
A Looming Fault Tolerance Software Crisis1?
Alexander Romanovsky

Newcastle University, UK
alexander.romanovsky@ncl.ac.uk

1 Position paper for the 2006 NATO Workshop on Building Robust Systems with Fallible Construction (Prague, Czech Republic, 9-10
November 2006)

Abstract
Experience suggests that it is edifying to talk about software
crises at NATO workshops. It is argued in this position pa-
per that proper engineering of fault tolerance software has
not been getting the attention it deserves. The paper outlines
the difficulties in building fault tolerant systems and de-
scribes the challenges software fault tolerance is facing. The
solution being advocated is to place a special emphasis on
fault tolerance software engineering which would provide a
set of methods, techniques, models and tools that would ex-
actly fit application domains, fault assumptions and system
requirements and support disciplined and rigorous fault tol-
erance throughout all phases of the life cycle. The paper fin-
ishes with an outline of some directions of work requiring
special focused efforts from the R&D community.

Keywords: fault tolerance, software engineering
Fault tolerance misuse
As reported by Flavio Cristian in the 80s [1], field experi-
ence with telephone switching systems showed that up to
two thirds of system failures were due to design faults in
exception handling or recovery algorithms.

Let us look into what is happening now.

• The Interim Report on Causes of the August 14th 2003
Blackout in the US and Canada [2] clearly shows that
the problem was mostly caused by badly designed fault
tolerance: poor diagnostics of faults, longer-than-
estimated time for component recovery, failure to in-
volve all necessary components in recovery, inconsistent
system state after recovery, failures of alarm systems,
etc.

• Tony Hoare reports [3] that in some MS systems more
than 10% of code is dedicated to executable assertions.
Yet as we all know, many customers are still unhappy
with the quality of these products

• The authors of an ICSE 2006 paper [4] have experimen-
tally found that in a 10 million LOC real-time embedded
control system, misused exception handling introduced
2-3 bugs per 1 KLOS.

• Another paper, just accepted to IVNET 2006 [5], shows
that in eight .NET assemblies (which represent applica-
tion, library and infrastructure levels), over 90% of ex-
ceptions that the code can throw are not documented.

• Paper [6] by IBM researchers reports typical patterns of
exception handling misuse and abuse in five customer

and one proprietary J2EE applications, referring to them
as “bad coding practice”. It was found, for example, that
one in ten classes swallows exceptions without doing
anything about them.

We keep making mistakes in designing fault tolerance! The
situation is deteriorating as the complexity of software and
systems in general is growing, causing an increase in the
complexity of fault tolerance, as computer-based systems
proliferate more widely in business, society and individuals'
activities.

In spite of the fact that a plethora of fault tolerance mecha-
nisms have been developed since the 70s, that there is a
good understanding of the basic principles of building fault
tolerant software and that a considerable fraction of re-
quirements analysis, run time resources, development effort
and code are now dedicated to fault tolerance, we might well
be on our way to a fault tolerant software crisis. At present,
fault tolerance is not trustworthy as it is the least understood,
documented and tested part of the system, is frequently mis-
used or poorly designed, regularly left until too late in the
development process, not typically introduced in a system-
atic, disciplined or rigorous way, and often not suitable for
the specific situations in which it is applied.
Fault tolerance: challenges and difficulties
Fault tolerance means can and will undermine overall sys-
tem dependability if not applied properly. The following are
some of the main challenges in the area:

• Fault tolerance means are difficult to develop or, when
they are provided by some dedicated support, to use –
this is because they increase system complexity by add-
ing a new dimension to the reasoning about system be-
haviour. Their application requires a deep understanding
of the intricate links between normal and abnormal be-
haviour and states of systems and components, as well
as system state and behaviour during recovery.

• Fault tolerance (software diversity, rollback, exception
handling) is costly as it always uses redundancy. Rather
than improve fault tolerance, system developers far too
often prefer to spend resources on extending functional-
ity. We cannot and/or do not always want to put a cost
on failures.

• System designers are reluctant to think about faults at
the early phases of development. Fault tolerance is often
considered to be an implementation issue. Moreover,

fault tolerance is often “added” after the normal part of
the system is developed, which makes it less effective,
may require system redesign or result in faulty fault tol-
erance.

• There is a lack of appropriate training for, education
about or good practice in, fault tolerance:
• We do not really know what counts as a good fault

tolerant program. We usually know well only how
to write programs and components that assume (un-
justifiably) that nothing will go wrong

• Developers of many applications fail to apply even
the basic principles of software fault tolerance.
There is no focus on clearly defining fault assump-
tions from the very start, early error detection, recur-
sive system structuring for error confinement,
minimising and ensuring error confinement and er-
ror recovery areas, extending component specifica-
tion with a concise and complete definition of
failure modes, etc.

• It is imperative that fault tolerance means fit the system,
the types of faults (i.e. the fault assumptions), the appli-
cation domain, the development paradigm, the execution
environment and the system characteristics. We need
suitable fault tolerance abstractions for a variety of par-
ticular situations.

Fault assumptions and application fault tolerance
We believe that due to

• an increase in hardware quality and a reduction in hard-
ware cost (e.g. hardware replication is cheap)

• a dramatic rise in software complexity and volume
• the involvement of new actors (non-professional users,

multiple organisations, critical infrastructures)
• a growing complexity of the environment in which sys-

tems operate,
for many applications hardware faults are no longer the pre-
dominant threat. These applications include a wide range of
safety-, life-, business- and money-critical systems – see, for
example, recent studies by J.-C. Laprie [7], J. Knight [8] and
by the Standish Group [9]. The predominant types of faults
to be tolerated are

• application software faults (including design faults)
• environmental and infrastructural faults/deficiencies
• potentially damaging changes in systems, components,

environments and infrastructures
• mismatches of components composed together (includ-

ing mismatches of fault tolerance mechanisms [10])
• architectural and organisational mismatches and system-

level inconsistencies
• degradation of services provided by components and

systems
• organisational, human and socio-technical faults.

Such faults cannot be tolerated (and the system recovered)
by hardware or middleware means alone, without involving
application software. This is why we need to include fault
tolerance measures into application system development (be
it top-down or bottom-up or a mix of both).

Fault tolerance and software development
Fault tolerance needs to be engineered in a disciplined and
rigorous way. In agreement with a number of my colleagues
working in fault tolerance, I see the way forward in pursuing
the following directions:

• integrating fault tolerance measures (diversity, exception
handling, backward error recovery, etc.) into system
models starting from the early architectural design

• making fault tolerance-related decisions for each appro-
priate model by modelling faults, fault tolerance meas-
ures and dedicated redundant resources. In particular, we
need to focus on fault tolerant software architectures

• ensuring correct transformations of those models that
enrich fault tolerance measures and make models more
concrete and detailed

• making fault tolerance verification and validation part of
system development

• developing dedicated tool support for fault tolerance
development

• providing domain-specific application-level fault toler-
ance mechanisms and abstractions.

Clearly, there has been some research done in these areas.
Yet if we look at the proceedings of some best conferences
relevant to dependability and software engineering, such as
ICSE, DSN, ESEC/FSE and EDCC, we will see that these
topics are at best peripheral. It is my strong belief that more
focused efforts are needed to achieve fault tolerance which
neither fails nor requires fault tolerance itself.

Where to look for solutions
In this section I would like to briefly introduce some of the
R&D directions which I believe are or will be contributing
to the successful engineering of fault tolerance.

Architecting fault tolerant systems is now becoming an ac-
tive research area. We need to focus on introducing special-
ised architectural solutions:

• supporting all main fault tolerance mechanisms (excep-
tion handling with error confinement, software diversity,
atomic actions, etc.)

• introducing specific fault tolerance solutions (such as
adaptors and protective wrappers for COTS component
integration – [11])

• making existing and widely accepted architectures fault
tolerant

• ensuring tolerance of architectural mismatches [12].

It is essential that fault tolerance is supported by a set of
specialised patterns and styles that would assist developers
at all steps of the life cycle. These should include specialised
architectural, refinement, decomposition, design, implemen-
tation and model transformation patterns and styles.

Where appropriate, fault tolerance should be developed for-
mally to ensure its “correctness by construction”. This needs
to be supported by a development environment with a set of
specialised tools. We should be able to model faults and
fault tolerance, to express, prove and check specific fault
tolerance properties of these models and to refine them by
refining both fault assumptions and fault tolerance means.

Different faults and their tolerance need to be considered at
the appropriate phases of the life cycle and further refined
and decomposed during development. This needs to start
with the requirement phase.

To avoid making software more complex and introducing
new faults, the fault tolerance mechanisms and abstractions
being developed should fit the types of faults, the application
domain, the development paradigm, the execution environ-
ment and the system characteristics and requirements.

Fault tolerance and fault tolerant evolution. Both system
evolution and dynamic upgrade should ensure the preserva-
tion or the controlled and predictable changes of system
fault tolerance. It is systems going through online modifica-
tions that are mostly vulnerable to faults, so we need special-
ised fault tolerance mechanisms that will ensure dependable
modifications.

Some of the recent and ongoing activities that are directly
related to engineering fault tolerant systems:

• RODIN - Rigorous Open Development Environment for
Complex Systems, FP6 IST STREP project (2004-
2007)2

• FME 2005 Workshop on rigorous engineering of fault
tolerant systems (REFT 2005, Newcastle, July 2005)
and a follow-up State of the Art LNCS collection [13]

• Workshop on engineering fault tolerant systems in Lux-
emburg (EFTS 2006)3. June 2006

• Edited collection of papers on engineering fault tolerant
systems to be published in 2007

• A series of workshops on architecting dependable sys-
tems (WADS at ICSE and DSN in 2002-2006)4 and
three follow-up LNCS collections [14-16].

Copyrights
My thanks go to many people with whom these ideas have
been discussed, but first of all, to Brian Randell, Cliff Jones,

2 http://rodin.cs.ncl.ac.uk/
3 http://se2c.uni.lu/tiki/tiki-index.php?page=Efts2006Overview
4 http://www.cs.kent.ac.uk/events/conf/2006/wads/

Jörg Kienzle, Nicolas Guelfi and Fernando Castro Filho.
This work is supported by the IST RODIN Project.

References
[1] F. Cristian. Exception handling. In Dependability of Resilient
Computers, T. Anderson (Ed.). Blackwell Scientific Publications,
1989. pp. 68-97.

[2] Interim Report: Causes of the August 14th Blackout in the
United States and Canada. Canada-U.S. Power System Outage
Task Force. November 2003. http://www.nrcan-
rncan.gc.ca/media/docs/reports_e.htm.

[3] T. Hoare. Assertions in modern software engineering practice.
Invited talk. COMPSAC 2002. Oxford, UK, 26-29 August 2002.

[4] M. Bruntink, A. van Deursen, T. Tourwé. Discovering Faults
in Idiom-Based Exception Handling. ICSE 2006. 20-28 May
2006. Shanghai. China. ACM Press. pp. 242-251.

[5] P. Sacramento, B. Cabral, P. Marques. Unchecked exceptions:
can the programmer be trusted to document exceptions? Accepted
for the 2nd Int. Conf. on Innovative Views of .NET Technologies
(IVNET 2006). 2006. Florianopolis, Brazil.

[6] D. Reimer, H. Srinivasan. Analyzing exception usage in large
java applications. In Proceedings of ECOOP 2003 Workshop on
Exception Handling in Object-Oriented Systems, July 2003.

[7] J.-C. Laprie. Dependability of software-based critical systems.
In Dependable Network Computing. D. R. Avresky (Ed.). 1999.

[8] J. Knight. Assured Reconfiguration: An Architectural Core For
System Dependability. Invited talk. ICSE 2005 Workshop on Ar-
chitecting Dependable Systems. St. Louis, Missouri, USA, 17 May
2005.

[9] J. Johnson. The Other Side of Failure! DSN 2006 Industry
Session. June 26. Philadelphia, USA. 2006.

[10] A. Avizienis. Infrastructure-Based Design of Fault-Tolerant
Systems. In the Electronic Proceedings of the IFIP Int. Workshop
on Dependable Computing and Its Applications (DCIA 98) Janu-
ary 12 - 14, 1998, Johannesburg, South Africa.

[11] T. Anderson, B. Randell, A. Romanovsky. Wrapping the fu-
ture. In the Proceedings of the IFIP Congress Topical Sessions.
Toulouse. France. 2004. pp. 165-174.

[12] R. de Lemos, C. Gacek, A. Romanovsky. Architectural Mis-
match Tolerance. In Architecting Dependable Systems. LNCS
2677, 2003. pp. 175-194.

[13] M. Butler, C. Jones, A. Romanovsky, E. Troubitsyna (Eds).
Rigorous development of complex fault tolerant system. LNCS
4157. 2006.

[14] R. de Lemos, C. Gacek, A. Romanovsky (Eds). Architecting
Dependable Systems. LNCS 2677. 2003.

[15] R. de Lemos, C. Gacek, A. Romanovsky (Eds). Architecting
Dependable Systems II. LNCS 3069, 2004.

[16] R. de Lemos, C. Gacek, A. Romanovsky (Eds). Architecting
Dependable Systems III. LNCS 3549, 2005.

http://www.nrcan-rncan.gc.ca/media/docs/reports_e.htm
http://www.nrcan-rncan.gc.ca/media/docs/reports_e.htm

