
ASOSI: Asymmetric Operating System Infrastructure

Yair Wiseman

Computer Science Department

The Open University of Israel

Raanana, 43107

ISRAEL

wiseman@openu.ac.il

Keywords: Operating Systems, Process Scheduling, Parallel and Distributed Systems, Memory Management.

ABSTRACT

At the present time, when the usage of

super-computers has been brought into play and

turned out to be more widespread, the research of

Asymmetric Operating Systems has been gathering

speed, because super-computers more often than not

run an Asymmetric Operating System. In this paper

some new algorithms and implementations designed

in our group and based on our ASOSI framework are

presented.

1. INTRODUCTION

Asymmetric Operating Systems [1] are

designated for systems containing a cluster of

computers. In such systems, there is one "master"

computer, whereas the others are "slaves". The

"master" sets the processes' scheduling of the

"slaves". In such a manner most of the scheduling

activity is done by the "master". However, the

"slaves" also have an important responsibility. They

inform the "master" about the nature of the running

jobs. Based on these reports, the "master" can decide

more efficiently about the scheduling resolution.

Distributed and parallel computing machines

[2] put forward enhanced processing ability for their

consumer by enabling the employment of several

processors for each of an application' jobs. The global

performance of such parallel/distributed systems is

typically gauged by their job throughput, response

time, and job wait time [3].

It is obvious that parallel systems strive to

make the most of their resources, to augment

throughput and to reduce response times. The various

jobs are different in their computing resource

consumption; therefore, the order in which the jobs

are scheduled by the operating system and the

manner they consume the system resources, have an

effect on the overall functioning of the computing

system.

The scheduler is a function of the operating

system that admits jobs to the processors. The

operating system also assigns other required

computing resources for the jobs by other functions.

The algorithms employed by the operating system

with the intention of making a decision how to assign

jobs to the system’s processors influence the

performance of the system.

When this issue is discussed with regard to

super-computers, the challenge becomes even more

intense. The price of a super-computer is usually very

high, so a purchaser of such a system strives to obtain

the best possible performance. Each additional job

which the system is capable to execute is of

advantage to the system purchaser.

 Finding the optimal scheduling is

impossible, because the operating system cannot

know in advance what the needs of the processes will

be. Gang scheduling [4] is a scheduling algorithm

that strives for a better performance of parallel and

distributed systems. The Gang Scheduling algorithm

facilitates simultaneous scheduling of multiples jobs

on the system’s processors. Afterward, the group of

the executed jobs will be switched after predefined

time slices.

These activities, needless to say, put in

additional computational and resource overheads on

the operating system, that in charge of the general

system’s resources [5]. With the aim of making the

Gang Scheduling algorithm applicable, systems must

pay attention to these concerns. Consequently,

several enhancements have been developed over the

years. The enhancements come into being either by a

deeper examination of the jobs’ characteristics or by

accompanying the fundamental algorithm with

supplementary scheduling functions.

2. PAIRED GANG SCHEDULING

As has been mentioned one of the most

important components in the operating system is the

scheduler. The role of the scheduler is determining

which process the CPU serves at any time.

Asymmetric Operating Systems are designated for

systems which contain a cluster of computers. There

are several ways to implement the operating system

scheduler. In this section we will introduce our

scheduler.

When a computer cluster is used to run

several parallel jobs concurrently, there are well-

known performance benefits to be obtained if the

process scheduling is coordinated so that all the

processes of each parallel job run at the same time.

Currently one of the most popular schemes for

coordinated scheduling is Gang Scheduling. Gang

scheduling enables processes in the same job to run at

the same time. This usually yields better performance

for communicating processes; however, there are

many problems associated with conventional gang

scheduling, such as wastefulness in resource

employment and job performance, which have

slowed down its widespread embracing.

Usually, using gang scheduling provides

better performance for compute-bound

communicating processes [6]; however, I/O-bound

processes bring about the CPUs to be unoccupied at a

significant percent of the time, whereas there are

other processes that yearn for being executed. At one

fell swoop, the influence on the disk behavior is the

reverse: I/O-bound processes retain the disks full of

activity, whereas compute-bound processes make the

disk idle. As a matter of fact, it is not easy to keep

upright the balanced use of the CPUs and the disks in

applications that have large computation and I/O

needs [7].

The focal point of Gang Scheduling is

assigning as many processors to an application as are

required at the same time. If this assignment is

succeeded, it will allow the application to prevent

processes from being blocked while they are waiting

for the communications with other processes to come

to an end, since it is assured that the looked-for

process is running and making progress, so it is

reasonable to wait for this process and since there is

nothing else to be executed on the processor because

all the job's processes are assigned.

Essentially, if the scheduler assigns two or

more processes to each processor, it may cause

circumstances where one process has to wait for

another process to be rescheduled, because it is not

currently being executed. Therefore, Gang

Scheduling does its best to get the most out of

processors for the current job, at a potential sacrifice

of global system performance demotion.

Another option for scheduling rather than

Gang Scheduling can be using the local scheduling

autonomously on each processor of the cluster. The

local scheduler can be any algorithm such as Round

Robin, or a priority-based algorithm such as the

LINUX scheduler or UNIX scheduler. If this

alternative is chosen, a process that has to wait for

another process should be blocked, because the

awaited process is most likely not being executed and

the processor has more important tasks to execute

rather than keeping itself executes loops of busy wait.

Practically, local scheduling prioritizes

global system performance, at the potential price tag

of harming the performance of jobs that execute

many communication operations; however, the added

context switches induced by the fine grain

communication may cause an extra overhead and an

improper use of the processors [5].

If the scheduler is able to identify the

behavior of every gang, this information can be

utilized to facilitate a balance between the CPU-

bound processes and the I/O-bound processes and

keeping both the CPU and the disks busy.

ASOSI implements the scheme of matching

pairs of gangs [8,9], a compute-bound gang and an

I/O-bound gang. The motivation for such a matching

is that such gangs will almost not interfere with each

other's resource consumption, as they make use of

different devices; hence, these gangs will be of the

opinion that they are unaccompaniedly executed in

the system. If the I/O execution time is not negligible

in the processor time, an overlap of the I/O execution

along with the processor activity may produce a

better functioning [10].

Paired gang scheduling endeavors to find the

middle ground between the scheme of gang

scheduling and the scheme of local scheduling, with

the purpose of make the most of the system resources

without causing meddling with the processes of

different jobs. It meets both of the schemes halfway.

On one hand the processes will not wait a long time

because a process requiring the processor during

most of its execution will be matched with a process

that in most of its execution requires an I/O device,

so they will not meddle with each other's needs. On

the other hand, the processor and the I/O devices will

be kept busy if there are jobs that are necessitated to

be executed.

3. PARALLEL JPEG DECOMPRESSION

Another implementation that was developed

on the ASOSI framework is the parallel JPEG

decompression system.

JPEG[11] is a lossy image compression

method. JPEG compresses the images in several

steps. In a first step, the picture is split into a

sequence of blocks of size 8X8 pixels. Each block is

then compressed by the following sequence of

transformations:

 Applying a Discrete Cosine Transform

(DCT) [12] to the set of 64 values of the

pixels in the block.

 Applying Quantization to the DCT

coefficients; thereby producing a set of 64

smaller integers. This step causes a loss of

information but makes the data more

compressible.

 Applying an entropy encoder to the

quantized DCT coefficients. Baseline JPEG

uses Huffman [13] coding in this step, but

the JPEG standard specifies also the

arithmetic coding [14] as a possible

alternative.

The decompression process simply reverses

the procedure and its order. It first applies Huffman

decoding, then dequantizes the coefficients and

finally uses an inverse DCT to obtain the original set

of values. Because of the quantization step, the

reconstructed image includes only approximated

values.

In [15] we describe an innovative idea on

how to split the decompression task of JPEG images.

The results of the paper compare between sequential

decompression and parallel decompression. We start

by splitting the image into several portions and

assigning different processors, each working on a

different portion of the image. The synchronization

problems mentioned in [16] appear here as well and

even more harshly. Not only the beginning of the

block to be decoded by a specific processor

unnecessarily corresponds with the beginning of a

Huffman codeword, but even if it begins,

synchronization is not guaranteed, because the block

boundary could be located within the codeword

representing the length of the DC coefficient or the

block boundary could be located within the stored

DC value at the beginning or the block boundary

could be located within a codeword representing a

pair used for the AC coefficients or the block

boundary could be located at the beginning or within

a stored AC value. Just if the block starts with a

codeword for the length of the stored DC value, the

block will be correctly decoded.

The processor would attempt to recognize a

Huffman codeword representing the length of a DC

value and would thus probably erroneously interpret

the first bits; however, as can be seen in [16], the first

few decoded elements are usually wrong, but

typically a synchronization point is found almost

immediately, after which the decoded items are

correct.

This idea can be implemented in a cluster of

computers. In [15] some tests on an SMP machine

are presented. SMP machines obviously have a fast

connection and a connection between all the

processors is provided; however, actually, our

algorithm does not require a connection between all

the computers and some weaker topologies can be

applied too.

The results can be also executed on ASOSI

and any other cluster with faster communication

cards. We can change the Operating System, so the

topology of the cluster will be actually different.

Also, another issue that has been coped with is the

large amount of data that is read to the memory for

each JPEG chunk calculation. Therefore, we have

used Super-Pages. Super-Pages are a development of

the famous paging notion. Super-Page is larger page

that is pointed to by the TLB [17]. Multimedia

applications like the parallel JPEG decompression

application frequently have large chunks of memory

that are clustered in few areas. Such an application

can benefit Super-Paging very much [18].

We suggested the AMSQM algorithm [19]

for handling the Super-Pages. This algorithm

employs a reservation-based technique, in which

segments are reserved for a super-page at the page

fault time and a promotion is made whenever the

number of the base pages within a super-page arrives

at a predefined promotion threshold. The algorithm

strives to have the possibility for a partially populated

super-page to be promoted, so the pronouncement of

a super-page candidate's reservation preemption or a

swapping out a super-page candidate's base-pages is

made as a result of the super-page "recency" in the

page lists and not as a result of the number of resident

base-pages that the super-page is currently consisting

of. This feature makes AMSQM accomplishing a

higher TLB coverage and in addition a better page

fault ratio.

4. SCALABLE PARALLEL COLLISION

DETECTION

The ASOSI was also a framework for a

parallel collision detection application. A number of

implementations for parallel collision detection have

been developed over the years [20,21]. The

implementations typically completely depend on the

parallel infrastructure. Minimizing the dependency

will significantly increase the scalability of the

implementation [22]. Also, the dependency can harm

the portability of the simulation. Thus, we

implemented a scalable and portable parallel

algorithm for collision detection simulation that will

be suitable to any infrastructure, even with a small

support for parallelism [23].

The focal point of the proposed

implementation is keeping the scalability approach

while not leaving behind the locality principle and the

load balancing of the cluster.

A common algorithm for Bounding

Volumes hierarchy can be employed for testing out of

an intersection of two models or a collision. Let us

call the minimum "work unit" for one course of

action e.g. collision detection of a complex geometry

model or one course of action of two complex

geometry models.

As a matter of fact, the proposed

implementation employed a low-grade split into

bigger units unlike the author of [24] has suggested;

however, the execution time of one "work unit" that

we propose is still not big, even if the geometry

model is multifarious. Experiments show that if the

implementation splits the geometry models into

overly tiny units, too much overhead can be

generated.

Let us call "processing unit" for one process

that gets some portions of the collision detection

course of action and sends back the outcome to the

master process. Any process in ASOSI can migrate

from one processor to an alternative processor in the

same SMP or migrate from one node to an alternative

node in the same cluster.

The algorithm employs the Vector Space

technique [25] to discover similarity of scenarios

("work units") and processors ("processing units")

like the technique of queries in document sets in the

Information Retrieval research area.

For any specified complex geometry

models, the implementation can become aware of an

intersection in a short execution time. The proposed

implementation reduces the preliminary overhead of

a parallel collision check between complicated

geometries on a computer cluster like ASOSI. The

overhead is reduced by minimizing the dependency

of data transfer augmentation and by reducing the

number of processing units in the cluster.

Consequently, the suggested implementation scales

up in a good way in respect to the cluster size and the

geometries size, whereas standard implementations

do not succeed to scale up suitably. Decreasing the

number of clients' memory allocation is another

advantage of the proposed implementation. This

reduction lets the implementation have the possibility

of being put into operation on many various parallel

infrastructures and ASOSI is just a case in point.

Our work about compressing the transferred

information in the communication channel [26] can

be also integrated into this project in order to

facilitate a reduced transfer time.

5. DISTRIBUTED SHARE MEMORY

A more general application that was

developed on the ASOSI framework is a common

support for distributed shared memory. Many

researches about Distributed shared memory [27] has

been published and many changes for the better have

been made over the years [28]. E.g. in [29] the author

suggests a way for several Distributed Shared

Memory applications to run their Distributed Shared

Memory functions in 10%-30% of PVM run time.

Unexpectedly, using Distributed Shared

Memories in clusters is not as widespread as it we

would have anticipated. Besides the explanations

listed in [30], the requirement from programmers to

study a new Distributed Share Memory scheme for

each Distributed Shared Memory system and the

intricacy of revision of SMP applications like the

application presented in [31], into Distributed Shared

Memory programs have caused this neglection.

 An analogous concern has come about in

electronic mail systems. Many standards had been

wandered around before the MIME format [32] was

accepted as standard. After the acceptation of the

MIME standard, email usage was significantly

greater than before.

In ASOSI we propose a technique of

prevailing over the difficulty of nonstandard

Distributed Shared Memory by making the same

inter-process communication interfaces that the

programmers are familiar with on SMP machines

available [33].

Several techniques for easier remote objects

like semaphores have been introduced e.g. [34].

However, those techniques keep distributed

applications very similar to the original application.

In ASOSI we suggest that each IPC will be

autonomous, i.e. not bundled within other IPCs like

scores of existing Distributed Shared Memory

systems use to do. This autonomy is of the essence

because IPCs are employed not only for a safe shared

memory use, but also for other synchronization tasks,

as they are employed in SMPs.

As was mention below, scores of

implementations of Distributed Shared Memories

have been built up over the years. All the

implementations take into consideration, the

performance concerns of Distributed Shared Memory

more than other concerns and specially neglect the

portability of applications and standard API. All the

Distributed Shared Memory systems have APIs that

suit only a particular system and require that the

programmer will familiarize himself to these

particular APIs.

Nowadays, a migration of an application

from one system to another will require a significant

amendment of the application. Furthermore,

applications that have been written for SMPs need to

be rewritten to facilitate a scale up of the application

from an SMP to a cluster of computers. The ASOSI

framework shows a conception of a distributed

system, in which an API for any IPC system will be

indistinguishable or at least very similar to the

standard SMP’s API [35]. This concept can habituate

programmers to distributed systems straightforwardly

and in addition this concept will get better the

integration of current SMP applications to clusters.

6. CONCLUSION

ASOSI - an Asymmetric Operating System

Infrastructure has been presented. ASOSI supports

many applications in a wide spectrum of parallel and

distributed disciplines. The paper shows the

important aspects of ASOSI for the various

applications. We believe that ASOSI can be very

beneficial for many more applications; especially for

applications with massive parallelism and extensive

computing requirements.

7. ACKNOWLEDGEMENT

The author would like to thank the graduate

student students in his research group – Moshe

Itshak, Ilan Grinberg, Moti Geva, Oshi Keren-Zur

and Pinchas Weisberg for their help.

The author would also like to thank SUN

Microsystems for their donation.

8. REFERENCES

[1] S. Muir and J. Smith "AsyMOS - An Asymmetric

Multiprocessor Operating System'', Proceedings of

IEEE Conference on Open Architectures and

Network Programming, (OPENARCH '98), San

Francisco, pp. 25–34, 1998.

[2] D. G. Feitelson and L. Rudolph, "Parallel job

scheduling: issues and approaches". In Job

Scheduling Strategies for Parallel Processing, D. G.

Feitelson and L. Rudolph (eds.), pp. 1-18, Springer-

Verlag, 1995. Lecture Notes in Computer Science

Vol. 949.

[3] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn,

K. C. Sevcik, and P. Wong, "Theory and practice in

parallel job scheduling ". In IPPS'97 Workshop Job

Scheduling Strategies for Parallel Processing,

Geneva, Switzerland, April 1997.

[4] J.K. Ousterhout, “Scheduling techniques for

concurrent systems”. In 3rd Intl. Conf. Distributed

Comput. Syst., pp 22-30, Oct 1982.

[5] A. Hori, H. Tezuka, and Y. Ishikawa. Overhead

Analysis of Preemptive Gang Scheduling. Job

Scheduling Strategies for Parallel Processing, LNCS

1459:217-230, 1998.

[6] Feitelson D. G. and Rudolph L., Gang scheduling

performance benefits for fine-grain synchronization.,

Journal of Parallel and Distributed Computing Vol.

16(4), pp. 306-318, 1992.

[7] Rosti E., Serazzi G., Smirni E., and Squillante M.

S., Models of Parallel Applications with Large

Computation and I/O Requirements, IEEE

Transactions on Software Engineering, Mar 2002.

[8] Wiseman Y. and Feitelson D. G., Matching

Parallel Jobs in Asymmetric Operating Systems,

JPDPS-2001, pp. 13-16, 2001.

[9] Wiseman Y. & Feitelson D. G, Paired Gang

Scheduling, IEEE Transactions on Parallel and

Distributed Systems, Vol. 14(6), pp. 581-592, 2003.

[10] Rosti E., Serazzi G., Smirni E. and Squillante M.

S., The Impact of I/O on Program Behavior and

Parallel Scheduling SIGMETRICS Conference of

Measurement and Modeling of Comput. Systems, pp.

56-65, 1998.

[11] Wallace G.K., The JPEG Still Picture

Compression Standard, Communication of the ACM

Vol. 34 pp. 30-44, 1991.

[12] Rao K.R. and Yip P., Discrete Cosine Transform

Algorithms, Advatages, Applications, Academic

Press Inc., London, 1990.

[13] Huffman D., A Method for the Construction of

Minimum Redundancy Codes, it Proc. of the IRE,

Vol. 40 pp. 1098-1101, 1952.

[14] Witten I.H., Neal R.M. and Cleary J.G.,

Arithmetic Coding for Data Compression, Comm. of

the ACM, Vol. 30, pp. 520-540, 1987.

[15] Klein S. T. & Wiseman Y., Parallel Huffman

Decoding with Applications to JPEG Files, The

Computer Journal, Oxford University Press,

Swindon, UK, Vol. 46(5), pp. 487-497, 2003.

[16] Klein S. T. & Wiseman Y., Parallel Huffman

Decoding, Proc. Data Compression Conference

DCC-2000, Snowbird, Utah, USA, pp. 383-392,

2000.

[17] Y. A. Khalidi, M. Talluri, M. N. Nelson and D.

Williams. Virtual memory support for multiple page

sizes. In Proceedings of the Fourth IEEE Workshop

on Workstation Operating Systems, Napa, California,

October 1993.
[18] Abouaissa H., Delpeyroux E., Wack M. and

Deschizeaux P., "Modelling and integration of

resource communication in multimedia applications

with high constraints using hierarchical Petri nets",

Proceedings of IEEE International Conference on

 Systems, Man, and Cybernetics (SMC-99), pp. 220-

225, vol. 5, Tokyo, Japan, 1999.

[19] Itshak M. & Wiseman Y., "AMSQM: Adaptive

Multiple SuperPage Queue Management", Proc.

IEEE Conference on Information Reuse and

Integration (IEEE IRI-2008), Las Vegas, Nevada,

2008.

[20] P. Jiménez, F. Thomas, and C. Torras, "3d

Collision Detection: A Survey", Computers and

Graphics, Vol. 25(2), pp. 269-285, 2001.

[21] S. Brown, S. Attaway, S. Plimpton, and B.

Hendrickson, "Parallel Strategies for Crash and

Impact Simulations" Computer Methods in Applied

Mechanics and Engineering, Vol. 184, pp. 375-390,

2000.

[22] Yehezkael R. B., Wiseman Y., Mendelbaum H.

G. & Gordin I.L., "Experiments in Separating

Computational Algorithm from Program Distribution

and Communication", LNCS of Springer Verlag Vol.

1947, pp. 268-278, 2001.

[23] Grinberg I. & Wiseman Y., Scalable Parallel

Collision Detection Simulation, Proc. Signal and

Image Processing (SIP-2007), Honolulu, Hawaii, pp.

380-385, 2007.

[24] M. Figueiredo and T. Fernando. "An Efficient

Parallel Collision Detection Algorithm for Virtual

Prototype Environments". Proc. ICPADS'04,

Newport Beach, California, USA, pp. 249-256, July

2004.

[25] Salton, G., Wong, A., and Yang, C. S.. "A Vector

Space Model for Automatic Indexing". Commun.

ACM vol. 18(11), pp. 613-620, Nov. 1975.

[26] Y. Wiseman, K. Schwan & P. Widener,

"Efficient End to End Data Exchange Using

Configurable Compression", Proc. The 24th IEEE

Conference on Distributed Computing Systems

(ICDCS 2004), Tokyo, Japan, pp. 228-235, 2004.

[27] Li K., Hudak P., Memory Coherence in Shared

Virtual Memory Systems, Proc. of the Fifth Annual

ACM Symposium on Princiles of Distributed

Computing, pp. 229-239, Calgary, Alberta, Canada,

August 1986,

[28] H. Lu, S. Dwarkadas, A.L. Cox, and W.

Zwaenepoel. Message passing versus distributed

shared memory on networks of workstations. Proc.

SuperComputing '95, December 1995.

[29] Beguelin A., Dongarra J. J., Geist A., Otto S.,

Walpole J., PVM: Experiences, Current Status and

Future Direction, Proc. Supercomputing '93, pp. 765-

766, November 1993.

[30] John B. Carter, Dilip Khandekar, and Linus

Kamb. Distributed shared memory: Where we are

and where we should be headed. Proc of the Fifth

Workshop on Hot Topics in Operating Systems, pp.

119-122, May 1995.

]31] Klein S. T. & Wiseman Y., "Parallel Lempel Ziv

Coding", Journal of Discrete Applied Mathematics,

Vol. 146(2), pp. 180-191, 2005.

[32] Borenstein, N., Implications of MIME for

Internet Mail Gateways, RFC 1344, Bellcore, June

1992.

[33] Geva M. & Wiseman Y., Distributed Shared

Memory Integration, Proc. IEEE Conference on

Information Reuse and Integration (IEEE IRI-2007),

Las Vegas, Nevada, pp. 146-151, 2007.

[34] Aldrich J., Dooley J., Mandelsohn S., and Rifkin

A., Providing Easier Access to Remote Objects in

Client Server Systems. In Thirty-first Hawaii

International Conference on System Sciences,

Hawaii, January 1998.

[35] Geva M. & Wiseman Y., A Common

Framework for Inter-Process Communication in a

Cluster, Operating Systems Review, Vol. 38(4), pp.

33-44, 2004.

