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ABSTRACT filter design [3], etc. The data flow of the pruned structure is

In this paper we present an efficient way of doing im-derived from the normal FFT structure by keeping only the

age reconstruction using the 2D Discrete Fourier transforrf@nches corresponding to non-zero inputs. While the num-

(DFT). We exploit the fact that in the frequency domain, in-P€r of computations in pruned FFT is reduced, the resulting
formation is concentrated in certain regions. Consequentl St'Ucture is quite irregular and highly dependent on the-num

it is sufficient to compute partial 2D Fourier transform wier P€r and positions of the nonzero elements. Consequergly, th
only m x m elements of aiV x N image are nonzero. Com- hardware implementation is unwieldy and not scalable [5].

pared with the traditional row-column (RC) decomposition ~ We introduce in this paper a new technique for efficient
algorithm, the proposed algorithm enables us to recortstruénage reconstruction that is regular and scalable. It ateplo
images with significantly smaller computation complexity a the fact thatin Fourier representations of ‘natural’ arefial
the expense of mild degradation in quality. We also describ8nages, information is concentrated only in the four cosner
the implementation of the new reconstruction algorithm on & his feature is exploited in the development of a new two-
Xilinx Virtex-11 Pro-100 FPGA. For512 x 512 natural and dimensional (2D) decomposition algorithm for inverse DFT
aerial images, this implementation results in 68% reductio that reconstructs the image using a small subset of Fogier ¢
in the number of memory accesses and 76% reduction in trfficients. We refer to this algorithm as partial 2D DFT. This
total computation time compared to the RC method. algorithm is inherently parallel and requires a small numbe
) of memory accesses compared to the conventional RC decom-
Keywords: Discrete Fourier Transform; image reconstruc-Position.

tion; FPGA; row-column decomposition; two dimensionalde- ~ The proposed algorithm has been implemented on an FPGA
composition platform consisting of a Xilinx Virtex-11 Pro -100 FPGA and

a DDR SDRAM. It can processl2 x 512 sized Fourier im-
age with128 x 128 nonzero coefficients iR95, 494 clock
cycles. While this architecture is highly scalable, itsreat

The Discrete Fourier Transform (DFT) and its inverse are jm{MPlementation is limited by the memory/bus bandwidth.
portantimage processing tools. Fast implementationssith The restofthe paperis organized as fol!o_ws. In Section 2,
transforms[1] have made them popular in applications in imWe introduce the basics of the decqmposmon aIgonthlrrj for
age analysis, filtering, reconstruction and compression. 1D and 2D DFT, followed by the partial DFT decomposition.
this paper, we focus on the application of fast two-dimemaio Section 3 describes the application of the 2D decomposition
(2D) (inverse) DFTs in efficient image reconstruction. algprithm for efficit_—:-nt image re_construction. Secti(_)n 4 de-
Typically, 2D DFTs have been implemented using the Rogcribes the FPGA implementation of the proposed image re-
Column (RC) decomposition technique [2]. While its hard-construction technique. Experimental results illustrguihe
ware implementation is simple, its latency is high becanee t tradeoffs between image quality and number of nonzero coef-
column-wise 1D DETs cannot be executed unless all the rowficients are also presented. Section 5 concludes this paper.

wise 1D DFTs are finished. Also if the data size is large, it

cannot be efficiently mapped onto embedded systems wherE DECOMPOSITION ALGORITHM FOR PARTIAL

resources and memory are limited. . DISCRETE FOURIER TRANSFORM
In some applications where part of the input data has less

§|gn|f|caqce, these inputs are represented by O’S_and PRI Prqn this section, we briefly discuss the basics of DFT and its de
ing techniques [3] [4] can be applied. Examples include comb

spectrum evaluation [5], the transition-region respomsa | composition when the number of zero elements is significant.
P ' 9 P We refer to this apartial one-dimensional DFT (1D DFT).

t This work is supported by a grant from DARPA W911NF-05-1-924 Then we present a two-dimensional decomposition algorithm

1. INTRODUCTION




for efficient computation of partial 2D DFT.

2.1. Decomposition of Partial 1D DFT

The DFT of anV-point discrete-time complex sequende.),
indexed byn = 0,1,... N — 1, is defined as:

N-1

X(k)=> a(n) - Wi*k=01,...

n=0

2.2. 2D Decomposition of Partial 2D DFT
If the input data is of siz&v x N, then 2D DFT is defined as

N—1N-1 ) )
k1,k2 Z Z x 21722 W§121+k222 (9)
11=012=0
whereky, ks =0,1,...,N — 1.

The traditional Row-Column (RC) decomposition algo-
rithm computesV 1D FFTs (one for each row), followed by

whereWy = e727/N_ The computation complexity of a N- N 1D FFTs (one for each column). The complexity of the RC
point DFT isO(N?). The Fast Fourier Transform (FFT) al- algorithmisO(N?log, N).

gorithm reduces the computation complexityXoN log, N)
[1].

Eqgn.(1) can be represented in the matrix-vector multipli-

cation form as
XNx1=Fn Ty, (2

whereFy is anN x N matrix whose(n, k) entry isW k.

The 2D DFT can be represented in matrix form as follows:

Y,

N XN

Fy (10)

whereX andY are of sizeV x N, andF, is the twiddle fac-
tor matrix. Applying the 1D decomposition in Eqn.(6) along
both rows and columns, the 2D DFT 8f x N points is writ-

=F, X

N XN

Fy can be decomposed into a product of sparse factor maen as:

trices as shown in [6] [7], and the algebraic expressiongisin .

Kronecker products is given in [8] as:
Fy = (Fp ® Im) DN (Ip ® Fin) Py @)

whereN = p-m, I,, is am x m identity matrix, Dy is
a diagonal matrix of twiddle factorsy is the Kronecker (or
tensor) product, an®y , denotes permutation with strige
An ® Bm = [ag,1Bmlo<k,i<n for A= [ak]o<k,i<n (5)
Using the decomposition df; given in Egn. (3), the 1D
DFT in Egn. (2) is rewritten as:

W](ijodm)»tj/mJ forj=0,1...N -1 4

XpXm:F 'i'pmeDpXm‘Fm (6)

where® is the matrix-matrix dot (or direct) prodchpxm,

Zpxm and Dy, are permutations ok, =, andD,
respectively. Fori = 0,1,...,p—1, j =0,1,...,m — 1,
the mappings are as follows:

Xig) = Xirgen)r (i) = T(ism+s), Dy =Wy’ (7)

For partial 1D DFT, assuming that only the firstout of

N elements of vectar are non-zero, i.ec = [xo Z1 ... Zm—1
00...0]%, Egn.(6) can be simplified as:
o e ITm—1
prm = @DpXm'Fm (8)
o - Tm—1

pxXm

The first matrix on the righthand side of Eqn.(8) is nothing bu

F, - Z,xm from Eqgn. (6). It is obtained by duplicating the
non-zero elements times. Thus 1D partial DFTX,,.,,, can

YNXN = ([p®Fm)DN(Fp®1m)X(Fp®Im)DN([p®Fm) (11)

The final outputY” is obtained by applying both row- and
column-wise bit-reverse permutations Bn

Y,

N XN

=Py VaunP (12)

NXN® N,p

In the computation of partial 2D DFT, we assume that
only a subblock ofn x m elements in inpuX are non-zero,

i.e.onlyA,  isnonzero:

Apsm 0 -0 0

0 o .- 0
X =
0 o .- 0 NxN
Then Eqn.(11) can be simplified as:
A A - A
5 A A o A
:(IP®FW)DN DN(IP®Fm) (13)

A A - A

SinceDy is a diagonal matrix whose elements are com-
puted using Eqgn.(4), we can further simplify Egn.(13) into:

A A - A

~ A A - A

Y = (I, ® Fn)( oD )1y ® Fn) (14)
A A - A

stepl

step2

step3

be obtained by first computing the dot-product of this matrixwhereD’ is aV x N full matrix whose elements a (i, j) =

with scaling matrixD,, ., and then applying DFT of length Dy (i,4) - Dy (3, ),
m on each row. The total number of complex multiplications

is then no more than\( + & log, m).

fore,j=0,1...N — 1.
Thus partial 2D DFT computation can be broken down
into 4 steps:



Step 1. Non-zero subblock duplication: the four corners. We apply the frequency shift technique [5]
Input X is partitioned into small sub-blocks of sizexm,  and shift sub-blocks by an amounfirst in the horizontal di-

where only the top-left subblock contains non-zero elesient rection, and then in the vertical direction. The coefficieint

The non-zero subblock is then simply duplicated as shown ithe four corners are then mapped to the upper left corner as

Eqn.(14). shown in Fig.2(b). The upper left corner now contalhs 2k
For each subblock, do Steps 2, 3 and 4. nonzero coefficients and all other coefficients are replaged
Step 2. Twiddle factor scaling: 0's. Even though the new Fourier image contains only a small
Each element is multiplied with a specific twiddle factor, "umber of nonzero coefficients, it can be used to generate a
so there aren complex multiplications. fairly good qL_JaIity image as we will demonstrate in the sub-
sequent sections.

Step 3. Local 2D FFT:

. . Image reconstruction uses inverse DFT. Since the forward
Local 2D FFT is computed on each subblock and requwegnd inverse DFT are related, the partial 2D DFT algorithm
O(m?log, m) complex multiplications. ’ P 9

described in Section 2.2 is equally applicable to invers&.DF

Step 4. Output permutaj[ion: . ) LetY, , bethe Fourierimage of sizZ€ x N, then:
The desired output is obtained by permuting the results
i - . - 1
generated in each of the sub-blocks, as shown in Eqn.(12). DFT™\(Y,,,) = WDFT(YLN)# (15)

The permutation is a combination of row-wise and column-

wise_bit—reversals. ) _ Heref means the conjugate transpose.
Fig.1 demonstrates the flow graph involved in the compu- 4, procedure is described below.

tation of partial 2D DFT. The total number of complex multi- . . .
Step 1. Frequency-domain data transposition and scaling:

. . . N2
plications iss (m* +m*logm) = N* + N*logm . The coefficients in the Fourier image are represented in
higher precision compared to the pixels in the original im-
N°”éifrji§;;’£'°°k§> mﬂﬁrjﬁgmf [ bosalzD ) Outout 2D age. For efficient hardware implementation, the Fourier co-
efficients are represented in fixed point format. We firstescal
. . N the frequency-domain matrix by its sizeN? (see Eqn.(15)),
Fig. 1. The flow graph of partial 2D DFT decomposition  4nq then limit each element (both real and imaginary pasts) t
be in the rangd—128,128). Our experimental data shows
that representing scaled data (real and imaginary parts) in
3. APPLICATION TO IMAGE RECONSTRUCTION fixed point format (16,8) with 8 integer bits (including 1 sig
bit) and 8 fractional bits still maintains good accuracy.
In Fourier representation of natural and aerial images, the The conjugate transposén Eqn.(15) can simply be done
bulk of the information is concentrated in the four cornerspy switching the row and column addresses and reversing the

The partial 2D DFT algorithm described in Section 2.2 carkjgns of the imaginary values when transferring data batwee
be used for speeding up the image reconstruction. Thus thepGa and external memory.

pixel image can be generated using only a subset of the co
ficients with only a small loss in quality.

eé_tep 2. Thresholding to determine the subblock size:
As described earlier, Fourier representation of ‘natural’

I . and ‘aerial’ images typically contains four regions of high
Bl i ! i ;T’i 5 —— T formation content in the four corners. In this step we find the
el T e de ] 2 value ofk (corresponding to the subblock of size& k in each
i E - - i . i = corner) which contains adequate information to reconstruc
! Lo the image. We accumulate the magnitude of the Fourier coef-
[ b ' ottt e eptce S ficientsin ‘zigzag’ order (similar tc_J JPEG) for the subblack
e | with 0's g the upper left corner of the Fourier image. The accumulated
cal | cn N results of groups of 10 coefficients are shown in Fig.3.
L e For the example shown in Fig.3, we see that the slope
(a) Original (b) After frequency shift decreases significantly after position 400, and so we cda pic

position 600 as the threshold value. Since each accumnlatio
Fig. 2. Fourier images of ‘Lena’: original and frequency contains 10 elements, we can decide the valbg:

shifted
k:(k:z— D 6000 < k(k;—l)

16
Fig.2(a) describes the Fourier image of ‘Lena’ [9]. Note 1o
that most of the information is stored in the four cornersef t For simplicity we assume that the image size is a power
Fourier image. Let the corners be represented lxyk sub-  of 2. We also choosk to be a power of 2. In the ‘Lena’ case,
blocks. In Fig.2(a)Coo, Co1, C10, C11 are the sub-blocks in the original image size 512 x 512, and we choosk = 128.
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Fig. 3. Determining the size of thie x &k subblock

Note that a larger value of threshold corresponds to a larger
value ofk.

Step 3. Frequency shifting of Fourier image:

The partial 2D DFT algorithm described in Section 2.2,
especially Egn. (13), requires that the nonzero elemenits be
the upper left corner of the input matrix. The ‘frequencyfhi () MSE=18.5d8
technique allow us to shift subblocks in the Fourier image so

that they are grouped in the upper left corner of the image, d519- 4 Image ‘Lena’: (a) original (b) constructed fromi4 of
shown in Fig.2. Fourier image (c) constructed frohi16 of Fourier image

Step 4. Efficient Partial 2D DFT computation:

After ‘shifting’, we only keep the data in the upper left and number of memory accesses. Here, the initial Fourier im-
corner as shown in Fig.2(b), and replace all other coeftsien age is of sizeV x N, the ‘shifted’ Fourier image only has a
with O's. Note that here the new non-zero subblock after frenonzero subblock of size: x m. ‘RC Full’ means applying
quency shifting is of siz&k x 2k, and equalsn x m. Next  RC decomposition on the whol¥ x N Fourier image; ‘RC

we apply the 2D decomposition algorithm described in Secpruning’ applies pruning FFTs on the ‘shifted’ Fourier ineag
tion 2.2.

The inverse transform of a ‘shifted’ Fourier image has ) )
some phase difference compared with the ‘original’ one. For Talble % ComputatchJr_l ?”d_ Memory Access Comparison
natural and aerial images, we can still construct an image of Qgggcénmp #%‘;‘1'5;3‘:;”5 # Me]r\‘;fz /:ffesses
fairly good quality using only the magnitude component. RCEUD) N2 10;2 N IN?

RC(Pruning) | (N +m)Nlogo,m | N? +m? +2Nm

3.1. Tradeoffs between image quality and subblock size )
From Table 1 we can see that ‘RC Full' has the high-

As the size of the nonzero subblock increases, the quality afst number of computations and memory accesses. Unless
the reconstructed image improves, as expected. Sample im; < N, ‘RC pruning’ has no advantage w.r.t computation
ages of ‘Lena’ are displayed in Fig.4. The images are of sizeomplexity compared with the proposed partial 2D DFT al-

512 x 512 and are constructed in fixed point Matlab with 16 gorithm but always consumes more memory accesses.
bit precision. We present the image quality in Mean-Square-

Error (MSE). Letz; ; be the original pixel and;} ; be the

reconstructed pixel, then MSE (in dB) is calculated as: 4. HARDWARE ARCHITECTURE AND FPGA

IMPLEMENTATION

1 /N2

10log10{ 33 Z (@i — a3} The proposed 2D partial algorithm is mapped onto a platform

i consisting of a DDR-SDRAM and a Xilinx-1l Pro FPGA, as
shown in Fig.5. The originaV x N Fourierimage is stored in
the SDRAM, and then x m 2D DFT engine is implemented
with the Xilinx-Il Pro FPGA.
We compare our technique, based on partial 2D DFT decom- The execution procedure is described as follows:
position, with the conventional RC decomposition and prun- 1. Read then x m nonzero subblock from the external
ing FFT, with respect to number of complex multiplicationsmemory, and store it into the source memory of the 2D DFT

3.2. Computation and Communication Efficiency



N In this designn is set to be 128, and the data width per

m" pixel is set to 16 bits for both real and imaginary components
32 bits — The data width of the DDR-SDRAM is 32 bits so one Fourier
N oowr ey coefficient can be read at a time. The final synthesis result
FPGA is summarized in Table 2. The maximum clock rate for the
— (Xlinx XC2VP100) 2D DFT engine is 158MHz. However, to communicate with
(DDR-SDRAM) the DDR-SDRAM whose clock rate is 100MHz, the 2D DFT
N o0kIorC engineis also setto 100MHz. As a result, the ideal throughpu

is 108 pixels/sec. In addition, the pipelined 2D DFT engine
Fig. 5. Veerification system for the proposed architecture has a latency of 33,350 clocks (including reading 1he x

128 subblock) to generate the first pixel. Thus for instance,

the total computation time for@l 2 x 512 image is 33,350 +

engine. 512 x 512= 295,494 clock cycles, i.e. 2,955.
2. Use the 2D DFT engine to reconstructranx m sub-

block of the required image, and write it back to the main

memory. Table 2. FPGA resource and timing performance of 1128 x 128
3. Repeat Step 2v2/m? times (corresponding to the 2D DFT engine. (Data width: 16 bits)
N2/m? subblocks) till the whole image is reconstructed. Resources Frequency Latency

. . . Slice BRAM MULT 18 MHz clock cycles
The detailed architecture of the x m 2D DFT engine 5933 (13%) | 16 (3%) | 24 5%) 100((max):158) ( 33'335/0 )

is depicted in Fig.6. It contains twa-point 1D FFT Xilinx
IPs[10], which are used to compute row- and column-wise 1D

FFTs respectively. Each data is multiplied by a twiddledact Minimized Data Access to the Memory:

using a complex multiplier. A ROM table is used to generate From the execution procedure, we see that only (<

the twiddle factors. Note that the size of the table is ofily N?) data are read from the memory, and ofNy data are
because we can generate twiddle factors of rangeqpbg  written to the memory. Compared to th&/2 reads and &>
using only the coefficients within [0 /4]. After the row- writes of RC decomposition, it is obvious that the number
wise 1D FFT, the data is stored in the transpose memory fd¥f accesses to the external memory is greatly reduced. This
column computation. At the output, the magnitude of eactiot only shortens the communication time but also helps in
pixel is computed by a CORDIC unit. The permutations argeducing the power consumption significantly.

performed when the quantized image pixels are written backcalability of the Architecture:

to the external main memory. From Table 2, we see that the FPGA resources have only
— been partially utilized. This implies that more 2D DFT en-
Fators| e gines can be put onto the FPGA. Due to the high parallelism
spectum|Somee operations of the proposed algorithm, the performance of our system can
" ooy & potentially be acceleratddiimes ifk 2D DFT engines are uti-
External g% Transposs lized. However, system performance is constrained by mem-
lemol o= lemory . .
vemey Y12 8 (mxm) ory bandwidth. As mentioned above, we can only access one
g el | SORDIC Tl | Fourier coefficient at a time in this verification platformny
AbsO ST e der this constraint, it is meaningless to add more 2D DFT en-
gines to the FPGA. If we can customize the verification board
Fig. 6. Internal architecture of 2D DFT engine and connect more memory modules to _the FPGA, the bottle-
neck can be eliminated. Then, our architecture can be furthe
EPGA Verification Platform: parallelized and the speed can be significantly increased.

To verify our design, we adopt DINI Group’s DN6000K 10 Validation on the FPGA platform:
-PCle logic emulation board, which is equipped with Xilinx ~ Next we demonstrate the Mean-Square-Error and timing
XC2VP -100 FPGAs and Micron’s DDR-SDRAM modules. performance of our procedure when implemented on the hard-
We only adopt one FPGA for the 2D DFT engine and oneware platform. The images used in these experiments are
DDR-SDRAM module for storage of the image (see Fig.5). from ‘miscellaneous’ and ‘aerials’ categories in USC-SIPI
We use Xilinx Core Generator to generate thepoint  image database [11]. The data representation for the haedwa
pipelined FFTs, dual-port memories, and the CORDIC-basetiplementation is fixed point format (16,8) with 8 integetshi
magnitude computation unit. All units are pipelined and car(including 1 sign bit) and 8 fractional bits.
achieve a throughput of 1 output/clock. These IP cores and Fig.7 and Table 3 illustrate the quality degradation for dif
memories are generated as Verilog-HDL files, which are synferent nonzero subblock sizes. Fig.7(b) shows that evemwhe
thesizable and can be ported to the FPGA. 1/4 of the given Fourier image is used, the reconstructed im-



(b) MSE=14.84B
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(c) MSE=20.0dB (d) MSE=3.5dB

Fig. 7. Image ‘Man’:(a) original (b) constructed froiiry4 of
Fourier image (c) /16 of Fourier image (d) /64 of Fourier
image.

age quality is still quite good compared with the originakon
With further reduction (like when only/64 of Fourier image
is used), the image as shown in Fig.7(d) is still acceptable.

Table 3. MSE (dB) for reconstructed sample images

. m2/N2

Size Images RC(Full) 72 ] 1/16 | 1/64
Lena 0.2 12.8 18.5 22.5

512 x 512 | Girl (Elaine) 19.0 20.4 | 21.2 22.8
Fishing boat 7.6 17.3 | 22.0 | 249

Stream and bridgg 0.5 20.8 | 24.7 | 27.0

Man 4.7 14.8 20.0 23.5

1K x 1K | Pentagon 20.9 225 | 24.0 | 25.2
Airport 4.9 17.7 | 22.3 25.1
Airplane(U-2) 4.9 13.7 | 15.1 15.9

Table 3 gives the MSE for 6 images. We see that the
amount of MSE degradation varies from image to image. Also
some images are more sensitive to subblock size. In many ofg

the images, the MSE of partial 2D FFT is significantly higher

than that of RC decomposition. However there is not much

difference in their perceptual quality.

Table 4 compares timing performance of the proposedis]

partial 2D DFT algorithm with RC decomposition. All re-
sults are for ‘Lena’ of siz&12 x 512. The timing improve-

ment obtained by the proposed algorithm is significant. If

m?/N? = 1/4, orm = 256, the reduction on the latency

is 84% and on the total computation time is 76%. The im-

age reconstructed by partial 2D algorithm is still of quiigth
quality, as shown in Fig.4(b).

Table 4. Timing performance of RC decomposition and the pro-
posed algorithm for ‘Lena’

m2 /N2
Results RC(Full) 77 /16 /61
Latency (cycles) 840,807 | 132,050| 33,350 8,570
Total time (cycles)| 1,678,336| 394,194 | 295,494 | 270,714

5. CONCLUSION

In this paper, we described a technique to do efficient image
reconstruction of Fourier images. It utilizes the fact thoat
natural and aerial images, most of the information is concen
trated in the four corners of the Fourier image. We present
an algorithm for computing partial 2D Fourier transform and
show how this can be used for efficient image reconstruction.
The 2D algorithm has reduced computation complexity com-
pared with conventional RC decomposition algorithm, and
more importantly, reduces the number of memory accesses.
We mapped this algorithm onto a Xilinx Virtex-I1l Pro-100
FPGA platform. The hardware implementation is very effi-
cient and has a very low latency. Moreover, the algorithm
is inherently parallel and the throughput can be signifigant
increased if mapped to platforms with higher communica-
tion/memory bandwidth.
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