
Low Complexity Multiplication in a
Finite Field Using Ring Representation

Rajendra Katti, Member, IEEE, and Joseph Brennan

Abstract—Elements of a finite field, GF ð2mÞ, are represented as elements in a ring in which multiplication is more time efficient. This

leads to faster multipliers with a modest increase in the number of XOR and AND gates needed to construct the multiplier. Such

multipliers are used in error control coding and cryptography. We consider rings modulo trinomials and 4-term polynomials. In each

case, we show that our multiplier is faster than multipliers over elements in a finite field defined by irreducible pentanomials. These

results are especially significant in the field of elliptic curve cryptography, where pentanomials are used to define finite fields. Finally, an

efficient systolic implementation of a multiplier for elements in a ring defined by xn þ xþ 1 is presented.

Index Terms—Finite field multiplication, ring representation, systolic arrays.
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1 INTRODUCTION

FINITE fields play an important role in coding theory and
public-key cryptography [1]. Coding theory has applica-

tions in error-free communications and data storage. Public-
key cryptography has applications in smart-card technol-
ogy, e-commerce security, and internet security [2], [3], [4],
[5]. Both coding theory and public-key applications use
algorithms based on arithmetic of elements over an
extension of a field GF(2) denoted by GFð2kÞ. Public-key
cryptographic algorithms [6], [7] usually require words of
very long length (greater than 160 bits). This leads to low
performance cryptographic algorithms, making them im-
practical for commercial applications. To overcome this
deficiency, fast hardware architectures for performing
arithmetic in Galois fields GFð2kÞ needs to be designed.
The arithmetic operations normally performed are addition,
multiplication, squaring, exponentiation, and inversion.
This paper focuses on the multiplication of elements in a
Galois field GFð2kÞ. Finite field multipliers can be expen-
sive, both in terms of gate count and delay.

Multipliers can be classified into bit-parallel and bit-

serial multipliers [8], [9], [10], [11], [12]. Bit-parallel multi-
pliers compute the result in one clock cycle but generally

have an area requirement proportional to k2, where the
elements that are multiplied belong to GFð2kÞ. Bit-serial

multipliers compute the result in k clock cycles, but have an
area requirement proportional to k. Multipliers can also be

classified based on whether the finite field elements are
defined by a normal basis or a canonical basis. One

advantage of the normal basis representation of field
elements is that the squaring of an element can be

computed by the cyclic shift of the binary representation.
However, canonical bases are widely used and lead to
efficient implementations of multipliers. The time and space
complexities of bit-parallel canonical basis multipliers are
much better than that of multipliers based on the normal
basis. In this paper, we present a new ring representation of
field elements to design new bit-parallel, canonical basis
multipliers that are better in time complexity and almost as
good in space complexity compared to existing multipliers.
The elements of a field are mapped to elements in a ring
that results in extra bits being required in the representation
of the elements of the field. This results in a modest increase
in space complexity. However, this also results in faster
multipliers as the ring elements are defined using simpler
polynomials over the finite field GF(2).

The elements of a finite field are represented as binary
words according to one of many traditionally available
representations. We propose a new representation of the
elements of a finite field inspired by [11]. In some cases, this
representation leads to faster multipliers compared to other
representations. A finite field, F2m , is defined by an
irreducible polynomial, fðxÞ, of degree m and each element
in the field can be represented as an m-bit binary number or
a polynomial of degree ðmÿ 1Þ. Multiplication of two
elements in a finite-field implies multiplication of the two
polynomials that represent the finite-field elements and
then taking the modulus of this product with respect to
fðxÞ. The complexity of multiplication is dependent on the
number of terms in the polynomial fðxÞ. The fewer the
terms the lower is the complexity.

Let ð0; 1; 2; . . . ; mÿ1Þ be a basis of F2m over F2. An
element F2m is represented by the m-bit word
ð�0; �1; . . . ; �mÿ1Þ, �i 2 F2, corresponding to the expansion
of � in the basis ð0; 1; 2; . . . ; mÿ1Þ: � ¼

Pmÿ1
i¼0 �ii. A

canonical basis (also called the standard basis) is of the form
ð1; ; 2; 3; . . . ; mÿ1Þ, where  is a root in F2m of a binary
irreducible polynomial fðxÞ of degree m. Elements of F2m

take the form of polynomials in  of degree (m-1) or less.
The multiplication of two elements of F2m is achieved by
multiplication of the corresponding polynomials in 
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followed by a reduction modulo fðÞ. Canonical bases are
widely used to implement multipliers. Another basis,
c a l l e d t h e n o r m a l b a s i s , i s o f t h e f o r m
ð; 2; 4; 8; . . . ; 2mÿ1Þ for some element  in F2m . Repre-
senting field elements with a normal basis leads to
efficient implementation of squaring of an element
(squaring is a circular shift of the binary representation
of a field element). However, parallel multipliers are not
as efficient as multipliers using the canonical basis.

In [11], a new representation of elements of finite fields
F2m was proposed. This representation was based on the
isomorphism from F2m into the ring F2½x�=ðxn þ 1Þ for some
n, with gcd(n, 2) = 1. The polynomial ring, F2½x�=ðxn þ 1Þ,
contains an isomorphic copy of F2m only if ðxn þ 1Þ has an
irreducible factor h(x) such that deg(h(x)) = m. Let
ðxn þ 1Þ ¼ gðxÞhðxÞ. Then, n = deg(g(x)) + deg(h(x)) =
deg(g(x)) + m. Let the degree of g(x) be r. Therefore, n =
r + m. The number of bits in the new representation has
now increased from m to n = m + r. However, since the
multiplication in the ring is performed modulo ðxn þ 1Þ, it
turns out that multiplication in the ring is faster than
multiplication modulo some degree m polynomial only if r
is small. A polynomial of the form fðxÞ ¼ f0 þ f1xþ f2x

2 þ
� � � þ fnxn over GF(2) (fi 2 GF ð2Þ) is called an all-1 poly-
nomial (AOP) of degree n if fi ¼ 1 for i ¼ 0; 1; 2; � � � ; n. If r = 1,
then h(x) is the all-1 polynomial and the ring representa-
tion is faster than any other representation with a modest
increase in the number of XOR and AND gates. However,
irreducible all-1 polynomials of degree m exist if and only
if (m + 1) is prime and 2 is a generator of the field
GF(m + 1). Whenever an irreducible all-1 polynomial
cannot be found, then the smallest n such that ðxn þ 1Þ has
an irreducible factor of degree m must be found in order for
the ring F2½x�=ðxn þ 1Þ to have a copy of the field F2m . In
such a case, n may turn out to be much larger than m. For
example, for m = 9, the minimum value of n such that ðxn þ
1Þ has a factor of degree 9 is 73. This makes the field-
elements of F29 have a 73-bit representation in the ring
F2½x�=ðx73 þ 1Þ, thus making the multiplier that uses this
representation very complex both in terms of time and
circuit complexity. In this paper, we propose new rings in
which we can find an isomorphic copy of F2m . The new
rings are of the form F2½x�=ðxn þ xk þ 1Þ or F2½x�=ðxn þ xk1 þ
xk2 þ 1Þ (m < n). The multipliers that result are faster if k
and n are as small as possible [16]. We use a well-known
result (Wedderburn’s Theorem) in algebra and the software
Mathematica to help us find the required rings. These new
rings are useful if the least number of terms in an
irreducible polynomial is 5 and the ring F2½x�=ðxn þ 1Þ does
not work due to reasons mentioned above. For example,
consider m = 27. There is no irreducible trinomial of
degree 27 and the least term irreducible polynomial of
degree 27 is a pentanomial. One such pentanomial is
ðx27 þ x5 þ x2 þ xþ 1Þ. However, the ring F2½x�=ðx29 þ x þ
1Þ contains an isomorphic copy of the field F227 . The ring
F2½x�=ðxn þ 1Þ, where n = 73, also contains an isomorphic
copy of the field F227 . Multiplication in the ring F2½x�=ðx29 þ
xþ 1Þ is more efficient than multiplication in the ring
F2½x�=ðx73 þ 1Þ because multiplication of 29-bit field ele-
ments modulo a trinomial is faster than multiplication of

73-bit elements modulo a binomial. Besides, the number of
gates needed for 73-bit elements is too high.

The rest of the paper is organized as follows: Section 2
describes polynomial ring representations and Wedder-
burn’s Theorem. Section 3 describes some new ring
representations based on Wedderburn’s Theorem that
improve multiplication complexity. Section 4 describes
and compares the complexity of the multiplier resulting
from the new ring representations with other multipliers.
Section 5 describes a systolic implementation of a multiplier
for elements in the ring modulo xn þ xþ 1 and Section 6
concludes the paper. The advantage of a systolic imple-
mentation is the ease of implementation in VLSI. The
complexity of the systolic multiplier presented is the same
as any other implementation of the multiplier.

2 POLYNOMIAL RING REPRESENTATION

We begin this section by stating Wedderburn’s Theorem
and how it can be used to obtain a new representation for
field elements. The Wedderburn Theorem in the form
required for this paper states that if fðxÞ is a polynomial
over the field k with no repeated roots (that is gcdðfðxÞ,
f 0ðxÞÞ ¼ 1), then the ring R ¼ k½x�=f decomposes into a
direct sum of ideals of R. Therefore, R ¼ I1 � I2 � � � � � Ir.
Each of these ideals is generated by a single element and is
isomorphic to a finite field extension K of k. A more general
version of Wedderburn’s Theorem can be found in [13]. The
decomposition of R ¼ k½x�=f into ideals is effectuated by the
construction of the system of generators for these ideals.
Such a system of generators fe1; e2; . . . ; erg will consist of a
complete orthogonal system of idempotents. In R, one has
e2
i ¼ ei; eiej ¼ 0 for i 6¼ j, e1 þ e2 þ � � � þ er ¼ 1 and the

ideals Ii ¼ Rei, are all isomorphic to fields. At this point,
there is great advantage to working over fields of
characteristic two. In characteristic two, the Frobenius
map on R, the map

F : R ¼ k½x�=f ! k½x�=f ¼ R; F : a 7!a2;

is a linear transformation of k-vector spaces. As each of the
ideals in the decomposition is stable under the Frobenius
map, the complete orthogonal system of idempotents
providing the decomposition is realized by the eigenvectors
of the Frobenius. In general characteristic, the problem of
computing the idempotents is more problematic [14].

Let f(x) be a polynomial of degree n over GF(2), that can
be factorized into r, distinct, irreducible factors as follows:

fðxÞ ¼ f1ðxÞf2ðxÞ . . . frðxÞ:

Let the degrees of fiðxÞ be pi, then Wedderburn’s Theorem
[13] states that the ring F2½x�=fðxÞ is a direct sum of fields
F2½x�=fiðxÞ. Therefore:

F2½x�=fðxÞ ¼ F2½x�=f1ðxÞ � F2½x�=f2ðxÞ � . . .� F2½x�=frðxÞ
¼ F2p1 � F2p2 � . . .� F2pr :

Here, F2½x�=fðxÞ is a polynomial ring modulo f(x) over
GF(2) and F2½x�=fiðxÞ ¼ F2pi is the finite extension field over
GF(2) modulo fiðxÞ. Wedderburn’s Theorem also gives a
procedure to map the ring elements to field elements. This
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is because each of the fields F2½x�=fiðxÞ ¼ F2pi is generated
by an idempodent, ei, that belongs to the set of orthogonal
idempotents. Therefore:

F2½x�=fðxÞ ¼ ðF2½x�=fðxÞ � e1Þ � ðF2½x�=fðxÞ � e2Þ � . . .

� ðF2½x�=fðxÞ � erÞ:

Idempotents, ei, can always be found by solving the linear
system of equations e2

i ¼ ei. From these idempotents, we
can choose a subset that are orthogonal. Therefore, each
F2½x�=fðxÞ � ei is isomorphic to F2pi . Elements of the ring
F2½x�=fðxÞ can be expressed as r-tuples ða1; a2; � � � ; arÞ,
where each ai 2 F2½x�=fðxÞ � ei. To perform an add or
multiply operation on two r-tuples, we simply perform
the operation on their individual elements.

We now consider an example that illustrates the above
facts. Let fðxÞ ¼ x3 þ 1. Since

x3 þ 1 ¼ ðxþ 1Þðx2 þ xþ 1Þ ¼ f1ðxÞf2ðxÞ;

this implies that the following is true from Wedderburn’s
Theorem.

F2½x�=ðx3 þ 1Þ ¼ F2½x�=ðxþ 1Þ � F2½x�=ðx2 þ xþ 1Þ
¼ F2 � F22 :

Therefore, an isomorphic copy of F2½x�=ðxþ 1Þ and
F2½x�=ðx2 þ xþ 1Þ can be found in the ring F2½x�=ðx3 þ 1Þ.
The two idempotents we are looking for, e1 and e2, are ðx2 þ
xÞ and ðx2 þ xþ 1Þ, respectively. They satisfy the following
properties: e1 þ e2 ¼ 1; e1e2 ¼ 0; e2

1 ¼ e1; e
2
2 ¼ e2. Table 1 lists

the elements of F2½x�=ðx3 þ 1Þ, ðx2 þ xÞ � F2½x�=ðx3 þ 1Þ, and
ðx2 þ xþ 1Þ � F2½x�=ðx3 þ 1Þ. Note that F2½x�=ðx3 þ 1Þ con-
tains eight elements, ðx2 þ xÞ � F2½x�=ðx3 þ 1Þ contains four
distinct elements, and ðx2 þ xþ 1Þ � F2½x�=ðx3 þ 1Þ contains
two distinct elements. Columns two and three of the table
are obtained by multiplying (modulo ðx3 þ 1Þ) the elements
of column 1 by e1 ¼ ðx2 þ xÞ and e2 ¼ ðx2 þ xþ 1Þ, respec-
tively. The distinct elements of ðx2 þ xÞ � F2½x�=ðx3 þ 1Þ are
isomorphic to F22 . The multiplicative identity is the
idempotent e1 ¼ ðx2 þ xÞ. The distinct elements of ðx2 þ xþ
1Þ � F2½x�=ðx3 þ 1Þ are isomorphic to F2. The multiplicative
identity is e2 ¼ ðx2 þ xþ 1Þ. An element a 2 F2½x�=ðx3 þ 1Þ
can be written as a 2-tuple ða1; a2Þ, where a1 ¼ a� e1; a1 2
e1 � F2½x�=ðx3 þ 1Þ and a2 ¼ a� e2; a2 2 e2 � F2½x�=ðx3 þ 1Þ.
The sum of a; b 2 F2½x�=ðx3 þ 1Þ is aþ b ¼ ða1 þ b1; a2 þ b2Þ.
The product of two elements can be defined in a similar
manner.

For example, from Table 1, we see that x2 2 F2½x�=ðx3 þ 1Þ
can be written as ððxþ 1Þ; ðx2 þ xþ 1ÞÞ and 1 2 F2½x�=ðx3 þ
1Þ can be written as ððx2 þ xÞ; ðx2 þ xþ 1ÞÞ and the sum of 1
and x2 can be written as

ððxþ 1Þ þ ðx2 þ xÞ; ðx2 þ xþ 1Þ þ ðx2 þ xþ 1ÞÞ
¼ ðx2 þ 1; 0Þ:

In [11], multiplication in a field F2m was performed by
finding a ring F2½x�=ðxn þ 1Þ which contains an isomorphic
copy of F2m . In other words, fðxÞ is chosen to be ðxn þ 1Þ
and one of its irreducible factors must be of degree m.
Therefore, if ðxn þ 1Þ can be factorized as ðxn þ 1Þ ¼
f1ðxÞf2ðxÞ � � � frðxÞ and degree ðfrðxÞÞ ¼ m, then

F2½x�=ðxn þ 1Þ ¼ F2½x�=f1ðxÞ � F2½x�=f2ðxÞ � . . .

� F2½x�=frðxÞ ¼ F2p1 � F2p2 � . . .� F2pr :

Note that degree ðfiðxÞÞ ¼ pi and pr ¼ m. This implies that
multiplication in F2½x�=frðxÞ can be performed in the ring
F2½x�=ðxn þ 1Þ. This method in [11] relies on the fact that
finding the modulus with respect to ðxn þ 1Þ is computa-
tionally more efficient compared to finding the modulus
with respect to frðxÞ. However, n ¼ p1 þ p2 þ � � � þ pr.
Therefore, the number of bits in a ring element has p1 þ
p2 þ � � � þ prÿ1 more bits than a field element of F2m which
has pr ¼ m bits. If p1 þ p2 þ � � � þ prÿ1 is large, then multi-
plication in the ring is expensive (too many gates) and slow,
thus nullifying the advantage of computing the modulus
with respect to a simple polynomial ðxn þ 1Þ. For example,
if m = 19, then p1 þ p2 þ � � � þ prÿ1 ¼ 524; 287 and, thus, this
technique in [11] fails to be effective. The method in [11] is
effective only when fðxÞ ¼ f1ðxÞf2ðxÞ and f1ðxÞ ¼ ðxþ 1Þ
and degree ðf2ðxÞÞ ¼ m. This implies that f2ðxÞ is an all-one
polynomial and such polynomials are few in number. It is
hard to find AOPs because a polynomial of degree n is AOP
if and only if n + 1 is prime and 2 is a generator of GF(n + 1).
In the next section, we suggest new rings that overcome this
problem.

3 NEW RING REPRESENTATION

In cryptographic applications, fields based on low weight
irreducible polynomials are desired. The weight of a
polynomial is the number of terms in it. For example, the
weight of ðx7 þ x3 þ xþ 1Þ is 4. About half the irreducible,
minimum weight polynomials of degree less than 10,000
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have weight 3 (these are called trinomials) and the rest have

weight 5 (these are called pentanomials). The new ring

representations proposed by us are useful in cases where

multiplication of field elements has to be performed in a

field defined by a pentanomial. The new rings are

F2½x�=ðxn þ xk þ 1Þ and F2½x�=ðxn þ xk1 þ xk2 þ 1Þ. In each

of these rings, we find an isomorphic copy of the field

defined by pentanomials. Multiplication in the rings is

faster than multiplication in a field defined by pentanomials

because the new rings are based on 3 and 4-term

polynomials. Let f2ðxÞ be an irreducible polynomial of

degree m. In what follows, we find polynomials, f2ðxÞ such

that either xn þ xk þ 1 ¼ f1ðxÞ � f2ðxÞ or xn þ xk1 þ xk2 þ
1 ¼ f1ðxÞ � f2ðxÞ is satisfied. In both cases, the degree of

f1ðxÞ must be as low as possible in order to make

multiplication in rings based on 3-term and 4-term

polynomials faster than multiplication in fields based on

pentanomials. The two new rings satisfy the following

(Wedderburn’s Theorem):

F2½x�=ðxn þ xk þ 1Þ ¼ F2½x�=f1ðxÞ � F2½x�=f2ðxÞ

or

F2½x�=ðxn þ xk1 þ xk2 þ 1Þ ¼ F2½x�=f1ðxÞ � F2½x�=f2ðxÞ:

Note that, in each of the above equations, f1ðxÞ is different.

Therefore, the procedure to find a ring which contains an

isomorphic copy of a field, F2m , in which multiplication

must be done, is as follows: Assume that no irreducible

trinomial exists of degree m.

1. If an irreducible AOP of degree m exists, then
perform the multiplication in F2½x�=ðxn þ 1Þ, where
n = m + 1.

2. If no ring F2½x�=ðxn þ 1Þ can be found such that
n ¼ ðmþ 1Þ, then find a ring F2½x�=ðxn þ xk þ 1Þ
such that xn þ xk þ 1 ¼ f1ðxÞ � f2ðxÞ for some irre-
ducible f2ðxÞ of degree m. Note that n should be as
small as possible.

3. Find a ring F2½x�=ðxn þ xk1 þ xk2 þ 1Þ such that xn þ
xk1 þ xk2 þ 1 ¼ f1ðxÞ � f2ðxÞ for some irreducible
f2ðxÞ of degree m.

4. Perform multiplication of elements in a field, F2m ,
defined by a pentanomial. Note that, up to degree
m ¼ 10; 000, there is either a trinomial or a pentano-
mial that is irreducible.

5. Choose one of the representations from Steps 2, 3, or
4 above for which the multiplier complexity is
minimal.

We now consider the structure of irreducible polyno-

mials that will help us find the rings mentioned above.

Definition. A polynomial of the form f2ðxÞ ¼ c0 þ c1xþ
c2x

2 þ � � � þ cmxm is written as ðcm; cmÿ1; � � � ; c2; c1; c0Þ.
The coefficients ci are in GF(2).

Proposition 1. To satisfy xn þ xk þ 1 ¼ f1ðxÞ � f2ðxÞ, where

f1ðxÞ ¼ x2 þ xþ 1, f2ðxÞ must be one of the following two

forms: ð1; 101; 101; . . . ; 101; 1; 101; 101; . . . ; 101; 1Þ (call this

type A) or ð1; 101; 101; . . . ; 101; 10; 101; 101; . . . ; 101; 1Þ (call

this type B).

Notes on Proposition 1. These forms have the pattern (1, 0
or more 101s, 1 or 10, 0 or more 101s, 1). If f2ðxÞ is of the
form (type A) (1, x repetitions of 101, 1, y repetitions of
101, 1), then it follows that k ¼ nÿ 3xÿ 2 or 3yþ 2. If
f2ðxÞ is of the form (type B) (1, p repetitions of 101, 10, q
repetitions of 101, 1), then it follows that k ¼ nÿ 3pÿ 4
or 3q þ 1.

Proposition 2. To satisfy xn þ xk1 þ xk2 þ 1 ¼ f1ðxÞ � f2ðxÞ,
where f1ðxÞ ¼ xþ 1, f2ðxÞ must be of the form
ð1; 1; 1; 1; . . . 1; 0; 0; 0; . . . 0; 1; 1; . . . ; 1Þ.

Notes on Proposition 2. If f2ðxÞ is of the form (p repetitions
of 1, q repetitions of 0, r repetitions of 1), then it follows
that k1 ¼ nÿ p and k2 ¼ r.

The proof of the above propositions follows from the
structure of the polynomials being considered. Note that it
is much easier to find polynomials that satisfy Proposition 2
than those that satisfy Proposition 1. Tables 2 and 3 give
some polynomials that satisfy the two observations above.
These tables also contain the percentage increase in the
AND and XOR gates for a multiplier implemented using
each polynomial as compared to Mastrovito multipliers
implemented using the original polynomial of degree m. In
the tables, we have considered only those polynomials with
k ¼ 1, k1 ¼ 2, and k2 ¼ 1. For most of the entries in the
tables, there does not exist a degree m all-1 polynomial.

We first consider the polynomial xn þ xþ 1 and its
factors. This polynomial is of special interest due to the fact
that the time taken to multiply two polynomials modulo
xn þ xþ 1 is the same as the time taken to multiply two
polynomials modulo xn þ 1 [16]. Table 2 gives the degrees
of the irreducible factors of xn þ xþ 1. We consider only
those n which have an irreducible factor of degree m and
there exists no irreducible trinomial of degree m. Therefore,
multiplication of elements in F2m can be performed more
efficiently in the ring F2½x�=ðxn þ xþ 1Þ. Note that the table
is not an exhaustive list of such polynomials. In the tables
below, TA is the delay of a 2-input AND gate and TX is the
delay of a 2-input XOR gate. The delays have been
computed using Table 4.

Next, we consider the 4-term polynomial xn þ x2 þ xþ 1
and its factors. This polynomial is the simplest 4-term
polynomial for a given n. Table 3 gives the degrees of the
irreducible factors of xn þ x2 þ xþ 1. We are interested in
finding an isomorphic copy of F2m in the ring F2½x�=ðxn þ
x2 þ xþ 1Þ in order to reduce the multiplication complexity.
This can be done if xn þ x2 þ xþ 1 has an irreducible factor
of degree m that is as close to n as possible. Table 3 gives
degrees of factors of xn þ x2 þ xþ 1, which has a factor of
degree m and there exists no irreducible trinomial of
degree m. Again, the times have been computed using
Table 4.

4 COMPLEXITY

Table 4 gives the complexity of multiplying two field/
ring elements when the field/ring is defined by a
degree m binomial, trinomial, 4-term polynomial, and
a pentanomial [16].
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In Table 4, TA is the delay of a 2-input AND gate and TX
is the delay of a 2-input XOR gate. The second and third

columns give the number of 2-input AND and 2-input XOR

gates in an implementation of a multiplier and the fourth

column gives the time required to perform a multiplication.

Our technique performs multiplication in rings based on

three and four term polynomials instead of a field based on

a pentanomial. However, the rings defined by us are based

on polynomials of higher degree than the pentanomial. This

increases the gate count in the multiplier a little, but the

speed of the multiplier increases. Wire length will also

increase due to increase in the gate count, thereby

increasing the delay by an additional amount. However,

this is not a factor if the increase in the gate count is low.
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TABLE 3
Degrees of Irreducible Factors of xn þ x2 þ xþ 1

TABLE 2
Degrees of Irreducible Factors of xn þ xþ 1



For example, consider multiplication in the field F291 .
From the first row of Table 2, we know that there exists a
polynomial x99 þ xþ 1 which has two irreducible factors of
degree 8 and 91. Therefore, from Wedderburn’s Theorem,
we know that there exists an isomorphic copy of the field
F291 in the ring F2½x�=ðx99 þ xþ 1Þ. Multiplication in the ring
takes TA þ 7TX time units, whereas multiplication in the
field F291 defined by the pentanomial x91 þ x8 þ x5 þ xþ 1
takes TA þ 13TX time units. Thus, a savings of 7TX time
units is achieved using our approach. However, each ring
element is 99 bits long and each field element is 91 bits long.
Therefore, from Table 4, we can say that multiplication in
the ring requires 9,801 2-input AND gates and 9,800 2-input
XOR gates. Multiplication in the field requires 8,281 2-input
AND gates and 8,460 2-input XOR gates. Thus, our
technique requires extra hardware. Another advantage of
our technique is that a systolic multiplier can be designed
for multiplication modulo xn þ xþ 1. This makes imple-
mentation in VLSI very easy.

5 SYSTOLIC COMPUTATION

In this section, we describe a systolic implementation of
multipliers for elements in the ring defined by the
polynomial xn þ xþ 1. Systolic multipliers are modular
and, hence, easy to implement in VLSI. Low complexity
systolic multipliers were described in [15]. However, these
multipliers were restricted to fields defined by the all-1
polynomial (AOP). AOPs of degree n can be found only if
(n + 1) is a prime and 2 is a generator of the field GF(n + 1).
When AOPs cannot be found, we can use Wedderburn’s
Theorem to define new rings defined by the polynomial
xn þ xþ 1 which contain the finite field of interest. A
systolic implementation of multiplication in this new ring is
presented next. We will show that the multiplier is similar
to the multiplier of elements in a ring defined by the
polynomial xn þ 1. We describe the Mastrovito multiplier
[16] next and show how this can be used to design a systolic
multiplier.

5.1 Mastrovito Multiplier for xn þ xþ 1

Finite field/ring multiplication using a canonical basis is
carried out by polynomial multiplication and modulo
operation. Let cðxÞ be the product of aðxÞ and bðxÞ, where
aðxÞ; bðxÞ; cðxÞ 2 F2ðxÞ=ðxn þ xþ 1Þ. The polynomial multi-
plication dðxÞ ¼ aðxÞ:bðxÞ can be performed as d ¼ A:b,
where b ¼ ½b0; b1; . . . ; bnÿ1�T and d ¼ ½d0; d1; . . . ; dnÿ1�T are

the coefficient vectors of bðxÞ and dðxÞ and the ð2nÿ 1Þ � n
matrix AA is given by:

A ¼

a0 0 . . . 0 0
a1 a0 . . . 0 0

..

. ..
. . .

. ..
. ..

.

anÿ2 anÿ3 . . . a0 0
anÿ1 anÿ2 . . . a1 a0

ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ
0 anÿ1 . . . a2 a1

..

. ..
. . .

. ..
. ..

.

0 0 . . . anÿ1 anÿ2

0 0 . . . 0 anÿ1

266666666666666664

377777777777777775
¼ As

At

� �
:

Note that a ¼ ½a0; a1; . . . ; anÿ1�T is the coefficient vector of

aðxÞ and the matrix As is n� n and At is ðnÿ 1Þ � n. The

modulo operation is performed next, as follows:

cðxÞ ¼ dðxÞmod ðxn þ xþ 1Þ ¼
X2nÿ2

k¼0

dkx
k mod ðxn þ xþ 1Þ

¼
Xnÿ1

k¼0

dkx
k þ

X2nÿ2

k¼n
dkx

k mod ðxn þ xþ 1Þ:

Let xk mod ðxn þ xþ 1Þ be denoted as ujðxÞ, where j ¼
kÿ nþ 1 and n � k � 2nÿ 2. Therefore, ujðxÞ is defined as

follows:

ujðxÞ ¼
xn mod ðxn þ xþ 1Þ; j ¼ 1

ujÿ1ðxÞmod ðxn þ xþ 1Þ; j ¼ 2; 3; . . . ; nÿ 1:

�
Therefore, cðxÞ can be written as follows:

cðxÞ ¼
Xnÿ1

k¼0

dkx
k þ

Xnÿ1

k¼1

ukðxÞ:

This can be written in matrix form as follows:

c ¼ ½ In U �A:b:

In the above equation, In is the n� n identity matrix and U

is an n� ðnÿ 1Þ matrix defined as U ¼ ½u1; u2; . . . ; unÿ1�,
where ui ¼ ½ui;0; ui;1; . . . ; ui;n�T is the coefficient vector of

uiðxÞ; i ¼ 1; 2; . . . ; ðnÿ 1Þ. The uiðxÞ can be computed as

follows:
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u1ðxÞ ¼ xn mod ðxn þ xþ 1Þ ¼ ð1þ xÞ ¼ ½1; 1; 0; . . . ; 0�T

u2ðxÞ ¼ xðxþ 1Þ ¼ ½0; 1; 1; 0; . . . ; 0�T

..

.

uiðxÞ ¼ ðxiÿ1 þ xiÞ ¼ ½0; . . . ; 0; 1; 1; 0; . . . ; 0�T

..

.

unðxÞ ¼ ðxnÿ1 þ xnÞ ¼ ½0; . . . ; 0; 1; 1�T :

Therefore, U can be written as,

U ¼

1 0 . . . 0
1 1 . . . 0
0 1 . . . 0
0 0 . . . 0
..
. ..

.
. . . ..

.

0 0 . . . 0
0 0 . . . 1
0 0 . . . 1

266666666664

377777777775
¼ Inÿ1

0

� �
þ 0

Inÿ1

� �
:

In the above expression, the size of the matrices

Inÿ1

0

� �
and

0
Inÿ1

� �
is n� ðnÿ 1Þ.

The required product c can now be expressed as follows:

c ¼ ½ In U �
As

At

� �
:b ¼ ½As þ UAt�:b

¼ Asbþ
Inÿ1

0

� �
Atbþ

0

Inÿ1

� �
Atb ¼ As:bþ

Atb

0

� �
þ

0

Atb

� �
:

Note that the matrices As,

At

0

� �
and

0
At

� �
are of size n� n.

5.2 Systolic Array

The product c can be written as

c ¼ As þ
At

0

� �
þ 0

At

� �� �
:b:

We construct a systolic array first for computing

Acb ¼ As þ
At

0

� �� �
:b:

This systolic array can then be modified easily to compute

c ¼ Acbþ
0
At

� �
:b:

Computing
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Fig. 1. Systolic array for computing Ac:b.



0
At

� �
b

can be performed by reusing the values computed while

performing the multiplication

At

0

� �
:b:

Thus, the systolic array for computing c is simply a

modification of the array for computing Ac:b. This is
especially important because the array to compute Ac:b is

very simple. This is evident from the following expression

for Ac:

Ac ¼

a0 anÿ1 � � � a1

a1 a0 � � � a2

..

. ..
. ..

. ..
.

anÿ1 anÿ2 � � � a0

26664
37775:

Note that every row of Ac is a circular shift of the row above

it. Therefore, the rows of Ac consist of all circular shifts of

vector a. Let us consider multiplication in the ring

R=ðx5 þ xþ 1Þ. The systolic array for computing Ac:b for

this ring is shown in Fig. 1. Note that flip-flops are not

shown in the figure. In Fig. 1, each cell consists of a 2-input

AND gate and a 2-input XOR gate. The cells in the top row
of Fig. 1 do not contain an XOR gate. The cells shaded in

gray in Fig. 1 compute At:b. The output of these cells can be

reused to compute c. An individual cell is shown in Fig. 2.
Fig. 3 shows the array to compute

c ¼ Acbþ
0
At

� �
b:

The only difference between Fig. 3 and Fig. 1 is that (n-1)

cells in Fig. 3 contain an extra 2-input XOR gate. These cells

actually perform the addition of the term

0
At

� �
b
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Fig. 2. A cell in the array of Fig. 1.

Fig. 3. Systolic array to compute the product c.



to Ac:b. These (n-1) cells are shaded gray in Fig. 3. Note that
the inputs to the cells have been arranged in such a way that
the upper left triangular portion computes At:b (these cells
have been shaded gray in Fig. 1). This is then reused to
perform the addition

Acbþ
0
At

� �
b:

The resulting extra connections between cells are shown in
Fig. 3 by bold lines. Fig. 4 shows the new cell of Fig. 3.
Except for these (n-1) new cells, all the other cells are the
same as in Fig. 2.

The systolic array consists of n2, 2-input AND gates and
n2 ÿ 1, 2-input XOR gates. Since the top row of cells
requires no XOR gates, the array to compute Ac:b contains
n2 ÿ n XOR gates and the extra (n-1) XOR gates are
necessary for computing

Acbþ
0
At

� �
b:

6 CONCLUSION

In this paper, we have presented a new representation of
field elements using Wedderburn’s Theorem. This enables
us to find rings, which have an isomorphic copy of the field
we are interested in. The decomposition of a ring into ideals
isomorphic to extension fields is done by finding generators
of these ideals. These generators are a set of orthogonal
idempotents that can be found easily when dealing with
fields of characteristic 2. The resulting multipliers are faster,
but lead to a modest increase in hardware. In particular, we
have considered rings of the form F2½x�=ðxn þ xþ 1Þ and
F2½x�=ðxn þ x2 þ xþ 1Þ. In both cases, we have provided
examples for various values of n when multiplication is

faster. It should be noted that this procedure can be used to
find new rings that are based on polynomials other than the
ones considered in this paper.

We have also shown that a multiplier for elements in
F2½x�=ðxn þ xþ 1Þ can be easily implemented as a systolic
array. This makes our procedure more attractive as it allows
a simplified implementation in VLSI. A major advantage of
the method proposed in this paper is that it can be used to
improve encryption and decryption algorithms in elliptic
curve cryptography.
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Fig. 4. The shaded cell of Fig. 3.
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