
EFFICIENT IMAGE RECONSTRUCTION USING PARTIAL 2D FOURIER TR ANSFORM†

L. Deng, C.-L. Yu, C. Chakrabarti

Dept. of Electrical Engineering
Arizona State University

email:{ldeng2, chi-li.yu, chaitali}@asu.edu

J. Kim, V. Narayanan

Dept. of Computer Science and Engineering
Pennsylvania State University

email:{jskim, vijay}@cse.psu.edu

ABSTRACT

In this paper we present an efficient way of doing im-
age reconstruction using the 2D Discrete Fourier transform
(DFT). We exploit the fact that in the frequency domain, in-
formation is concentrated in certain regions. Consequently,
it is sufficient to compute partial 2D Fourier transform where
only m×m elements of anN ×N image are nonzero. Com-
pared with the traditional row-column (RC) decomposition
algorithm, the proposed algorithm enables us to reconstruct
images with significantly smaller computation complexity at
the expense of mild degradation in quality. We also describe
the implementation of the new reconstruction algorithm on a
Xilinx Virtex-II Pro-100 FPGA. For512 × 512 natural and
aerial images, this implementation results in 68% reduction
in the number of memory accesses and 76% reduction in the
total computation time compared to the RC method.

.
Keywords: Discrete Fourier Transform; image reconstruc-
tion; FPGA; row-column decomposition; two dimensional de-
composition

1. INTRODUCTION

The Discrete Fourier Transform (DFT) and its inverse are im-
portant image processing tools. Fast implementations of these
transforms[1] have made them popular in applications in im-
age analysis, filtering, reconstruction and compression. In
this paper, we focus on the application of fast two-dimensional
(2D) (inverse) DFTs in efficient image reconstruction.

Typically, 2D DFTs have been implemented using the Row
Column (RC) decomposition technique [2]. While its hard-
ware implementation is simple, its latency is high because the
column-wise 1D DFTs cannot be executed unless all the row-
wise 1D DFTs are finished. Also if the data size is large, it
cannot be efficiently mapped onto embedded systems where
resources and memory are limited.

In some applications where part of the input data has less
significance, these inputs are represented by 0’s and FFT Prun-
ing techniques [3] [4] can be applied. Examples include comb
spectrum evaluation [5], the transition-region response in a

† This work is supported by a grant from DARPA W911NF-05-1-0248

filter design [3], etc. The data flow of the pruned structure is
derived from the normal FFT structure by keeping only the
branches corresponding to non-zero inputs. While the num-
ber of computations in pruned FFT is reduced, the resulting
structure is quite irregular and highly dependent on the num-
ber and positions of the nonzero elements. Consequently, the
hardware implementation is unwieldy and not scalable [5].

We introduce in this paper a new technique for efficient
image reconstruction that is regular and scalable. It exploits
the fact that in Fourier representations of ‘natural’ and ‘aerial’
images, information is concentrated only in the four corners.
This feature is exploited in the development of a new two-
dimensional (2D) decomposition algorithm for inverse DFT
that reconstructs the image using a small subset of Fourier co-
efficients. We refer to this algorithm as partial 2D DFT. This
algorithm is inherently parallel and requires a small number
of memory accesses compared to the conventional RC decom-
position.

The proposed algorithm has been implemented on an FPGA
platform consisting of a Xilinx Virtex-II Pro -100 FPGA and
a DDR SDRAM. It can process512 × 512 sized Fourier im-
age with128 × 128 nonzero coefficients in295, 494 clock
cycles. While this architecture is highly scalable, its current
implementation is limited by the memory/bus bandwidth.

The rest of the paper is organized as follows. In Section 2,
we introduce the basics of the decomposition algorithm for
1D and 2D DFT, followed by the partial DFT decomposition.
Section 3 describes the application of the 2D decomposition
algorithm for efficient image reconstruction. Section 4 de-
scribes the FPGA implementation of the proposed image re-
construction technique. Experimental results illustrating the
tradeoffs between image quality and number of nonzero coef-
ficients are also presented. Section 5 concludes this paper.

2. DECOMPOSITION ALGORITHM FOR PARTIAL
DISCRETE FOURIER TRANSFORM

In this section, we briefly discuss the basics of DFT and its de-
composition when the number of zero elements is significant.
We refer to this aspartial one-dimensional DFT (1D DFT).
Then we present a two-dimensional decomposition algorithm



for efficient computation of partial 2D DFT.

2.1. Decomposition of Partial 1D DFT

The DFT of anN -point discrete-time complex sequencex(n),
indexed byn = 0, 1, . . .N − 1, is defined as:

X(k) =
N−1∑

n=0

x(n) · W nk
N ,k = 0, 1, . . . , N − 1 (1)

whereWN = e−j2π/N . The computation complexity of a N-
point DFT isO(N2). The Fast Fourier Transform (FFT) al-
gorithm reduces the computation complexity toO(N log

2
N)

[1].
Eqn.(1) can be represented in the matrix-vector multipli-

cation form as
XN×1 = FN · x

N×1
(2)

whereFN is anN × N matrix whose(n, k) entry isWnk
N .

FN can be decomposed into a product of sparse factor ma-
trices as shown in [6] [7], and the algebraic expression using
Kronecker products is given in [8] as:

FN = (Fp ⊗ Im)D̃N (Ip ⊗ Fm)PN,p (3)

whereN = p · m, Im is a m × m identity matrix,D̃N is
a diagonal matrix of twiddle factors,⊗ is the Kronecker (or
tensor) product, andPN,p denotes permutation with stridep.

D̃N (j, j) = W
(j mod m)·⌊j/m⌋
N for j = 0, 1 . . . N − 1 (4)

An ⊗ Bm = [ak,lBm]0≤k,l<n for A = [ak,l]0≤k,l<n (5)

Using the decomposition ofFN given in Eqn. (3), the 1D
DFT in Eqn. (2) is rewritten as:

X̃p×m = Fp · x̃p×m ⊙ D̃p×m · Fm (6)

where⊙ is the matrix-matrix dot (or direct) product.̃Xp×m,
x̃p×m andD̃p×m are permutations ofX

N×1
, x

N×1
andD̃

N×1

respectively. Fori = 0, 1, . . . , p − 1, j = 0, 1, . . . , m − 1,
the mappings are as follows:

X̃(i,j) = X(i+j∗p), x̃(i,j) = x(i∗m+j), D̃(i,j) = W
i∗j
N (7)

.
For partial 1D DFT, assuming that only the firstm out of

N elements of vectorx are non-zero, i.e.x = [ x0 x1 . . . xm−1

0 0 . . . 0]T , Eqn.(6) can be simplified as:

X̃p×m =






x0 . . . xm−1

...
. . .

...
x0 · · · xm−1






p×m

⊙ D̃p×m · Fm (8)

The first matrix on the righthand side of Eqn.(8) is nothing but
Fp · x̃p×m from Eqn. (6). It is obtained by duplicating them
non-zero elementsp times. Thus 1D partial DFT̃Xp×m can
be obtained by first computing the dot-product of this matrix
with scaling matrixD̃p×m, and then applying DFT of length
m on each row. The total number of complex multiplications
is then no more than (N + N

2
log

2
m).

2.2. 2D Decomposition of Partial 2D DFT

If the input data is of sizeN × N , then 2D DFT is defined as

Y (k1, k2) =

N−1∑

i1=0

N−1∑

i2=0

x(i1, i2) · W
k1i1+k2i2
N (9)

wherek1, k2 = 0, 1, . . . , N − 1.
The traditional Row-Column (RC) decomposition algo-

rithm computesN 1D FFTs (one for each row), followed by
N 1D FFTs (one for each column). The complexity of the RC
algorithm isO(N2 log

2
N).

The 2D DFT can be represented in matrix form as follows:

Y
N×N

= F
N

· X
N×N

· F
N

(10)

whereX andY are of sizeN ×N , andF
N

is the twiddle fac-
tor matrix. Applying the 1D decomposition in Eqn.(6) along
both rows and columns, the 2D DFT ofN ×N points is writ-
ten as:

Ỹ
N×N

= (Ip⊗Fm)D̃N (Fp⊗Im)X(Fp⊗Im)D̃N (Ip⊗Fm) (11)

The final outputY is obtained by applying both row- and
column-wise bit-reverse permutations onỸ .

Y
N×N

= P
N,p

Ỹ
N×N

P
N,p

(12)

In the computation of partial 2D DFT, we assume that
only a subblock ofm × m elements in inputX are non-zero,
i.e. onlyA

m×m
is nonzero:

X =






Am×m 0 · · · 0

0 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 0






N×N

Then Eqn.(11) can be simplified as:

Ỹ = (Ip ⊗ Fm)D̃
N








A A · · · A
A A · · · A
...

...
. . .

...
A A · · · A








D̃
N

(Ip ⊗ Fm) (13)

SinceD̃N is a diagonal matrix whose elements are com-
puted using Eqn.(4), we can further simplify Eqn.(13) into:

Ỹ = (Ip ⊗ Fm)(








A A · · · A

A A · · · A

...
...

. . .
...

A A · · · A








︸ ︷︷ ︸

step1

⊙D
′
N

︸ ︷︷ ︸

step2

)(Ip ⊗ Fm)

︸ ︷︷ ︸

step3

(14)

whereD′
N

is aN×N full matrix whose elements areD′
N

(i, j) =

D̃N(i, i) · D̃N (j, j), for i, j = 0, 1 . . .N − 1.
Thus partial 2D DFT computation can be broken down

into 4 steps:



Step 1. Non-zero subblock duplication:
InputX is partitioned into small sub-blocks of sizem×m,

where only the top-left subblock contains non-zero elements.
The non-zero subblock is then simply duplicated as shown in
Eqn.(14).

For each subblock, do Steps 2, 3 and 4.

Step 2. Twiddle factor scaling:
Each element is multiplied with a specific twiddle factor,

so there arem2 complex multiplications.

Step 3. Local 2D FFT:
Local 2D FFT is computed on each subblock and requires

O(m2 log
2
m) complex multiplications.

Step 4. Output permutation:
The desired output is obtained by permuting the results

generated in each of the sub-blocks, as shown in Eqn.(12).
The permutation is a combination of row-wise and column-
wise bit-reversals.

Fig.1 demonstrates the flow graph involved in the compu-
tation of partial 2D DFT. The total number of complex multi-
plications isN2

m2 (m2 + m2 log m) = N2 + N2 log m .

Fig. 1. The flow graph of partial 2D DFT decomposition

3. APPLICATION TO IMAGE RECONSTRUCTION

In Fourier representation of natural and aerial images, the
bulk of the information is concentrated in the four corners.
The partial 2D DFT algorithm described in Section 2.2 can
be used for speeding up the image reconstruction. Thus the
pixel image can be generated using only a subset of the coef-
ficients with only a small loss in quality.

(a) Original (b) After frequency shift

Fig. 2. Fourier images of ‘Lena’: original and frequency
shifted

Fig.2(a) describes the Fourier image of ‘Lena’ [9]. Note
that most of the information is stored in the four corners of the
Fourier image. Let the corners be represented byk × k sub-
blocks. In Fig.2(a),C00, C01, C10, C11 are the sub-blocks in

the four corners. We apply the frequency shift technique [5],
and shift sub-blocks by an amountk first in the horizontal di-
rection, and then in the vertical direction. The coefficients in
the four corners are then mapped to the upper left corner as
shown in Fig.2(b). The upper left corner now contains2k×2k
nonzero coefficients and all other coefficients are replacedby
0’s. Even though the new Fourier image contains only a small
number of nonzero coefficients, it can be used to generate a
fairly good quality image as we will demonstrate in the sub-
sequent sections.

Image reconstruction uses inverse DFT. Since the forward
and inverse DFT are related, the partial 2D DFT algorithm
described in Section 2.2 is equally applicable to inverse DFT.
Let Y

N×N
be the Fourier image of sizeN × N , then:

DFT
−1(Y

N×N
) =

1

N2
DFT (Y †

N×N
)† (15)

Here† means the conjugate transpose.
Our procedure is described below.

Step 1. Frequency-domain data transposition and scaling:
The coefficients in the Fourier image are represented in

higher precision compared to the pixels in the original im-
age. For efficient hardware implementation, the Fourier co-
efficients are represented in fixed point format. We first scale
the frequency-domain matrixY by its sizeN2 (see Eqn.(15)),
and then limit each element (both real and imaginary parts) to
be in the range(−128, 128). Our experimental data shows
that representing scaled data (real and imaginary parts) in
fixed point format (16,8) with 8 integer bits (including 1 sign
bit) and 8 fractional bits still maintains good accuracy.

The conjugate transpose† in Eqn.(15) can simply be done
by switching the row and column addresses and reversing the
signs of the imaginary values when transferring data between
FPGA and external memory.

Step 2. Thresholding to determine the subblock size:
As described earlier, Fourier representation of ‘natural’

and ‘aerial’ images typically contains four regions of highin-
formation content in the four corners. In this step we find the
value ofk (corresponding to the subblock of sizek×k in each
corner) which contains adequate information to reconstruct
the image. We accumulate the magnitude of the Fourier coef-
ficients in ‘zigzag’ order (similar to JPEG) for the subblockin
the upper left corner of the Fourier image. The accumulated
results of groups of 10 coefficients are shown in Fig.3.

For the example shown in Fig.3, we see that the slope
decreases significantly after position 400, and so we can pick
position 600 as the threshold value. Since each accumulation
contains 10 elements, we can decide the valuek by:

k(k − 1)

2
≤ 6000 ≤

k(k + 1)

2
(16)

For simplicity we assume that the image size is a power
of 2. We also choosek to be a power of 2. In the ‘Lena’ case,
the original image size is512× 512, and we choosek = 128.



Fig. 3. Determining the size of thek × k subblock

Note that a larger value of threshold corresponds to a larger
value ofk.

Step 3. Frequency shifting of Fourier image:
The partial 2D DFT algorithm described in Section 2.2,

especially Eqn. (13), requires that the nonzero elements bein
the upper left corner of the input matrix. The ‘frequency shift’
technique allow us to shift subblocks in the Fourier image so
that they are grouped in the upper left corner of the image, as
shown in Fig.2.

Step 4. Efficient Partial 2D DFT computation:
After ‘shifting’, we only keep the data in the upper left

corner as shown in Fig.2(b), and replace all other coeffcients
with 0’s. Note that here the new non-zero subblock after fre-
quency shifting is of size2k × 2k, and equalsm × m. Next
we apply the 2D decomposition algorithm described in Sec-
tion 2.2.

The inverse transform of a ‘shifted’ Fourier image has
some phase difference compared with the ‘original’ one. For
natural and aerial images, we can still construct an image of
fairly good quality using only the magnitude component.

3.1. Tradeoffs between image quality and subblock size

As the size of the nonzero subblock increases, the quality of
the reconstructed image improves, as expected. Sample im-
ages of ‘Lena’ are displayed in Fig.4. The images are of size
512 × 512 and are constructed in fixed point Matlab with 16
bit precision. We present the image quality in Mean-Square-
Error (MSE). Letxi,j be the original pixel andx′

i,j be the
reconstructed pixel, then MSE (in dB) is calculated as:

10 log
10
{

1

N2

∑

i,j

(xi,j − x′
i,j)

2}

3.2. Computation and Communication Efficiency

We compare our technique, based on partial 2D DFT decom-
position, with the conventional RC decomposition and prun-
ing FFT, with respect to number of complex multiplications

(a) origin (b) MSE=12.8dB

(c) MSE=18.5dB

Fig. 4. Image ‘Lena’: (a) original (b) constructed from1/4 of
Fourier image (c) constructed from1/16 of Fourier image

and number of memory accesses. Here, the initial Fourier im-
age is of sizeN × N , the ‘shifted’ Fourier image only has a
nonzero subblock of sizem × m. ‘RC Full’ means applying
RC decomposition on the wholeN × N Fourier image; ‘RC
pruning’ applies pruning FFTs on the ‘shifted’ Fourier image.

Table 1. Computation and Memory Access Comparison
Algorithm # Multiplications # Memory Accesses
2D Decomp. N2 log2 2m N2 + m2

RC(Full) N2 log2 N 4N2

RC(Pruning) (N + m)N log2 m N2 + m2 + 2Nm

From Table 1 we can see that ‘RC Full’ has the high-
est number of computations and memory accesses. Unless
m ≪ N , ‘RC pruning’ has no advantage w.r.t computation
complexity compared with the proposed partial 2D DFT al-
gorithm but always consumes more memory accesses.

4. HARDWARE ARCHITECTURE AND FPGA
IMPLEMENTATION

The proposed 2D partial algorithm is mapped onto a platform
consisting of a DDR-SDRAM and a Xilinx-II Pro FPGA, as
shown in Fig.5. The originalN×N Fourier image is stored in
the SDRAM, and them×m 2D DFT engine is implemented
with the Xilinx-II Pro FPGA.

The execution procedure is described as follows:
1. Read them × m nonzero subblock from the external

memory, and store it into the source memory of the 2D DFT



m×m
2-D DFT
Engine

m
m

N

N

Memory
(DDR-SDRAM)

FPGA
(Xilinx XC2VP100)

32 bits

(100MHz)

Logic emulation board
(DN6000K10PCIe) 

Fig. 5. Verification system for the proposed architecture

engine.
2. Use the 2D DFT engine to reconstruct anm × m sub-

block of the required image, and write it back to the main
memory.

3. Repeat Step 2N2/m2 times (corresponding to the
N2/m2 subblocks) till the whole image is reconstructed.

The detailed architecture of them × m 2D DFT engine
is depicted in Fig.6. It contains twom-point 1D FFT Xilinx
IPs[10], which are used to compute row- and column-wise 1D
FFTs respectively. Each data is multiplied by a twiddle factor
using a complex multiplier. A ROM table is used to generate
the twiddle factors. Note that the size of the table is onlyN

8
,

because we can generate twiddle factors of range [0, 2π] by
using only the coefficients within [0,π/4]. After the row-
wise 1D FFT, the data is stored in the transpose memory for
column computation. At the output, the magnitude of each
pixel is computed by a CORDIC unit. The permutations are
performed when the quantized image pixels are written back
to the external main memory.

m-point 
FFT

Transpose
Memory
(m×m)

m-point 
FFT

Row-wise 
operations

Column-wise 
operations

Source 
memory
(m×m)

Twiddle 
Factors

(N/8)

Image pixels

Spectrum

CORDIC

M
em

or
y 

C
on

tr
ol

le
r

External 
Memory

Abs()

Fig. 6. Internal architecture of 2D DFT engine

FPGA Verification Platform:
To verify our design, we adopt DINI Group’s DN6000K10

-PCIe logic emulation board, which is equipped with Xilinx
XC2VP -100 FPGAs and Micron’s DDR-SDRAM modules.
We only adopt one FPGA for the 2D DFT engine and one
DDR-SDRAM module for storage of the image (see Fig.5).

We use Xilinx Core Generator to generate them-point
pipelined FFTs, dual-port memories, and the CORDIC-based
magnitude computation unit. All units are pipelined and can
achieve a throughput of 1 output/clock. These IP cores and
memories are generated as Verilog-HDL files, which are syn-
thesizable and can be ported to the FPGA.

In this design,m is set to be 128, and the data width per
pixel is set to 16 bits for both real and imaginary components.
The data width of the DDR-SDRAM is 32 bits so one Fourier
coefficient can be read at a time. The final synthesis result
is summarized in Table 2. The maximum clock rate for the
2D DFT engine is 158MHz. However, to communicate with
the DDR-SDRAM whose clock rate is 100MHz, the 2D DFT
engine is also set to 100MHz. As a result, the ideal throughput
is 106 pixels/sec. In addition, the pipelined 2D DFT engine
has a latency of 33,350 clocks (including reading the128 ×
128 subblock) to generate the first pixel. Thus for instance,
the total computation time for a512× 512 image is 33,350 +
512 × 512= 295,494 clock cycles, i.e. 2,955µs.

Table 2. FPGA resource and timing performance of the128 × 128
2D DFT engine. (Data width: 16 bits)

Resources Frequency Latency
Slice BRAM MULT18 (MHz) (clock cycles)

5933 (13%) 16 (3%) 24 (5%) 100 (max:158) 33,350

Minimized Data Access to the Memory:
From the execution procedure, we see that onlym2 (≪

N2) data are read from the memory, and onlyN2 data are
written to the memory. Compared to the 2N2 reads and 2N2

writes of RC decomposition, it is obvious that the number
of accesses to the external memory is greatly reduced. This
not only shortens the communication time but also helps in
reducing the power consumption significantly.

Scalability of the Architecture:
From Table 2, we see that the FPGA resources have only

been partially utilized. This implies that more 2D DFT en-
gines can be put onto the FPGA. Due to the high parallelism
of the proposed algorithm, the performance of our system can
potentially be acceleratedk times ifk 2D DFT engines are uti-
lized. However, system performance is constrained by mem-
ory bandwidth. As mentioned above, we can only access one
Fourier coefficient at a time in this verification platform. Un-
der this constraint, it is meaningless to add more 2D DFT en-
gines to the FPGA. If we can customize the verification board
and connect more memory modules to the FPGA, the bottle-
neck can be eliminated. Then, our architecture can be further
parallelized and the speed can be significantly increased.

Validation on the FPGA platform:
Next we demonstrate the Mean-Square-Error and timing

performance of our procedure when implemented on the hard-
ware platform. The images used in these experiments are
from ‘miscellaneous’ and ‘aerials’ categories in USC-SIPI
image database [11]. The data representation for the hardware
implementation is fixed point format (16,8) with 8 integer bits
(including 1 sign bit) and 8 fractional bits.

Fig.7 and Table 3 illustrate the quality degradation for dif-
ferent nonzero subblock sizes. Fig.7(b) shows that even when
1/4 of the given Fourier image is used, the reconstructed im-



(a) Original (b) MSE=14.8dB

(c) MSE=20.0dB (d) MSE=23.5dB

Fig. 7. Image ‘Man’:(a) original (b) constructed from1/4 of
Fourier image (c)1/16 of Fourier image (d)1/64 of Fourier
image.

age quality is still quite good compared with the original one.
With further reduction (like when only1/64 of Fourier image
is used), the image as shown in Fig.7(d) is still acceptable.

Table 3. MSE (dB) for reconstructed sample images

Size Images RC(Full)
m2/N2

1/4 1/16 1/64

512 × 512
Lena 0.2 12.8 18.5 22.5
Girl (Elaine) 19.0 20.4 21.2 22.8
Fishing boat 7.6 17.3 22.0 24.9
Stream and bridge 0.5 20.8 24.7 27.0

1K × 1K
Man 4.7 14.8 20.0 23.5
Pentagon 20.9 22.5 24.0 25.2
Airport 4.9 17.7 22.3 25.1
Airplane(U-2) 4.9 13.7 15.1 15.9

Table 3 gives the MSE for 6 images. We see that the
amount of MSE degradation varies from image to image. Also
some images are more sensitive to subblock size. In many of
the images, the MSE of partial 2D FFT is significantly higher
than that of RC decomposition. However there is not much
difference in their perceptual quality.

Table 4 compares timing performance of the proposed
partial 2D DFT algorithm with RC decomposition. All re-
sults are for ‘Lena’ of size512 × 512. The timing improve-
ment obtained by the proposed algorithm is significant. If
m2/N2 = 1/4, or m = 256, the reduction on the latency
is 84% and on the total computation time is 76%. The im-
age reconstructed by partial 2D algorithm is still of quite high
quality, as shown in Fig.4(b).

Table 4. Timing performance of RC decomposition and the pro-
posed algorithm for ‘Lena’

Results RC(Full)
m2/N2

1/4 1/16 1/64
Latency (cycles) 840,807 132,050 33,350 8,570
Total time (cycles) 1,678,336 394,194 295,494 270,714

5. CONCLUSION

In this paper, we described a technique to do efficient image
reconstruction of Fourier images. It utilizes the fact thatfor
natural and aerial images, most of the information is concen-
trated in the four corners of the Fourier image. We present
an algorithm for computing partial 2D Fourier transform and
show how this can be used for efficient image reconstruction.
The 2D algorithm has reduced computation complexity com-
pared with conventional RC decomposition algorithm, and
more importantly, reduces the number of memory accesses.
We mapped this algorithm onto a Xilinx Virtex-II Pro-100
FPGA platform. The hardware implementation is very effi-
cient and has a very low latency. Moreover, the algorithm
is inherently parallel and the throughput can be significantly
increased if mapped to platforms with higher communica-
tion/memory bandwidth.

ACKNOWLEDGEMENTS

The authors thank Dr. Nikos Pitsianis and Dr. Xiaobai Sun
in Duke University for assistance in the decomposition algo-
rithm for 2D DFT.

6. REFERENCES

[1] J. W. Cooley and J. W. Tukey, “An algorithm for the machinecomputa-
tion of complex Fourier series,”Mathematics of Computation, vol. 19,
pp. 297–301, 1965.

[2] M. Fleury and A.F. Clark, “Parallelising a set of 2-D frequency trans-
forms in a flexible manner,”IEE Proceedings. Vision, Image, and Sig-
nal Processing, vol. 145, pp. 65–72, 1998.

[3] H. V. Sorensen and et al., “Efficient computation of the DFT with
only a subset of input or output points,”IEEE Transactions on Signal
Processing, vol. 41, pp. 1184–1200, 1993.

[4] D. P. Skinner, “Pruning the decimation-in-time FFT algorithm,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 24, pp.
193–194, 1976.

[5] S. He and M. Torkelson, “Computing partial DFT for comb spectrum
evaluation,”IEEE Signal Processing Letters, vol. 3, pp. 173–175, 1996.

[6] P.A. Milder and et al., “Discrete Fourier transform compiler: from
mathematical representation to efficient hardware,” Tech.Rep.,
Carnegie Mellon University, 2007.

[7] C. Van Loan,Computational framework of the fast Fourier transform,
Society for Industrial and Applied Mathematics (SIAM), 1992.

[8] N. P. Pitsianis,The Kronecker product in approximation and fast trans-
form generation, Dissertation for the degree of doctor of philosophy,
Cornell University, Jan. 1997.

[9] M. Wakin, “Standard test images - Lena-Lenna,”http://www.
ece.rice.edu/ ˜ wakin/images/ .

[10] “FFT Xilinx Logicore,” Website, http://www.xilinx.com/
products/ipcenter/FFT.htm .

[11] “The USC-SIPI Image Database,” Website,http://sipi.usc.
edu/database/ .


