrarily choose

as its node ID a keyword for which it wants to return

false information. Such information censorship is possi-

ble with unmodified Cubit as the correct execution of the

node join protocol cannot be verified by other nodes in

the network.

To protect against this attack, Cubit uses a node ID

selection protocol that deterministically constructs IDs

from the IP address and port of the node. Each Cubit is

seeded with the same source of keywords, such as a dic-

tionary, and the hash of the IP address and port is used

as an index into the keywords for selecting the node ID.

A remote node’s ID is verified before it is added into a

node’s ring set or before it is used in query routing. This

modification primarily affects the distribution of objects

across the nodes, so the set of seeded keywords should

resemble the set of all keywords in the system. The

seeded keywords should at least be taken from the same

language as the keywords in the system.

Query Disruption. An attacker can try to disrupt

query routing by returning false information to the query-

ing node. The disruption can be significant in a local-

ized region, prematurely terminating search and inser-

tion queries. This attack can be circumvented without

changes to the existing query protocol; it can be mostly

negated by an increase in the fan-out factor nmin. A query

only terminates once the top nmin nodes to the search

term is found. By increasing the nmin, an attacker has

a proportionally smaller influence on query routing in

the region. Queries can typically just route around non-

cooperating nodes. Increasing nmin comes at a price of

additional overhead in query routing.

SPAM Injection. An alternative method to disrupt the

system is to increase the noise to signal ratio of the key-

words and objects in the system. This attack can be ad-

dressed in a number of ways. Cubit can only provide

object insert capabilities to trusted users by requiring ob-

jects to be signed by a certificate authority. Keyword tar-

geted attacks can be bounded by limiting the injection

rate. A node can reject an insert request if the same node

has been repeatedly inserting the same or similar key-

word. A more complete solution is the introduction of a

distributed reputation system [42,17], where poorly rated

objects are either discarded or are given a lower rank in

response to search queries.

7

Figure 5: Cubit’s load-balancing protocol prevents pop-

ular keywords from overwhelming a node. In this ex-

ample, the keyword “love” is closest to node A and is

generating a high degree of load. Node A creates a vir-

tual node centered around the keyword love, which in-

cludes its leaf set and all objects in the region within p
edit-distance from love. This virtual node is sent to A’s

nearest neighbors. Queries that arrive at these neighbors

for keywords within an edit-distance p of love can be

answered without node A.

Sybil Attacks. Sybil attacks can be launched against

the system, which can allow the attackers to take con-

trol of a region of the keyword space. Countermeasures

such as [29, 14] can be used to lower the join rate of the

attackers, reducing the extent of the attack, or make the

attack prohibitively expensive to undertake, though stan-

dard impossibility results apply [19].

5 THEORETICAL ANALYSIS

The basic search protocol in Cubit performs a decentral-

ized nearest-neighbor search on the node IDs. In this

section we lay out some principled reasons why this pro-

tocol works well, i.e. finds near-optimal matches using a

small number of hops.

We focus on the underlying keyword space – the met-

ric space induced by the edit distance on the set of key-

words. Cubit constructs a small-world-type overlay net-

work on node IDs, which are essentially a random sub-

set of the keyword space, and uses greedy search al-

gorithm on the overlay links. The existing theoretical

constructions of small-world overlays (see [25] for a

comprehensive survey) either assume a specific under-

lying graph (e.g. a grid, a tree, or a hypercube), or

rely on “nice” features of the underlying metric space,

such as bounded growth, treewidth, grid dimension,

or doubling dimension.6 Moreover, the literature pro-

vides several impossibility results for some seemingly

“tractable” metric spaces and “reasonable” overlay con-

6Note that most of these constructions assume the existence of a

suitable overlay, rather than provide a distributed construction thereof

in a peer-to-peer setting.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

F
ra

c
ti
o
n
 o

f
Q

u
e
ri
e
s

Progress Ratio

50th
25th
10th

Figure 6: The progress ratios for 1000 randomly chosen

node IDs and 500 randomly chosen queries. For each

p = 10, 25, 50 we present a CDF plot for the p-th per-

centile progress ratio rp(q), where the CDF is taken over

all queries q. For instance, a high value of r10(q) is a

strong positive evidence: namely, for 90% of node IDs

the progress ratio is better than r10(q).

structions [24, 25, 20]. Therefore we ask: what are

the features of the keyword space that make a small-

world-type construction possible?

The techniques from prior work on small worlds do

not help us answer this question because the keyword

space is nothing like the spaces considered in prior work.

Both the small-world-friendly properties and the corre-

sponding analysis break due to the fact that the distances

in the keyword space are small (recall Figure 6). More-

over, the distances in the keyword space take a very small

number of distinct values.

We develop a new small-world technique by identify-

ing a metric property which is crucial for the algorithm,

and verify that this property holds on the keyword space.

We show that, given a uniform selection of node IDs and

of ring members, this property is sufficient to guarantee

good performance. To the best of our knowledge, this

property has not appeared in the literature.

Preliminaries. Let d(·, ·) denote the edit distance on

strings. Let Q be the set of all keywords. For each string

w and radius r, the ball in the keyword space is denoted

B(w, r) = {u ∈ Q : d(u, w) ≤ r}.

Suppose we are interested in queries with at most 1 mis-

spelling. Then the set of all possible queries is

Q∗ = {w ∈ W : d(w, u) ≤ 1 for some u ∈ Q}.

Each Cubit node has an ID in Q. By abuse of notation

we extend the edit distance d(·, ·) to nodes. Let N be

the number of nodes in the system, and let kring be the

number of peers per ring.

8

The progress ratio. While in prior work search algo-

rithms need to cut the distance to target by a constant

factor in each “phase”, in our setting it suffices to make

any progress (i.e., decrease the distance by one).

Consider a query q ∈ Q∗, and let x be the cur-

rent node. Suppose there exist nodes within distance

r = d(x, q)− 1 from q. If one of these nodes is a peer of
x, then the search algorithm can make progress towards

q. Intuitively, such a peer is likely to exist within dis-

tance r′ from x if the intersection ofB(x, r′) andB(q, r)
is large compared to both balls.7 Therefore, let us de-

fine a quantity which measures the likelihood of making

progress, called the progress ratio of pair (x, q):

ratio(B, B′) =
|B ∩ B′|

max(|B|, |B′|)

PROGRESS(x, q) = max
r′

ratio(B(x, r′), B(q, r))

where r = d(x, q) − 1.

Provable guarantees. To capture the above intuition in

a rigorous form, we need to make explicit some assump-

tions about the selection of node IDs and peers. Let us

say that Cubit is well-formed if node IDs are distributed

uniformly at random over Q, and for each ring-i peers
of node x are distributed uniformly at random over the

nodes y such that d(x, y) = i. 8

The guarantee for a given (x, q) pair can be formulated

as follows:

Lemma 5.1 Suppose Cubit is well-formed. Consider a

query q ∈ Q∗. Fix node x and let r = d(x, q) − 1.
Suppose there are k nodes within distance r from q. Then
one of these nodes is a peer of xwith probability9 at least

1 − O(exp(−PROGRESS(x, q) × min(k, kring))).

Let us use this lemma to derive a “global” guaran-

tee for the search algorithm. We will consider a greedy

search algorithmwhich, at every step, forwards the query

to any peer which is closer to the target if such peer ex-

ists, and stops otherwise. This algorithm completes in a

small number of steps (bounded from above by the dis-

tance from the original node to the query target) but may

stop far from the target. The search protocol used in Cu-

bit builds on the greedy search, but adds more redun-

dancy in order to improve accuracy and thus is likely to

work better in practice.

We show that for a given query q ∈ Q∗ such that the

progress ratio is sufficiently high across all pairs (x, q),

7We compare the intersection with B(q, r) in order to argue that

the former is likely to contain some node IDs as long as the latter does,

regardless of the number of nodes in the system.
8Assuming “... such that d(x, y) ≤ i” would work, too.
9Here and in Theorem 5.2, the probability is over the choice of node

IDs and peers; the search algorithm is deterministic.

the greedy search algorithm finds a k-nearest neighbor
with high probability.

Theorem 5.2 Suppose Cubit is well-formed. Consider a

query q ∈ Q∗ such that for some k ≤ kring and each node
x we have PROGRESS(x, q) ≥ 3

k log N . Then with prob-

ability at least 1−O(N−2) the greedy search algorithm
always finds a k-nearest neighbor of q .

The proofs are relatively straightforward and are omit-

ted from this version due to the space constraints.

Discussion. The take-away from our analysis is that the

progress ratio values on the order of 1/kring tend to im-

ply good performance. We verified that the progress ra-

tio values are typically high in the keyword space. To

this end, we picked 500 queries at random from Q∗,

and 1000 node IDs at random from Q. We computed

PROGRESS(x, q) for every id-query pair (x, q). To repre-
sent these findings, for every fixed query q let rp(q) de-
note the p-th percentile progress ratio for q, that is the
p-th percentile among the values PROGRESS(x, q). In

Figure 6 we show how the values rp(q) are distributed

over the queries.

The assumption on the peer distribution provides mo-

tivation for the Cubit peer-selection protocol which ran-

domizes and diversifies the peer sets.

6 EVALUATION
We implemented the full protocol described in the pre-

ceding section as an Azureus plugin. We evaluate Cubit

through both a large-scale simulation on real-world data-

sets and a physical deployment on PlanetLab [8].

6.1 Simulation

We use two different real-world data-sets to parameterize

our simulations. The first is the Netflix movie database,

consisting of 17, 770 movie titles. We collected our sec-

ond data-set by crawling a popular BitTorrent website for

media files, consisting of over 39, 000 torrents. The two

data-sets represent different extremes, with the Netflix

dataset providing clean input with no duplicate entries,

in contrast to the much noisier BitTorrent data.

Each search query was constructed from keywords of

a randomly chosen movie title, with perturbations intro-

duced to simulate typos and spelling variations. Only

two-thirds of the keywords from the movie title were

used in each search query to closer emulate typical user

behavior. The number of characters per perturbation pa-

rameter (CPP) is used to control the difficulty of a search

query, where a lower CPP value represents a more diffi-

cult query.

In the following experiments, unless specified other-

wise, each test consists of 4 runs of 1024 nodes, 10 nodes

per ring, a search fan-out of 2, a replication factor of

9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

F
ra

c
ti
o
n
 o

f
S

u
c
c
e
s
s
fu

l
Q

u
e
ri
e
s

Number of Characters per Perturbation

NetFlix
BitTorrent

Figure 7: Number of characters per perturbation

(CPP) versus the fraction of successful queries.

4, with 1000 search queries for each run. The results

are presented as the mean result of the runs, and error

bars represent 95% confidence intervals. Each simula-

tion run begins from a cold-start, with each new node

only knowing at most 8 existing nodes in the network;

additional neighbors are discovered through the gossip

protocol. An equal fraction of the movies are introduced

by each joining node.

We first examine Cubit’s accuracy with search queries

with increasing levels of difficulty. A search query is

considered to be successfully resolved if the original

movie it was derived from is a member of the result set,

essentially the first page of results presented to the user,

which is at most 0.1% of the total number of movies in

the system. Figure 7 shows that Cubit can successfully

answer queries with three or more characters per pertur-

bation with more than 90% accuracy. Surprisingly, for

queries where half the characters are incorrectly spelled,

Cubit is still able to successfully resolve them more then

75% and 90% of the time for the Netflix and BitTor-

rent data-sets respectively. As expected, Cubit’s accu-

racy drops to zero when every character is incorrectly

spelled.

The accuracy metric itself does not capture how much

work and how many nodes must be contacted to answer

the query. A DHT can be 100% accurate if it searches

for every misspelled version of a keyword, but would

also be highly inefficient. We illustrate the latent costs

in Figure 8. We use a basic DHT implementation based

on Pastry [37] for comparison, with a base parameter of

16 and a replication factor of 4. The shortest search term

is used by the DHT, as it has the fewest error permuta-

tions. For search queries where exactly one error is intro-

duced to each keyword, a DHT solution requires nearly

900 RPC requests before finding the sought object. In

contrast, Cubit requires only 27 RPC requests, an order

of magnitude fewer than the DHT solution, for a query

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

DHT Cubit

N
u
m

b
e
r

o
f
R

P
C

 R
e
q
u
e
s
ts

 p
e
r

Q
u
e
ry

Figure 8: Number of RPC requests per query for a

DHT-based system and Cubit.

accuracy of more than 96%.

Pairing Soundex hashing, a phonetic algorithm for

mapping English words by sound, with DHT routing, as

proposed in [45], enables approximate matching with-

out resorting to searching for every possible spelling per-

mutation. Figure 9 shows that this approach achieves a

success rate below 50% for the sample data used in our

experiments.

We next examine the scalability of the Cubit frame-

work. To be able to directly compare experiments with

different number of nodes in the network, the number of

nodes per ring is configured to be proportional to the log-

arithm of the system size. Figure 10 shows that increas-

ing system size has a small sub-linear effect on search

accuracy. A factor of eight increase in the system size in-

curs a reduction in accuracy of less than 3%. This stems

from a higher node density in the keyword space, which

in turn, creates a larger set of equidistant closest nodes to

a keyword or a search string. The subset of equidistant

nodes discovered in the search determines whether or not

the target movie is in the set of results. If this slight loss

of accuracy presents a problem, a small increase in the

number of nodes per ring or the search fan-out can com-

pensate.

Figure 11 shows that the number of RPC requests per

movie and per keyword grows sub-linearly with addi-

tional nodes. The RPC requests growth is again due to

the larger set of equidistant closest nodes, around the

keyword or search string. The growth rate is very low;

a factor of eight increase in the system size results in less

than a factor of two increase in the number of RPC re-

quests.

The performance of Cubit depends on several key pa-

rameters, such as the number of nodes per ring and the

query fan-out factor. The number of nodes per ring de-

termines the amount of information a node has of other

nodes in the keyword space. A low nodes per ring value

10

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

DHT-Soundex Cubit

F
ra

c
ti
o
n
 o

f
S

u
c
c
e
s
s
fu

l
Q

u
e
ri
e
s

Figure 9: Fraction of successful queries for a DHT

with Soundex hashing and Cubit.

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 1000 2000 3000 4000 5000 6000 7000 8000

F
ra

c
ti
o
n
 o

f
S

u
c
c
e
s
s
fu

l
Q

u
e
ri
e
s

Number of Nodes

Figure 10: Number of nodes in the system versus the

fraction of successful queries. Increasing the number

of nodes results in a small sub-linear decrease in search

accuracy.

provides poor coverage of the space and can cause early

termination of search queries, where a high nodes per

ring value requires additional state to be kept and main-

tained at each node. Figure 12 shows that accuracy in-

creases dramatically going from two nodes per ring to

four, and quickly reaches a plateau at sixteen nodes per

ring. The figure also demonstrates that larger systems

benefit more from a higher ring size, as additional ring

members are necessary to discern distinct regions in the

keyspace with increasing node density.

The query fan-out bounds the number of closest nodes

a query traverses simultaneously, and can significantly

improve accuracy by circumventing dead-end paths. For

example, a query with a fan-out of two will attempt to

find the two closest nodes to the search term at every

step, essentially interweaving two simultaneous closest

node queries without introducing overlaps in the search

space. Figure 13 illustrate that increasing fanout from

one to two nets a 8% improvement in accuracy, with fur-

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1000 2000 3000 4000 5000 6000 7000 8000

N
u
m

b
e
r

o
f
R

P
C

 R
e
q
u
e
s
ts

Number of Nodes

Per movie
Per keyword

Figure 11: Number of nodes in the system versus the

number of RPC requests.

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0 5 10 15 20 25 30 35

F
ra

c
ti
o
n
 o

f
S

u
c
c
e
s
s
fu

l
Q

u
e
ri
e
s

Number of Nodes per Ring

1024 nodes
2048 nodes
4096 nodes

Figure 12: Number of nodes per ring versus the frac-

tion of successful queries. The number of nodes per

ring affects a node’s coverage of the keyword space.

ther increases netting subsequently smaller gains. How-

ever, the accuracy comes at the cost of requiring addi-

tional RPC requests. Figure 14 shows that the number of

RPC requests increase linearly with the fan-out factor.

We next examine how well the load-balancing proto-

col disperses hotspots in query routing. In this exper-

iment, we overload the system by issuing a misspelled

keyword query from 100 randomly selected nodes. In re-

sponse, the top ten most highly frequented nodes request

their neighbors to create virtual nodes. We then repeat

the queries and compare the concentration of queries that

frequent the top ten most visited nodes before and after

virtual node creation. We vary the offload fan-out γ and

plot the average number of queries that frequented the

top ten nodes and their reduction in average load. Fig-

ure 15 shows that the Cubit load-balancing protocol is

effective at reducing the load at request hotspot through

the introduction of virtual nodes. Even an off-load fanout

of eight is able to reduce the load by more than 40% on

average.

11

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8

F
ra

c
ti
o
n
 o

f
S

u
c
c
e
s
s
fu

l
Q

u
e
ri
e
s

Fanout

1024 nodes
8192 nodes

Figure 13: Search fanout versus the fraction of suc-

cessful queries. Increasing search fanout, which dictates

the number of top candidates to traverse simultaneously,

greatly improves search coverage and accuracy.

 0

 25

 50

 75

 100

 125

 150

 175

 200

 1 2 3 4 5 6 7 8

N
u
m

b
e
r

o
f
R

P
C

 R
e
q
u
e
s
ts

Fanout

Per movie
Per keyword

Figure 14: Search fanout versus the number of RPC

requests. The number of RPC requests per query and

per movie both increase linearly with search fan-out.

6.2 Azureus Deployment

We implemented a Cubit plugin for the Azureus BitTor-

rent client to provide approximate matching of available

torrents. The torrents are currently taken from crawls

of popular torrent websites and from the trackerless tor-

rents stored in the Azureus DHT. Torrents in the system

automatically expire after a set time-out; persistence be-

yond a single time-out requires reinjections, similar to

OpenDHT [35].

The system is currently deployed, with 107 PlanetLab

nodes acting as gateway nodes to the network. More than

10, 000 torrents have been injected into the system, with

hundreds of new torrents injected daily. We examine Cu-

bit’s accuracy on the Azureus deployment by issuing 125

search queries for each CPP value from one to six. Fig-

ure 16 shows that Cubit can successfully answer queries

with two or more characters per perturbation with more

than 90% accuracy. The small size of the deployment

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

L
o
a
d
 R

e
d
u
c
ti
o
n
 o

f
th

e
 T

o
p
 1

0
 N

o
d
e
s
 (

%
)

#
 o

f
Q

u
e
ri
e
s
 t
h
a
t
F

re
q
u
e
n
t
th

e
 T

o
p
 1

0
 N

o
d
e
s

Off-load Fanout

Load Reduction (%)
Average Load

Figure 15: Offload fanout versus load at hotspots.

Cubit’s load balancing protocol is able to significantly

spread the load away from load hotspots.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6

F
ra

c
ti
o
n
 o

f
S

u
c
c
e
s
s
fu

l
Q

u
e
ri
e
s

Number of Characters per Perturbation

Figure 16: Number of characters per perturbation

(CPP) versus the fraction of successful queries in the

Azureus/PlanetLab deployment.

results in better accuracy than predicted by our simula-

tions; we expect a small reduction in accuracy with a

larger deployment. The plugin is available at our project

website 10.

7 RELATED WORK

Cubit is a loosely structured overlay network that most

closely resemble a distributed hash table. It differs from

previousDHTs [37,39,46,33,28,23]by providing a novel

approximate match primitive rather than supporting only

precise lookups.

Query routing in Cubit is similar to routing in

CAN [34], SWAM [7], and Meridian [43]. CAN is a

coordinate-based approach in which each node knows

its immediate closest neighbor in each of the dimensions

and greedily routes to the destination. CAN works best

when the embedded node set resembles a grid or a torus;

it is not designed to work on highly non-homogenous

10http://www.cs.cornell.edu/˜bwong/Cubit.

12

point sets such as the (embedded) keyword space. Bor-

der cases in dealing with churn makes CAN difficult to

implement and deploy in practice. SWAM [7] is sim-

ilar to CAN but partitions the coordinate space into a

Voronoi diagram instead of a regular grid. This pro-

vides SWAM with stronger guarantees in performing

nearest neighbor search, but incurs additional complex-

ity and overhead to the node join protocol. Meridian is

a coordinate-free approach which uses a similar multi-

resolution ring structure as Cubit, but targets a very dif-

ferent underlying metric space – that of Internet laten-

cies, which has high diameter and comparatively regular,

low-dimensional structure.

Several peer-to-peer systems, e.g. [39, 27, 26], use

the overlay routing based on the Small Worlds Net-

works [24]. These systems use a specific virtual space

(e.g. a ring), in which long links are introduced so that

a simple greedy routing protocol finds short routes. In-

herently, such designs support precise lookups only. A

related line of work considers small-world networks on

arbitrary underlying spaces, see [25] for a survey. How-

ever, this line of work does not tackle the issue of con-

structing a suitable overlay in a distributed peer-to-peer

environment.

Past work has proposed to use the Soundex algorithm

to encode keywords by their phonemes before indexing

them in a DHT [45]. Unlike edit distance, Soundex is ap-

propriate only for English keywords and is not effective

against typing errors.

DPMS [5, 6] provides a less general form of approx-

imate matching suitable only for rearranged substrings.

Each document is associated with a set of keywords.

Keywords and queries are broken up into fixed size sub-

strings. A query match is found if its substrings are a

subset of the document’s substrings. The system checks

for subset inclusion probabilistically using Bloom fil-

ters [11, 13]. The matching primitive in DPMS only

accommodates substring matches, does not make a dis-

tinction on substring ordering, and it does not find near-

matches for queries that are misspelled.

Squid [38] creates a multi-dimensional space using a

fixed number of keywords as axes. Each object is rep-

resented by a set of keywords, and its position in the

multi-dimensional space is based on the prefixmatch dis-

tance between the keywords and the axes. The multi-

dimensional space is flattened using space filling curves

into a one dimensional space, allowing storage and

search to be performed on a DHT. This scheme is pri-

marily targeted at range queries on search terms that are

small variations of the axes keywords, rather than for ar-

bitrary search terms.

A number of systems make use of coding techniques

to provide approximate search. In P2P-AS [30], an er-

ror correcting code is introduced that maps small varia-

tions of a keyword into the same hash bin. However, the

cost of scaling the number of correctable errors is pro-

hibitive. Another coding based system is LSH Forest [9],

which uses locality-sensitive hashing [22] to cluster sim-

ilar terms. The system is primarily focused on finding

similar documents rather than keywords.

pSearch [41,40] uses latent semantic indexing on doc-

uments to generate vectors that represent its relative simi-

larity to other documents in the system. CAN [34] is used

to traverse this vector space. The computational over-

head in using latent semantic indexing is significantly

more than edit-distance computations, and the high di-

mensionality vector spaces created by latent semantic in-

dexing requires a large amount of state to be maintained

per CAN node.

8 CONCLUSION

This paper describes Cubit, a novel approach to effi-

ciently perform approximate matching in peer-to-peer

overlays. The key insight behind Cubit is to create a

keyword metric space that captures the relative similar-

ity of keywords, to assign portions of this space to nodes

in a light-weight overlay and to resolve queries by effi-

ciently routing them through this space, allowing Cubit

to quickly identify approximately matching objects to a

given set of search terms. The technique is immediately

applicable to domains, such as peer-to-peer filesharing,

where query terms are provided by users and require a

decentralized approximate match against objects in the

system.

Cubit has been implemented as a BitTorrent client plu-

gin, and evaluated through a PlanetLab deployment as

well as through extensive simulations using large, real-

world data-sets. The evaluation indicates that Cubit is

scalable, accurate, and efficient – it uses an order of mag-

nitude less communication than naive extensions to DHT

systems and is nearly twice as accurate as systems based

on Soundex hashing. The results show that Cubit can

be used to provide approximate matching of keywords.

This overall approach may be applicable to other do-

mains where a similarity-based clustering of objects is

desired.

9 ACKNOWLEDGMENTS

This work was supported in part by NSF-TRUST

0424422 and NSF-CAREER 0546568 grants.

References
[1] Britney Spears Spelling Correction. http://www.google.com

/jobs/britney.html.

[2] Gnutella. http://www.gnutella.com/.

[3] Metric Space. http://en.wikipedia.org/wiki/Metric space.

[4] Netflix Prize. http://www.netflixprize.com.

13

[5] R. Ahmed and R. Boutaba. Distributed Pattern Matching for P2P

Systems. NOMS, Vancouver, Canada, April 2006.

[6] R. Ahmed and R. Boutaba. Distributed Pattern Matching: A Key

to Flexible and Efficient P2P Search. IEEE Journal on Selected

Areas in Communications, 25(1), 2007.

[7] F. Banaei-Kashani and C. Shahabi. SWAM: A Family of Access

Methods for Similarity-Search in Peer-to-Peer Data Networks.

CIKM, Washington, DC, November 2004.

[8] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L.

Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak. Operating

System Support for Planetary-Scale Network Services. NSDI,

San Francisco, California, March 2004.

[9] M. Bawa, T. Condie, and P. Ganesan. LSH Forest: Self-Tuning

Indexes for Similarity Search. WWW, Chiba, Japan, May 2005.

[10] A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting

Scalable Multi-Attribute Range Queries. SIGCOMM, Portland,

Oregon, August 2004.

[11] B. H. Bloom. Space/time Trade-Offs in Hash Coding with Al-

lowable Errors. Communications of the ACM, 13(7), 1970.

[12] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web

Caching and Zipf-Like Distributions: Evidence and Implications.

INFOCOM, New York, New York, March 1999.

[13] A. Broder and M. Mitzenmacher. Network Applications of

Bloom Filters: A Survey. Internet Mathematics, 1(4), 2005.

[14] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wal-

lach. Secure Routing for Structured Peer-to-Peer Overlay Net-

works. OSDI, Boston, Massachusetts, December 2002.

[15] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram.

Querying Peer-to-Peer Networks Using P-Trees. WebDB, Paris,

France, June 2004.

[16] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.

Wide-Area Cooperative Storage with CFS. SOSP, Banff, Canada,

October 2001.

[17] E. Damiani, S. D. C. d. Vimercati, S. Paraboschi, P. Samarati,

and F. Violante. A Reputation-Based Approach for Choosing Re-

liable Resources in Peer-to-Peer Networks. CCS, Washington,

DC, November 2002.

[18] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,

H. Sturgis, D. Swinehart, and D. Terry. Epidemic Algorithms for

Replicated Database Maintenance. PODC, Vancouver, Canada,

August 1987.

[19] J. R. Douceur. The Sybil Attack. IPTPS Workshop, Cambridge,

Massachusetts, March 2002.

[20] P. Fraigniaud, E. Lebhar, and Z. Lotker. A Doubling Dimen-

sion Threshold Θ(log log n) for Augmented Graph Navigability.

ESA, pages 376-386, Zürich, Switzerland, September 2006.

[21] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.

Levy, and J. Zahorjan. Measurement, Modeling and Analysis

of a Peer-to-Peer File-Sharing Workload. SOSP, Bolton Landing,

New York, October 2003.

[22] P. Indyk and R. Motwani. Approximate Nearest Neighbor: To-

wards Removing the Curse of Dimensionality. STOC, Dallas,

Texas, May 1998.

[23] F. Kaashoek and D. Karger. Koorde: A Simple Degree-Optimal

Distributed Hash Table. IPTPS Workshop, Berkeley, California,

February 2003.

[24] J. Kleinberg. The Small-World Phenomenon: An Algorithmic

Perspective. STOC, Portland, Oregon, May 2000.

[25] J. Kleinberg. Complex Networks and Decentralized Search Al-

gorithms. Intl. Congress of Mathematicians, 2006.

[26] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable and

Dynamic Emulation of the Butterfly. PODC, Monterey, Califor-

nia, July 2002.

[27] G. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed

Hashing in a Small World. USITS, Seattle, Washington, March

2003.

[28] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-Peer In-

formation System Based on the XOR Metric. IPTPS Workshop,

Cambridge, Massachusetts, March 2002.

[29] R. C. Merkle. Secure Communications Over Insecure Channels.

Communications of the ACM, April 1978.

[30] A. Mowat, R. Schmidt, M. Schumacher, and I. Constantinescu.

Extending Peer-to-Peer Networks for Approximate Search. SAC,

Fortaleza, Brazil, March 2008.

[31] A. Parker. P2P in 2005. January 2006. CacheLogic presentation.

[32] V. Ramasubramanian and E. G. Sirer. Beehive: O(1) Lookup

Performance for Power-Law Query Distributions in Peer-to-Peer

Overlays. NSDI, San Francisco, California, March 2004.

[33] S. Ratnasamy, P. Francis, M. Hadley, R. Karp, and S. Shenker. A

Scalable Content-Addressable Network. SIGCOMM, San Diego,

California, August 2001.

[34] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A

Scalable Content-Addressable Network. SIGCOMM, San Diego,

California, August 2001.

[35] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S.

Shenker, I. Stoica, and H. Yu. OpenDHT: A Public DHT Service

and Its Uses. SIGCOMM, Philadelphia, Pennsylvania, September

2005.

[36] A. Rowstron and P. Druschel. Storage Management and Caching

in PAST, a Large-Scale, Persistent Peer-to-Peer Storage Utility.

SOSP, Banff, Canada, October 2001.

[37] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Ob-

ject Location and Routing for Large-Scale Peer-to-Peer Systems.

Middleware, Heidelberg, Germany, November 2001.

[38] C. Schmidt and M. Parashar. Flexible Information Discovery in

Decentralized Distributed Systems. HPDC, Seattle, Washington,

June 2003.

[39] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrish-

nan. Chord: A Scalable Peer-to-Peer Lookup Service for Internet

Applications. SIGCOMM, San Diego, California, August 2001.

[40] C. Tang, S. Dwarkadas, and Z. Xu. On Scaling Latent Seman-

tic Indexing for Large Peer-to-Peer Systems. SIGIR, Sheffield,

United Kingdom, July 2004.

[41] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-Peer Information Re-

trieval Using Self-Organizing Semantic Overlay Networks. SIG-

COMM, Karlsruhe, Germany, August 2003.

[42] K. Walsh and E. G. Sirer. Experience with a Distributed Object

Reputation System for Peer-to-Peer Filesharing. NSDI, San Jose,

California, May 2006.

[43] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A Lightweight

Network Location Service Without Virtual Coordinates. SIG-

COMM, Philadelphia, Pennsylvania, September 2005.

[44] B. Wong, Y. Vigfússon, and E. G. Sirer. Hyperspaces for Object

Clustering and Approximate Matching in Peer-to-Peer Overlays.

HotOS Workshop, 2007.

[45] M.A. Zaharia, A. Chandel, S. Saroiu, and S. Keshav. Finding

Content in File-Sharing Networks When You Can’t Even Spell.

Intl. Workshop on P2P Systems, Bellevue, Washington, February

2007.

[46] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An Infras-

tructure for Fault-Tolerant Wide-Area Location and Routing. UC

Berkeley, Technical Report UCB/CSD-01-1141, Berkeley, Cali-

fornia, April 2001.

14

