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Abstract— In this paper, we develop an energy-efficient rout-
ing scheme that takes into account three key wireless system
elements: transmission power; interference; and residual energy.
Since energy is a scarce resource, many energy-aware routing
algorithms have been proposed to improve network performance.
However, previous algorithms have been designed for a subset of
these three main elements, which could limit their applicability.
Thus, our contribution is here to develop a unified routing
algorithm called the Energy-efficient Unified Routing (EURo)
algorithm that accommodates any combination of these above
key elements. We show via simulations that EURo outperforms
the state-of-the-art.

Index Terms— multi-hop wireless network, energy-efficient
routing, SINR, energy conservation, cross layer, simulations.

I. INTRODUCTION

Energy is a precious resource in wireless networks. For
many multi-hop networking scenarios, nodes are battery-
operated, thus requiring efficient energy management to ensure
connectivity across the network. Even when wireless networks
are connected to power outlets, due to interference between
active links the network may demand excessive energy per
unit time (Power) so that the overall performance is reduced.
Since energy efficiency is directly connected to the network
life-time or network capacity, there have been many efforts
to study energy-efficient networks in the wireless network
community [1]. In the case of multi-hop wireless networks,
such as wireless sensor networks [2] and wireless mesh net-
works [3], efficient routing algorithms are critical for network
performance.

In previous works, three main metrics have been used for
energy-efficient routing: transmission power, interference, and
residual battery energy. However, previous works typically
deal with either one or two of these metrics, as illustrated
in Figure 1. For example, in [4], [5], energy-efficient routing
mechanisms have been developed to find Minimum Energy
(ME) routes in multi-hop wireless networks, but these algo-
rithms do not account for the interference with other links nor
battery energy. The authors in [6] study end-to-end QoS con-
straints, but do not consider the impact of routing a new flow

This work was done while both authors were at Purdue University, and
has been supported in party by ARO MURI Award No. W911NF-07-10376
(SA08-03) and NSF grants ANI-0207728, 0626703-CNS, and 0635202-CCF.

S. Kwon is with Samsung Electronics Co., Dong Suwon P.O.BOX 105,
416 Maetan-3dong, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-742, Korea
(email: sungoh@ieee.org)

N. B. Shroff is with the Departments of ECE and CSE, The Ohio
State University, 2015 Neil Avenue, Columbus, OH 43210, U.S.A (email:
shroff@ece.osu.edu)

Tx Power

Interference Residual
Energy

[ME]

[OptSINR]

[LIR, LRR]

[WME, CMAX]

Fig. 1. Previous works for energy-efficient routing: ME, LIR, LRR, WME,
CMAX, OptSINR.

on the interference and power requirements of the network,
i.e., they do not consider how routing a new flow interferes
with ongoing flows in the network. In [7], [8], [9], [10], the
authors choose routes that use only interference between links
as a metric for routing. In [7], [8] Least-Interference Routing
(LIR) algorithms are developed to minimize the amount of
interference caused by a transmission, while in [9], [10],
Least-Resistance Routing (LRR) algorithms are developed
to minimize the amount of interference encountered by a
transmission. These algorithms in [7], [8], [9], [10] may result
in choosing energy-inefficient routes because they do not
explicitly consider energy efficiency and residual energy, but
only interference. In [11], [12], [13], [14], the authors show
that the residual energy plays an important role to improve
network performance and propose the Weighted Minimum
Energy (WME) routing algorithm [11] (it was called CMAX in
[14]), but they do not consider interference among active links.
In [15], the authors show that the interference between links
significantly affects network performance and proposed the
energy-efficient interference-based routing algorithm, called
Optimal SINR Routing (OptSINR). However, the residual
energy is not taken into account.

In practice, the three key elements of transmission power,
interference, and residual battery energy play an important role
in choosing energy-efficient routes. However, because previous
studies have ignored one or more of these metrics, the resultant
algorithms may not be energy efficient in a real wireless



environment, where all of these elements play an important
role. Thus, it is necessary to develop a simple and energy-
efficient algorithm that takes into account all of these critical
metrics.

In this paper, we make the following contributions. We
develop a unified energy-efficient routing algorithm that pa-
rameterizes all the three key metrics: transmission power, inter-
ference between links (or routes), and residual battery energy.
We also show how the proposed algorithm works in different
environments and how the proposed algorithm is related to
other algorithms proposed in previous works. Throughout this
paper, unless stated otherwise, we use boldface notation to
denote either a matrix or a vector.

The rest of the paper is organized as follows. In Section II,
we describe the system model and state our basic assump-
tions. In Section III, we develop an energy-efficient unified
routing algorithm. In Section IV, we study the properties of
the proposed routing algorithm in various environments. In
Section V, we provide numerical results to study the efficacy
of the scheme. We conclude in Section VI.

II. SYSTEM MODEL AND POWER CONTROL

A. System model

We consider a power-controlled wireless network that sup-
ports multi-hop routing, i.e., each node can control its trans-
mission power. We further assume that flow dynamics are over
a much larger time-scale than power control dynamics, so that
the time required for power control to converge is negligible.
The multi-hop wireless network is modeled as a directed graph
G = (N ,L), where N represents the set of nodes and L
the set of edges that represent communication links between
nodes in the network. Each node in N has initial energy εinit

n

for n ∈ N . Each link in L is identified by an ordered pair
of nodes, i.e., the transmitting and receiving nodes. Links
sharing the same frequency interfere with other links when
simultaneously activated. A new service with data ζ to be
transmitted requires a fixed data rate ∆q, so that the service
flow has a fixed duration µ, i.e., µ = ζ

∆q . For this paper, we
assume that a flow will be routed over only a single route for
the entire duration of the flow. We define, E(l), the energy
consumption of link l to be

E(l) = P (l)µl,

where P (l) is the transmission power of link l and µl is
the amount of time it takes the flow to be served at link l.
For simplicity, we do not consider energy replenishment
considered in [11], [16]. However, we can readily modify
the algorithm to include the energy replenishment case. The
extension will be briefly discussed later.

B. Wireless link model

As mentioned earlier, due to the shared nature of the
wireless medium, wireless links interfere with each other. The
impact of interference affects the available capacity of these
links.

We define a function g(·) that maps the achievable band-
width (channel capacity) r(l) to the corresponding signal-to-
interference-and-noise-ratio (SINR) θ(l) as follows:

θ(l) = g(r(l)). (1)

We assume that the function g is increasing and differentiable
with respect to r(l), almost surely.

In the case of the band-limited additive white Gaussian
noise (AWGN) channel, the channel capacity (also called the
Shannon’s capacity [17]) at link l, r(l), is given by

r(l) = B(l) log (1 + θ(l)) ,

where B(l) represents the channel bandwidth at link l. Hence,
(1) becomes

θ(l) = exp
(

r(l)
B(l)

)
− 1.

In the low SINR region, the available capacity in (1) is often
assumed to be a linear function of SINR [18], that is expressed
as

θ(l) = Kr(l), (2)

where K is a constant.
Since there exists a one-to-one mapping from a minimum

bandwidth to the corresponding minimum SINR, as in (1), we
replace a rate constraint by an SINR constraint as a measure
of the minimum quality required on the link. We let ∆c denote
an additional SINR constraint at a link when a new flow with
an additional bandwidth ∆q comes into the link. In the case
of the linear SINR regime, the additional SINR constraint ∆c
is equal to K∆q from (2).

The SINR θ(l) at each link l is defined as

θ(l) =
G(T (l), R(l))P (l)∑

m:m !=l P (m)G(T (m), R(l)) + σR(l)
(3)

=
G(T (l), R(l))P (l)

ηR(l)
,

where T (l) is the transmitting node of link l, R(l) is the receiv-
ing node corresponding to link l, σR(l) is the ambient noise
at node R(l), P (l) is the transmission power at node T (l),
G(T (m), R(l)) is the path gain between transmitter T (m) and
receiver R(l), and ηR(l) is the sum of interference and noise
at node R(l). The path gain G(T (m), R(l)) is modeled as

G(T (m), R(l)) = KT (m)R(l)d
−δ
T (m)R(l), (4)

where KT (m)R(l) is the attenuation factor that models power
loss due to shadowing, dT (m)R(l) is the distance between
nodes T (m) and R(l), and δ is the path loss exponent that
typically ranges between 2 and 6 [19].

C. Power control

Recall that L is the set of links. We let P denote the power
vector defined by P = (P (1), · · · , P (LL))T , where P (l) is
the power of link l, and LL is the number of links in set L.



Each link has a minimum requirement c(l) in terms of SINR,
i.e.,

θ(l) ≥ c(l). (5)

Using (3), we can rewrite the above inequality (5) in matrix
form as

P ≥ FP + b, (6)

where b = (b(1), · · · , b(LL))T such that b(l) = c(l)σR(l)
G(T (l),R(l)) ,

and F is the LL × LL matrix with (l, m) entry

F (l, m) =

{
G(T (m),R(l))c(l)

G(T (l),R(l)) , l %= m

0 , l = m.
(7)

Matrix F defined by (7) has non-negative elements, and
since the links interact with each other, it is also irreducible.
Hence, we have the following theorem [20] from the Perron-
Frobenius theorem and standard matrix theory [21].

Theorem 1: The following statements are equivalent:
1) ρF ≤ 1 where ρF is the Perron-Frobenius eigenvalue of

F.
2) There exists a vector P > 0 such that (I− F)P ≥ b.
3) (I− F)−1 exists and is positive componentwise.

If there exists a positive feasible vector P, it follows from
Theorem 1 that (I− F)−1 exists. From (6) we obtain

P ≥ (I− F)−1b.

Hence, we have the Pareto optimal1 solution (I− F)−1b
that supports the network topology defined by links in L,
and their associated minimum requirements. One can use a
distributed power control algorithm [20], [22] to achieve this
minimum power vector. As is well known, link scheduling
can improve network performance. However, in general, when
a link scheduling algorithm is used, some links will not be
activated. This means that those entries in F, for which the
links are not activated, will be zero so that (I− F) will not
have a full rank. In this case, the optimal solution (I− F)−1b
can be found using a Moore-Penrose inverse matrix [23]. The
entry of the solution has non-negative values when the link is
activated, and zero otherwise.

We let (I− F)−1
(l) denote the lth column vector of matrix

(I− F)−1 and (I− F)−1∑ n the element-wise sum of vector
(I− F)−1

(l) . Then, the minimum energy increment ∆E∗
l of

each link in the network, when a new flow with additional
constraint ∆c and duration µ arrives at link l, can be expressed
as

∆E∗
l = ∆P∗

l µ

= (I− F′)−1
(l)

(
ηR(l)

G(T (l), R(l))

)
∆c µ, (8)

where ∆P∗
l is the minimum power addition required in the

network to serve the new flow at link l, F′ is the matrix
corresponding to F in the new environment, and ηR(l) is the

1P∗ is said to be Pareto optimal if P∗ is feasible and any feasible P
satisfies P ≥ P∗ componentwise.

sum of interference and noise at node R(l). (See [24] for
details of how to obtain (8))

Similarly, when a flow is served by a set Λ of links at a
given time slot, the increased energy consumption ∆EΛ can
be expressed as

∆E∗
Λ =

∑

l∈Λ

(I− F′)−1
(l)

(
ηR(l)

G(T (l), R(l))

)
∆c µ.

D. Problem formulation

The problem that we would like to solve is to find a route in
order to maximize the throughput over some finite time period
[0, t], i.e., for a given scheduling policy S, we would like to
solve the following problem:

(A) arg maxR J(P, S, R, ζ, t)
subject to θ(l) ≥ c(l) ∀l ∈ L

Pmax(l) ≥ P (l) ≥ 0 ∀l ∈ L,

εn ≥ 0 ∀n ∈ N ,

where J(P, S,R, ζ, t) is the number of successfully delivered
packets over time duration [0, t] when route R is chosen as
the new flow ζ, P is the transmission power, θ(l) is SINR at
link l, c(l) is the minimum requirement of link l in terms of
SINR, and εn is the remaining energy at node n.

III. UNIFIED ENERGY-EFFICIENT ROUTING (EURO)
ALGORITHM

To solve problem (A), we use a two-step approach. We first
review the case without interference constraints. We then add
interference constraints to develop a unified routing algorithm.
We begin without considering scheduling, and then extend the
developed algorithm to the case when the links are randomly
scheduled.

A. Energy-efficient routing for battery-operated networks in
the absence of interference

In [11], it is shown that WME routing is an asymptotically
optimal solution to problem (A). In the presence of interfer-
ence, WME can be expressed as follows.

(B) arg minR

∑

l∈R

W∆El

subject to Pmax(l) ≥ P (l) ≥ 0 ∀l ∈ L,

εn ≥ 0 ∀n ∈ N ,

where W is a weight vector that is a function of the residual
energy of nodes when a new flow arrives to the network, and
∆El is the energy increment over the network when the new
flow is served at link l. In the interference-free environment,
the lth entry of ∆El is equal to the transmission energy
increment of link l, which is used in [11], [14] when a new
flow traverses over link l. The weight vector W is a row vector
W = (W (1),W (2), · · · ,W (LL)). As in [11], [14], we define
the lth entry W (l) as

W (l) = εinit
T (l)(γ

λ(l) − 1), (9)



where γ is a constant, λ(l) is the ratio of the depleted energy
to the initial energy at the transmitter T (l) of link l. In the
case when energy replenishment is available (e.g. [11], [16]),
the weight of (9) can be extended by adding a multiplication
factor of the replenishment as shown in [11].

Let E∗ be a Pareto optimal solution required to meet the
SINR requirement. The weights defined in (9) are always
nonnegative. Hence, for a given route R, we have the following
inequality:

∑

l∈R

W∆El −
∑

l∈R

W∆E∗
l

=
∑

l∈R

W (∆El −∆E∗
l )

=
∑

l∈R

W ((El −E)− (E∗
l −E))

=
∑

l∈R

W (El −E∗
l )

≥ 0,

where E, El, and E∗
l represent the present transmission power

of links, the transmission power of links when a new flow
comes into link l, and the Pareto optimal transmission power of
links when a new flow comes into link l, respectively. Hence,
the Pareto optimal E∗ makes the weighted energy also Pareto
optimal.

B. Unified energy-efficient routing
We now are in a position to solve problem (A), which is

really the problem (B) we considered above, but with interfer-
ence constraints. Since the Pareto optimal energy makes the
weighted energy Pareto optimal, as explained in the previous
subsection, our energy-efficient solution to (A) is expressed
as

(C) arg minR

∑

l∈R

W∆E∗
l

subject to Pmax(l) ≥ P (l) ≥ 0 ∀l ∈ L,

θ(l) ≥ c(l) ∀l ∈ L,

εn ≥ 0 ∀n ∈ N ,

where ∆E∗
l stands for the minimum energy increase over the

network for the new incoming flows at link l. As ∆c goes
to zero, F′ in (8) converges to F element-wise so that the
minimum energy ∆E∗

l that meets all the SINR constraints
becomes

∆E∗
l = (I− F)−1

(l)

(
ηR(l)

G(T (l), R(l))

)
∆c µ. (10)

When the minimum SINR for the incoming flow is infinites-
imally small, our energy-efficient routing algorithm can be
formally expressed as

arg min
R∈R(i,j)

∑

l∈R

(
W(I− F)−1

(l)

(
ηR(l)

G(T (l), R(l))

))
(11)

subject to Pmax(l) ≥ P (l) ≥ 0 ∀l ∈ L,

θ(l) ≥ c(l) ∀l ∈ L,

εn ≥ 0 ∀n ∈ N ,

where R(i, j) is the set of possible routes from node i to
node j. Instead of ∆El, the exact value of the network energy
increment over a route, we can choose a minimum energy
route from the interference measured at R(l), ηR(l)

G(T (l),R(l)) , and
(I− F)−1

(l) , as described below.

Energy-efficient Unified Routing (EURo) algorithm
Construct a directed graph G = (N ,L).
For an incoming flow, check if resources are available.
If yes,

Measure the interference strength at all nodes in N .
Calculate (I− F)−1 based on path loss and constraints.
Calculate the present weight vector W as in (9).
Calculate link cost W(I− F)−1

(l)

(
ηR(l)

G(T (l),R(l))

)
∀l ∈ L.

Apply a shortest path algorithm, e.g. Dijkstra’s algorithm or
Bellman-Ford algorithm, to find the minimum cost route.

Otherwise,
Reject the incoming flow.
Notify the rejection to the source.

In the EURo algorithm outlined above, each node checks the
availability of two resources for an incoming flow: battery
energy and transmission power. If the better energy is depleted
or the transmission power is saturated at a node, the node
denies the incoming flow.

We now assume that links are randomly scheduled and that
the statistics of the links are available at each node. Let Π
be an LL × LL diagonal matrix such that the (l, l) entry of
Π is defined as the probability that link l is activated. We let
πm|l denote the conditional probability that link m is active
given that link l is active. From [15], the additional expected
network energy ∆Ēl is given by

∆Ē∗
l =

(
Π(I− F̄)−1

)
(l)

(
η̄R(l)

G(T (l), R(l))

)
∆c µ,

where η̄R(n) is the average of the interference and noise
measured at the receiving node of link n when link n is active,
and F̄ is an LL × LL matrix with entry (l, m) defined as

F (l, m) =

{
πm|lG(T (m),R(l))c(l)

G(T (l),R(l)) , l %= m

0 , l = m.

Hence, our energy-efficient routing algorithm for random link
scheduling schemes can be expressed as

arg min
R∈R(i,j)

∑

l∈R

(
W

(
Π(I− F̄)−1

)

(l)

η̄R(l)

G(T (l), R(l))

)

subject to Pmax(l) ≥ P (l) ≥ 0 ∀l ∈ L,

θ(l) ≥ c(l) ∀l ∈ L,

εn ≥ 0 ∀n ∈ N .

The algorithm procedure is also similar to the procedure that
we have discussed above.



C. Distributed algorithm
Our routing algorithm (11) described in the previous sub-

section requires global information such as W and (I− F)−1
(l) .

The global information for link costs does not lead itself
immediately to distributed implementation. The computational
complexity for link costs exponentially increase as the number
of nodes goes by. However, since wireless signal strength
exponentially decays in terms of distance, as in (4), distant
wireless links barely affect each other. In large networks,
update information could be also stale. Hence, gathering global
information is not effective.

To reduce the computational complexity, we define the in-
formation range as the range for a node to locally disseminate
its information (e.g. residual energy and minimum SINR to
transmit) to neighboring nodes in the range, as depicted in
Figure 2. The computational complexity of the local informa-
tion is independent of the network size but depends on only
the number of neighboring nodes to share information.

For a distributed version of EURo, we can employ a dis-
tributed shortest path routing algorithm such as the Bellman-
Ford algorithm [25]. For link costs in (11), we use W̃ and
(I− F̃)

−1
, instead of W and (I− F)−1 that need global

information, where W̃ and (I− F̃)
−1

are correspondingly
reduced matrices using local information from nodes in the
preset information range of a node. The interference and noise
strength ηR(l) and the path gain G(T (l), R(l)) in (11) are
locally measurable [19]. Hence, each node can locally compute
link costs for the distributed algorithm.

Nodes in the network can update the information for rout-
ing in several ways [26]. A simple method is that nodes
periodically broadcast their status to other nodes, and their
neighboring nodes update their stored information. Another
way is to use piggy-backing. When the status information is
relatively small compared to the data being transmitted, each
node attaches its information to transmitting data in order to
disseminate the information. A control channel can be used for
information distribution. The combination of these methods is
also an alternative option to implement.

IV. PROPERTIES OF THE UNIFIED ROUTING ALGORITHM

We study the properties of the unified routing algorithm
proposed in the previous section.

The metric used in our routing algorithm (11) is composed
of the product of three components that represent residual
energy, transmission power, and the impact of the transmission
power. In various wireless environments as summarized in
Table I, we study how each component plays a role and show
how our routing algorithm relates to other previous routing
algorithms.

A. No interference and infinite energy
We assume here that interference is negligible and that each

node’s energy is unlimited. For example, a system is connected
to an outlet and the arrival rate into the system is very low.

Since there is no interference, matrix F becomes a zero
matrix. The unlimited energy constraint means that the weight

W (l) is constant for all links. In the case of homogeneous
networks, the ambient noise is identical. Hence the algorithm
becomes

arg min
R∈R(i,j)

∑

l∈R

(
W(I− F)−1

(l)

(
ηR(l)

G(T (l), R(l))

))

= arg min
R∈R(i,j)

∑

l∈R

(
σR(l)

G(T (l), R(l))

)

= arg min
R∈R(i,j)

∑

l∈R

(
1

G(T (l), R(l))

)
.

This is then the same as the Minimum Energy routing al-
gorithm so that under this assumption our routing algorithm
performs at least as well as the Minimum Energy routing
algorithm.

B. No interference with energy limitation

We assume that interference is negligible and that each node
is operated using a battery. In this case the weight of each
node depends on the residual energy. However, since there
is no interference, matrix F becomes zero as in the previous
case. Hence, in this environment our routing algorithm can be
simplified as

arg min
R∈R(i,j)

∑

l∈R

(
W(I− F)−1

(l)

(
ηR(l)

G(T (l), R(l))

))

= arg min
R∈R(i,j)

∑

l∈R

(
W (l)

σR(l)

G(T (l), R(l))

)
.

This algorithm is now identical to the Weighted Minimum
Energy routing algorithm, given in [11], [14]. In this wireless
environment our routing algorithm can distribute relay load
over the network in terms of residual energy so that the per-
formance of our routing algorithm equals that of the Weighted
Minimum Energy routing algorithm.

C. Interference and infinite energy

We assume that interference is significant and that each node
is connected to a power outlet such as a wireless mesh network
with a significant incoming flow rate.

Since there is no constraint on the available energy (power
outlet is available), the weight of each node in (11) is identical.
Hence our routing algorithm can now be expressed as

arg min
R∈R(i,j)

∑

l∈R

(
W(I− F)−1

(l)

(
ηR(l)

G(T (l), R(l))

))

= arg min
R∈R(i,j)

∑

l∈R

(
(I− F)−1∑ l

(
ηR(l)

G(T (l), R(l))

))
,

which is identical to the OptSINR routing algorithm [15]. In
this wireless environment, our routing algorithm performs as
well as OptSINR.



TABLE I
COMPARISON OF ALGORITHMS: WE CONSIDER FIVE DIFFERENT ENVIRONMENTS DEPENDING ON CONSIDERED METRIC. WE MARK WITH AN O WHEN AN

ALGORITHM CONSIDERS THAT METRIC, OTHERWISE, WE MARK AN X.

Case (Section) Measure elements AlgorithmsInterference Transmission power Residual energy
1 (IV-A) X O X ME
2 (IV-B) X O O WME, CMAX
3 (IV-C) O O X OptSINR
4 (IV-D) O X X LIR, LRR

5 O O O EURo

D. Interference only

We consider the case when only interference is used as the
metric for choosing a route. The case can be categorized into
two cases: minimize the interference experienced by a route,
and minimize the interference induced by a route.

To study routing algorithms that consider only interference,
we need to investigate the physical meaning of (10). Since
(I − F)−1 = I + F + F2 + F3 + · · · , the additional energy
over the network can be rewritten as follows.

∆E∗
l

= (I∑ l + F∑ l + F2∑ l + · · · )
(

ηR(l)

G(T (l), R(l))

)
∆c µ

= (0, · · · , 0︸ ︷︷ ︸
l−1

,

(
ηR(l)

G(T (l), R(l))

)
∆c µ, 0, · · · , 0︸ ︷︷ ︸

LL−l

)T

+F∑ l

(
ηR(l)

G(T (l), R(l))

)
∆c µ

+F2∑ l

(
ηR(l)

G(T (l), R(l))

)
∆c µ + · · · . (12)

The first term in (12) represents the amount of additional
energy at each link when link l serves a new flow with
additional constraint ∆c. The second term is the amount of
additional energy over the network when link l increases its
transmission energy by the first term to serve the new incoming
flow. In the same way, each term in (12) represents the iterated
energy over the network induced by interference.

The routing algorithm to minimize the interference experi-
enced by a route, called LRR [9], can be expressed as

arg min
R∈R(i,j)

∑

l∈R

ηR(l),

where ηR(l) is the interference measured at the receiver node
R(l) of link l.

From Equation (12), the routing algorithm minimizing the
experienced interference is the same as the minimization of the
element-wise summation of only the first terms when the path
gain of link l is ignored. Since the impact of the interference on
the network (the second and higher order terms in (12)) and the
path gain are ignored, the routing algorithm could choose less
energy-efficient routes than OptSINR and our unified energy-
efficient routing algorithm.

In [7], [8], the following routing algorithm is used to
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Fig. 2. System setting: a seven by seven grid network. R Info represents
the radius of a information range for a distributed algorithm

minimize the interference induced by a route, called LIR2

in [7],

arg min
R∈R(i,j)

∑

l∈R




∑

m∈L−{l}

G(T (l), R(m))



 , (13)

where G(T (l), R(m)) is the path gain from the transmitter
of link l to the receiver of link m. This algorithm (13)
corresponds to (12), when we fix G(T (l), R(l)) ∀l ∈ L to
be a constant value and ignore the transmission power of link
l (the first term in (12)) and the impact of interference on the
network (the third and higher order terms in (12)). Thus, the
routing algorithm (13) results in choosing less energy-efficient
routes than OptSINR as well as our routing algorithm.

From IV-A, IV-B, IV-C, and IV-D, we show that our
routing algorithm includes all the factors considered in the
previous works and adapts to different network environments.
Furthermore, our routing algorithm performs better than or at
least as well as the other algorithms that are designed under
marginal environments.

2The original routing algorithm proposed in [7] defines the potential
interference as the number of links of which interference levels are above
a certain threshold. To generalize the problem, we use here the total amount
of interference level.



V. SIMULATIONS

In this section we use simulations to verify the performance
of our algorithm EURo. We compare the performance of
EURo to WME, LIR, and ME. Other algorithms have been
extensively studied in comparison with WME and OptSINR
in [11], [15], and WME and OptSINR have been found to
perform better than these other algorithms. Therefore, in this
section we compare the performance only between these four
algorithms. In the first three scenarios, we consider the four
algorithms with global information to obtain the achievable
performance in each marginal environment. In the final sce-
nario, we compare distributed EURo (dEURo) with other four
algorithms (EURo, WME, LIR, and ME).

For all the algorithms compared, we assume that the nodes
employ power control. In each case, when sending flows
through the routes chosen by the algorithm, each node adjusts
its transmission power to satisfy the new minimum constraint
at the links. For the simulations, we use a seven by seven grid
network, and the separation between adjacent nodes in the
x− and y− coordinates is one unit of distance, as depicted in
Figure 2. We fix the path loss exponent at three, the attenuation
factor at one, and the ambient noise at one. We assume that
all ambient noise is identical and that each link is directional.
We assume that wireless links are linear, as defined in (2), and
that the required SINR of a new service flow is fixed at 0.1(-
10 dB). In an IS-95 direct sequence code division multiple
access (DS-CDMA) system with bandwidth 1.23 MHz, the
minimum SINR for a 9.6 kbps channel is -14 dB (0.3981)
[27]. We set a minimum SINR for each incoming service flow
at -10 dB in this simulation.

For link scheduling, we use the fixed and periodic link
scheduling scheme used in [15], [28]. We fix γ in (9) at 200
and a packet length at 200 slots. For each simulation, we use
10 different random seeds and average the performance.

For dEURo, we fix the information range of each node at 1.5
distance units, as illustrated in Figure 2, so that only adjacent
neighboring nodes can share the information to compute
link costs for distributed shortest path routing. To update
local information, each node periodically announces its status
information to its neighbors via a control channel.

We define the number of partitions as the number of
transmission failures due to depleted relay nodes and use this
measure to compare the performance of the various schemes,
as in [11].

A. No interference

We first consider the case when there is no interference
between routes. The service times of flows here do not overlap
in the networks so that routes do not interfere with each other,
and each node initially has 10 units of energy. In this case, the
metrics of WME and EURo are identical so that EURo works
the same as WME, as shown in Figures 3 and 4. Because they
take into account residual energy in their cost functions, WME
and EURo outperform LIR and ME. Since LIR can distribute
load over the network better than ME, for a given number
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Fig. 3. Accumulated throughput versus the number of partitions when there
exists no interference between links
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Fig. 4. The minimum remaining energy versus the number of arrived packets
when there exists no interference between links

of node partitions, LIR successfully delivers more packets to
their destinations than ME.

B. Impact of interference
In this subsection, we consider the impact of interference

on the algorithms. We assume that the initial battery energy
of each node is 10 units of energy. For simplicity, we fix
the ongoing link from node 39 to node 46 in Figure 2. The
ongoing link continuously transmits a flow with 2 dB SINR.
The arrival rate is assumed to be small enough for flows to
not overlap. In this environment, EURo outperforms the other
algorithms.

Figure 5 shows the number of successfully delivered flows
versus the number of partitions. EURo is almost constant over
the number of partitions. However, due to interference, routes
chosen by WME expend more energy than those of EURo, so
that WME results in a smaller throughput. Compared to the
previous case V-A, WME still performs better than LIR, but
the performance differential is reduced.
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Fig. 5. Accumulated throughput versus the number of partitions when links
interfere with each other
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Fig. 6. The minimum remaining energy versus the number of arrived packets
when links interfere with each other

Figure 6 shows the minimum energy among the nodes in
the network after every transmission. Since the impact of
interference between the ongoing link and new routes, the
energy consumption rate of WME is steeper than EURo, which
considers the residual energy and the interference.

C. Impact of unevenly distributed initial energy
This scenario includes heterogeneous sensor networks. Even

in homogenous network environments, multiple deployments
of nodes can make the initial battery levels uneven. Under the
same environment as in the previous subsection, we consider
the impact of unevenly distributed initial battery energy. We
assume that the initial battery energy of the network follows a
uniform distribution between 5 and 15 units of energy so that
the mean of the distribution is 10 units of energy. Due to the
variation of battery energy, the weights W (l) in the algorithm
play a more important role for choosing a route than those
in the homogeneous battery case. Hence the performance of
WME shown in Figures 7 and 8 is closer to the performance
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Fig. 7. Accumulated throughput versus the number of partitions when battery
energy is unevenly distributed over the network
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Fig. 8. The minimum remaining energy versus the number of arrived packets
when battery energy is unevenly distributed over the network

of EURo compared to the previous case V-B.

D. Impact of random arrival flows

To study the impact of random flow arrivals on the routing
algorithms, we fix the initial energy of each node at 10 units
and compare the performance with two different arrival rates
of 0.025 and 0.5 packet per slot, as shown Figures 9 and 10.
When the arrival rate is low, the average of the flows in the
network is low so that the performance is close to, but slightly
poorer than the performance in the case when there is no
interference, as in Figure 9. In the case when the arrival rate is
high, due to interference between the links, the algorithms that
do not consider the impact of interference are more affected
than EURo, as shown in Figure 10. Even if EURo uses only
local information from adjacent neighborhoods, it outperforms
other routing algorithms. As we would expect, the performance
of dEURo the distributed version which uses only truncated
information, is slightly poorer than EURo.
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Fig. 9. Accumulated throughput versus the number of partitions when links
interfere with each other when arrival rate is 0.025 packet per slot
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Fig. 10. Accumulated throughput versus the number of partitions when links
interfere with each other when arrival rate is 0.5 packet per slot

VI. CONCLUSION

In this paper, we have developed EURo, an energy-efficient
unified routing scheme. Unlike previous works, the proposed
algorithm simultaneously takes into account three critical sys-
tem parameters: transmission power, interference, and residual
energy. We show that our algorithm maps to the state of the
art, when certain quantities are kept fixed. Via simulations
we show that our algorithm outperforms other energy-efficient
routing algorithm in various environments. Even distributed
version of EURo that uses local information outperforms other
routing algorithms that use only a subset of the three system
metrics.
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