15-396 Science of teh Interwebs

Preliminaries of Game Theory

Lecture 8 (September 25, 2008)

Strategies for Player 1: $\mathrm{S}_{1}=\{$ WiFi, Wired $\}$ Strategies for Player 2: $\mathrm{S}_{2}=\{$ WiFi, Wired $\}$ $\mathrm{S}=\{$ (WiFi, Wired), (WiFi, WiFi), (Wired, WiFi), (Wired, Wired) \}

We assume that everything a player cares about is summarized in the player's payoff

We also assume that each player knows everything about the game

Prisoner's Dilemma

Suspect 2
Conf No Conf

Best Responses

A strategy $\mathrm{s}_{1}{ }^{*}$ is a best response by player 1 to a strategy s_{2} for player 2 if

$$
\pi_{1}\left(\mathbf{s}_{1}{ }^{*}, \mathbf{s}_{2}\right) \geq \pi_{1}\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)
$$

for all strategies $\mathrm{S}_{1} \in \mathbf{S}_{1}$.

Suspect 2

Conf
 No Conf

If Suspect 2 does not confess, then confessing is a best response for Suspect 1

Dominant Strategy

A strategy $\mathrm{s}_{1}{ }^{*}$ is a Dominant Strategy
for player 1 if $s_{1}{ }^{*}$ is a Best Response to every possible strategy for player 2.

Suspect 2

Conf
 No Conf

Confessing is a dominant strategy for both Suspects!

Player 2

I II

I is a dominant strategy for both players

Optimal Pricing

Firm 2

Neither player has a dominant strategy

Nash Equilibrium

A pair of strategies $\left(\mathrm{s}_{1}{ }^{*}, \mathrm{~s}_{2}{ }^{*}\right)$ is in Nash Equilibrium if $\mathrm{s}_{1}{ }^{*}$ is a Best Response by player 1 to $\mathrm{s}_{2}{ }^{*}$, and $\mathrm{s}_{2}{ }^{*}$ is a Best Response by player 2 to $\mathrm{s}_{1}{ }^{*}$.

Player 2

Coordination Game

Player 2

Nash Equilibria: (L,L), (R,R)

Dove-Hawk

Animal 2

Nash Equilibria: (D,H), (H,D)

Matching Pennies

 Player 2 H T

No pure Nash Equilibria Exist!

Randomized Strategies

Player 2

Player 1 picks H with probability p and Player 2 picks H with probability q

H T

$E[$ Payoff for P1 doing $H]=(-1) q+(+1)(1-q)=1-2 q$ $E[$ Payoff for P1 doing $T]=(+1) q+(-1)(1-q)=2 q-1$ Player 1 will choose H if $1-2 q>2 q-1$. i.e., if $q<1 / 2$ Player 1 will choose T if $1-2 q<2 q-1$. i.e., if $q>1 / 2$

We say that (p^{*}, q^{*}) is a mixed strategy Nash Equilibrium if p^{*} is a best response by player 1 to q^{*} and q^{*} is a best response by player 2 to p^{*}

Player 2

Player 1 is only willing to randomize if the expected payoffs of U and D are equal: $q+4(1-q)=2 q+(1-q)$, so $q=3 / 4$

Goalie

But (U,L) gives each player a payoff of 1, whereas (D, R) gives them 2.

Nash Equilibrium not always socially optimal

$$
t+y
$$

