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Abstract. We present a new lower bound technique for a restricted
Branching Program model, namely for nondeterministic graph-driven
read-once Branching Programs (g.d.-BP1s). The technique is derived
by drawing a connection between ω-nondeterministic g.d.-BP1s and ω-
nondeterministic communication complexity (for the nondeterministic
acceptance modes ω ∈ {∨,∧,⊕}). We apply the technique in order
to prove an exponential lower bound for integer multiplication for ω-
nondeterministic well-structured g.d.-BP1s. (For ω = ⊕ an exponen-
tial lower bound was already obtained in [5] by using a different tech-
nique.) Further, we use the lower bound technique to prove for an ex-
plicitly defined fnction which can be represented by polynomial size
ω-nondeterministic BP1s that it has exponential complexity in the ω-
nondeterministic well-structured g.d.-BP1 model for ω ∈ {∨,⊕}. This
answers an open question from Brosenne, Homeister, and Waack [7],
whether the nondeterministic BP1 model is in fact more powerful than
the well-structured graph-driven variant.

1 Introduction and Results

Branching Programs (BPs) or equivalently Binary Decision Diagrams (BDDs)
belong to the most important nonuniform models of computation. (For a history
of results on Branching Programs see, e.g., the monograph of Wegener [19].)

Definition 1.1. A Branching Program on the variable set Xn = {x1, . . . , xn}
is a directed acyclic graph with one source and two sinks. The internal nodes are
marked with variables in Xn and the sinks are labeled with the Boolean constants
0 and 1. Further, each internal node has two outgoing edges, marked with 0 and
1, respectively.

Let Bn denote the set of Boolean functions fn : {0, 1}n → {0, 1}. A Branching
Program on Xn represents at each node v a function fv ∈ Bn in the following
way. If v is a c-sink, c ∈ {0, 1}, then fv = c and if v is an internal node
? Supported in part by DFG grant We 1066



with 0-successor v0 and 1-successor v1, then fv = xifv0 ∨ xifv1 . The function
represented by the Branching Program itself is the function represented at the
source. The size of a Branching Program G is the number of its nodes, denoted
by |G|, and the Branching Program complexity of a Boolean function f is the
size of the smallest Branching Program representing f .

Nondeterminism is one of the most powerful concepts in complexity theory.
In analogy to the definition of Turing machines, different modes of acceptance
have been studied for Branching Programs. The following definition is due to
Meinel [16].

Definition 1.2. Let Ω be a set of binary operations. An Ω-nondeterministic
Branching Program is a Branching Program of which some internal nodes are
labeled with an operation ω ∈ Ω instead of a variable. Such nodes are called non-
deterministic nodes, and the function represented at the nondeterministic node
v, labeled with ω and with 0-successor v0 and 1-successor v1, is fv = fv0 ω fv1 . As
in the deterministic case, a nondeterministic Branching Program represents the
function which is represented at the source. The size of an Ω-nondeterministic
Branching Program is the number of its deterministic nodes.

For the ease of notation, we write ω instead of {ω} if the considered set Ω of
binary operations is a singleton. In this paper, we investigate the most common
acceptance modes OR, AND, and PARITY, denoted by ∨, ∧, and ⊕, respectively
(although our lower bound technique is not limited to these acceptance modes).
For certain acceptance modes ω, an alternative way to determine the function
value of a function represented by an ω-nondeterministic Branching Program
is to count the number of computation paths of an input a which lead to the
1-sink. (A source-to-sink path is a computation path of the input a = (a1 . . . an)
if it leaves any deterministic node labeled by xi over the edge labeled by ai and
any nondeterministic node over an arbitrary edge.) E.g., a ⊕-nondeterministic
BP accepts an input a if and only if an odd number of computation paths of a
lead to the 1-sink.

Deterministic and nondeterministic BPs can be simulated by the correspond-
ing Turing machines, and the BP complexity of a Boolean function is a measure
for the space complexity of the corresponding model of sequential computation.
Therefore, one is interested in large lower bounds for BPs. Until today, no su-
perpolynomial lower bounds for general BPs representing an explicitly defined
function are known. Therefore, various types of restricted BPs have been inves-
tigated, and one is interested in refining the proof techniques in order to obtain
lower bounds for less restricted BPs. (For the latest breakthrough see e.g. [1],
[2], and [3].) There are several reasonable possibilities to restrict BPs, among
them restrictions concerning the multiplicity of variable tests or the ordering in
which variables may be tested.

Definition 1.3. (i) A (nondeterministic) read-once Branching Program (short:
BP1) is a (nondeterministic) Branching Program where each variable ap-
pears on each computation path at most once.
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(ii) A (nondeterministic) Branching Program is called s-oblivious, for a sequence
of variables s = (s1, . . . , sl), si ∈ Xn, if the set of decision nodes can be
partitioned into disjoint sets Vi, 1 ≤ i ≤ l, such that all nodes from Vi are
labeled with si and the edges which leave Vi-nodes reach a sink or a Vj-node
where j > i.

Besides the theoretical viewpoint people have used BPs in applications.
Oblivious BP1s, introduced by Bryant [8] under the term OBDDs, have found a
large variety of applications, e.g. in circuit verification. Obliviousness, though, is
a very strong restriction. Gergov and Meinel [12] and Sieling and Wegener [18]
have independently generalized the concept of obliviousness in the deterministic
read-once case in order to show how to use BP1s for verification.

Definition 1.4. A graph ordering is a Branching Program with a single sink,
where on each path from the source to the sink all variables appear exactly once. A
(nondeterministic) graph-driven BP1 (short: g.d.-BP1) is a (nondeterministic)
BP1 G for which there exists a graph ordering G0 with the following property: If
for an input a, a variable xi appears on the computation path of a in G before
the variable xj, then xi also appears on the unique computation path of a in G0

before xj.
A (nondeterministic) g.d.-BP1 G with graph ordering G0 is called well-

structured, if there exists a mapping α from the node set of G to the node set
of G0 such that for every node v in G the node α(v) is labeled with the same
variable as v, and such that if a computation path of an input a passes through
v, then the computation path of a in G0 passes through α(v).

The main idea is that in g.d.-BP1s with the graph ordering G0 for each input
the variables are tested in the same ordering, whereas (different from OBDDs)
for different inputs different orderings may be used. The stronger structural
property of the well-structured model leads to the design of simpler and faster
algorithms in the deterministic case [18]. The difference between the two models
is the following one. In a general graph-driven Branching Program it is possible
that the computation paths of two different inputs pass through the same node
labeled by xi, whereas in the graph ordering they pass through different nodes
labeled by xi. This is not allowed in the well-structured case. For the parity
case Brosenne, Homeister, and Waack [7] were the first ones realizing that the
property of beeing well-structured can be used to determine the minimal number
of nodes which are necessary to represent a Boolean function f . Until now well-
structured ⊕-BP1s are the most general parity Branching Programs (without
any restriction on the number of nondeterministic nodes) for which exponential
lower bounds for explicitly defined functions are known.

It is easy to see that any BP1 is in fact a well-structured g.d.-BP1 for a
suitably chosen graph ordering but for nondeterministic BP1s graph orderings
do not exist in general. Hence, it is an intriguing question, whether nondeter-
ministic (well-structured) g.d.-BP1s are in fact significantly more restricted than
general nondeterministic BP1s. One of the main contributions of this paper is
that we answer this question for the well-structured case in an affirmative way
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for the most important nondeterministic acceptance modes. This is done by
presenting a function called n/2-MRCn, which can be represented in polyno-
mial size by ω-nondeterministic BP1s but has exponential complexity in the
ω-nondeterministic well-structured g.d.-BP1 model (for ω ∈ {∨,⊕}). Note that
an analogous separation result for ω = ∧ follows right away from de Morgan’s
rules for the complement of n/2-MRCn.

In order to prove the separation result, we derive a new lower bound tech-
nique. Until now, there was only one general lower bound technique known for
nondeterministic well-structured g.d.-BP1s, which in addition worked only for
the parity-acceptance mode [7]. We follow a more general approach by drawing
connections to communication complexity. Hence, our lower bound technique
can be applied to all acceptance modes, where corresponding lower bounds for
communication complexity can be proven.

As another application of our lower bound technique, we prove an exponential
lower bound for integer multiplication. Lower Bounds for integer multiplication
are motivated by the general interest in the complexity of important arithmetic
functions and the insight into the structure of such functions which is often
gained by lower bound proofs. Furthermore, since exponential lower bounds are
often proven for functions which are “designed” in such a way that they fit to
a given lower bound technique, the lower bound proofs for important functions
can lead to refinements of the proof techniques.

Definition 1.5. The Boolean function MULi,n ∈ B2n maps two n-bit inte-
gers x = xn−1 . . . x0 and y = yn−1 . . . y0 to the ith bit of their product, i.e.
MULi,n(x, y) = zi, where x · y = z2n−1 . . . z0.

Since the middle bit (the bit n−1) of integer multiplication is the hardest bit
to compute, one is interested mainly in the complexity of MULn := MULn−1,n.
Bryant [9] has proven an exponential lower bound of 2n/8 for the function MULn
in the OBDD model, and Gergov has presented an exponential lower bound for
nondeterministic linear-length oblivious Branching Programs [11]. Later Ponzio
has shown that the complexity of this function is 2Ω(

√
n) for BP1s [17], and Bollig

[4] has proven an exponential lower bound for nondeterministic tree-driven BP1s
(i.e. g.d.-BP1s where the graph ordering is a tree of polynomial size).

Recently, progress in the analysis of MULn has been achieved by a new ap-
proach using universal hashing. Woelfel [20] has improved Bryant’s lower bound
to Ω

(
2n/2

)
and Bollig and Woelfel [6] have presented a lower bound of Ω

(
2n/4

)
for BP1s. Finally, Bollig, Waack, and Woelfel [5] have proven a lower bound
of 2(n−46)/12/n for ⊕-nondeterministic well-structured g.d.-BP1s. Their proof,
though, is limited to this type of acceptance mode.

Until now exponential lower bounds for MULn for unrestricted nondeter-
ministic BP1s are unknown. One step towards proving such bounds might be to
investigate BP models “inbetween” the deterministic and the nondeterministic
BP1s. This was also the motivation behind a result in [21] where an exponen-
tial lower bound has been proven for nondeterministic BP1s which have only a
restricted number of nondeterministic nodes at the top of the BP1.
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The lower bound for integer multiplication presented here is 2n/12−4 · n−1/3

and is valid for all ω-nondeterministic well-structured g.d.-BP1s where ω ∈
{∨,∧,⊕}. Comparing with the algebraic approach of [5], one advantage is that
using methods from communication complexity, all important types of nonde-
terminism can be handled simultaneously.

Due to the lack of space we have to omit some of the proofs.

2 A Lower Bound Technique for Nondeterministic
Graph-Driven BP1s

Methods from communication complexity have been used to prove lower bounds
in several Branching Program models, e.g. for OBDDs. (See e.g. [13, 15] for
the theory of communication complexity.) Consider a Boolean function f ∈ Bn
which is defined on the variables in Xn = {x1, . . . , xn}, and let Π = (XA,XB)
be a partition of Xn. Assume that Alice has access only to the input variables
in XA and Bob has access only to the input variables in XB . In a one-way
communication protocol, upon a given input x, Alice is allowed to send a single
message (depending on the input variables in XA) to Bob who must then be able
to compute the answer f(x). In an ω-nondeterministic communication protocol,
ω ∈ {∨,∧,⊕}, Alice is allowed to “guess” a message. The function value is
one if the number of guesses upon which Bob accepts the input matches the
corresponding acceptance mode ω (e.g. is at least one in the case of ω = ∨ or odd
in case of ω = ⊕). The ω-nondeterministic one-way communication complexity
of the function f is the number of bits of communication which need to be
transmitted by such a protocol that computes f . It is denoted by NDA→B

ω (f,Π).
In order to state the lower bound technique for nondeterministic g.d.-BP1s,

we have to introduce some further notation, first. A filter of a set X is a closed
upward subset of 2X (i.e. if S ∈ F , then all supersets of S are in F). Let F be
a filter of Xn = {x1, . . . , xn}. A subset B ⊆ Xn is said to be in the boundary of
F if B 6∈ F but B ∪ {xi} ∈ F for some xi ∈ Xn.

Let f be a function in Bn defined on the variables in Xn and F be a filter of
Xn. For a subset Z ⊆ Xn, we denote by A(Z) the set of all possible assignments
to the variables in Z. Let Π = (XA,XB) be a partition of Xn. If XB is in the
boundary of F , then Π is called F-partition of Xn. Finally, a function f ′ ∈ Bn
is called (ε,Π)-close to f , if there exists a set R ⊆ A(XA) with |R| ≥ ε · 2|XA|,
such that f and f ′ coincide on all inputs in R×A(XB).

Theorem 2.1. Let F be a filter on Xn, f ∈ Bn, 0 < ε ≤ 1 and ` ∈ N. If
for every F-partition Π of Xn and for every function f ′ which is (ε,Π)-close
to f it is NDA→B

ω (f ′,Π) > `, then any graph-driven ω-nondeterministic BP1
representing f either has a size of at least 2` + 1 or its graph ordering has a size
of more than 1/ε (for ω ∈ {∨,∧,⊕}).

The above technique does not yield lower bounds for nondeterministic
g.d.-BP1s directly, because the size of the graph ordering of such a Branch-
ing Program is not part of the nondeterministic g.d.-BP1 size. Until now it
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is unknown whether there exists a class of functions fn which has polynomial
complexity in the nondeterministic g.d.-BP1 model whereas the size of every
graph ordering of a polynomial size nondeterministic g.d.-BP1 for fn is expo-
nential. The situation is different in the well-structured case as Bollig, Waack,
and Woelfel [5] have shown by the following proposition.

Proposition 2.2 ([5]). For any well-structured nondeterministic graph driven
BP1 G on n variables, there exists a graph ordering G0 such that G is G0-driven
and |G0| ≤ 2n|G|.
Corollary 2.3. Let f ∈ Bn be a function satisfying the conditions of Theo-
rem 2.1 for some filter F on Xn and the parameters ε and `. Then any well-
structured ω-nondeterministic graph driven BP1 for f has a size of more than
min

{
2`, (ε · 2n)−1

}
.

3 An Exponential Lower Bound for Integer Multiplication

As a first application of the lower bound technique, we prove a lower bound for
integer multiplication. We consider here the Boolean function MUL∗n ∈ B2n−2;
this is the subfunction of MULn, which takes as inputs only odd integers (i.e. the
least significant bits of the two n-bit factors are fixed to 1). Obviously, a lower
bound on the (nondeterministic) communication complexity of MUL∗n implies
the same lower bound for MULn.

The following lemma describes the connection between integer multiplica-
tion and nondeterministic communication complexity, which we need to apply
Corollary 2.3. It is well known that a large nondeterministic communication
complexity can be shown by proving that the communication matrix according
to a given partition Π contains a large triangular submatrix (this follows e.g.
from the methods in [10]). Note that we use the term submatrix here in the com-
mon combinatorial sense, which means that each submatrix is obtained from a
matrix M by selecting an arbitrary set of rows and columns of M and ordering
them arbitrarily.

Lemma 3.1. Let A,B ⊆ Z2n and Y ⊆ Z∗2n := {1, 3, . . . , 2n − 1} and assume
that |B| = 2β and |Y | = 2µ. Consider the |A| × |B × Y |-matrix M , where each
row is identified with an integer a ∈ A and each column is identified with a
pair (b, y) ∈ B × Y , and the entry of the matrix in row a and column (b, y)
equals MUL∗n(a + b, y). Then M contains a triangular s × s-submatrix where
s = min

{
|A|/2− 1, 2(3µ+β−3n−10)/4 − 1

}
.

In order to prove Lemma 3.1, we need to recall some properties about integer
multiplication which have been derived by Bollig and Woelfel [6] and Bollig,
Woelfel, and Waack [5] using universal hashing. Let Z∗2n be the set of odd n-bit
integers.

Lemma 3.2 ([5, 6]). Let X ⊆ Z2n and Y ⊆ Z∗2n . If |X| · |Y | ≥ 2n+2r+1, r ≥ 0,
then there exists an element y ∈ Y such that

∀q ∈ {0, . . . , 2r − 1} ∃x ∈ X : q · 2n−r ≤ (xy) mod 2n < (q + 1) · 2n−r.

6



Lemma 3.3 ([5]). Let Y ⊆ Z∗2n , 1 ≤ r ≤ n− 1 and (zi, z′i) ∈ Z2n ×Z2n , where
zi 6= z′i for 1 ≤ i ≤ t. Then there exists a subset Y ′ ⊆ Y , |Y ′| ≥ |Y | − t · 2n−r+1,
such that for all pairs (zi, z′i), 1 ≤ i ≤ t,

∀y ∈ Y ′ : 2 · 2n−r ≤
(
(zi − z′i)y

)
mod 2n ≤ 2n − 2 · 2n−r.

Proof (of Lemma 3.1). We show below that there exist an element y ∈ Y ,
a subset {a1, . . . , as+1} ⊆ A and a subset {b1, . . . , bs} ⊆ B such that for all
1 ≤ j ≤ s+ 1 and 1 ≤ i ≤ s

MUL∗n(aj + bi, y) =

{
0 if i ≥ j
1 if i < j.

(1)

This means that the s × s-submatrix of M consisting of the rows a2, . . . , as+1

and of the columns (b1, y), . . . , (bs, y) is triangular.
Let r = (µ+ β−n)/2− 1. If |A| ≤ 2(3µ+β−3n−6)/4, then we let A′ = A. Oth-

erwise, we let A′ be an arbitrary subset of A containing exactly 2(3µ+β−3n−6)/4

elements.
Consider now the t = |A′|(|A′| − 1) pairs (zi, z′i), 1 ≤ i ≤ t, with zi, z

′
i ∈

A′ and zi 6= z′i. Applying Lemma 3.3, we obtain a subset Y ′ ⊆ Y , |Y ′| ≥
|Y | − |A′|2 · 2n−r+1, such that for all different a, a′ ∈ A′ it holds

∀y ∈ Y ′ : 2 · 2n−r ≤
(
(a− a′)y

)
mod 2n ≤ 2n − 2 · 2n−r. (2)

Then

|B| · |Y ′| ≥ |B| · |Y | − |B| · |A′|2 · 2n−r+1 ≥ 2β+µ − 2β+(3µ+β−3n−6)/2+n−r+1

= 2β+µ − 2β+µ+(µ+β−n)/2−1−r−1 = 2β+µ − 2β+µ−1 = 2β+µ−1

= 2n+2r+1.

Therefore, we may apply Lemma 3.2 (with X = B) in order to see that there
exists an element y ∈ Y ′ such that

∀q ∈ {0, . . . , 2r − 1} ∃b ∈ B : q · 2n−r ≤ (by) mod 2n < (q + 1) · 2n−r. (3)

We let this element y ∈ Y ′ be fixed from now on. Further, let

A′< =
{
a ∈ A′

∣∣ (ay) mod 2n < 2n−1
}

and
A′≥ =

{
a ∈ A

∣∣ (ay) mod 2n ≥ 2n−1
}
.

We choose A∗ to be the set which has at least as many elements as the other
one. Hence,

|A∗| ≥ |A′|/2 ≥ min
{
|A|, 2(3µ+β−3n−6)/4

}
/2 = s+ 1.
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We consider only the case where A∗ equals |A′<|; the other case is symmetric
and can be proven analogously. We label the elements in A∗ by a1, . . . , as+1 in
such a way that

0 ≤ (a1y) mod 2n ≤ . . . ≤ (as+1y) mod 2n < 2n−1. (4)

Then we obtain by (2) that

∀1 ≤ i ≤ s : (aiy) mod 2n + 2 · 2n−r ≤ (ai+1y) mod 2n. (5)

For 1 ≤ i ≤ s we let now

qi :=
⌊

2n−1 − (aiy) mod 2n

2n−r

⌋
− 1 (6)

and choose bi ∈ B such that

qi · 2n−r ≤ (biy) mod 2n < (qi + 1) · 2n−r. (7)

(Such a bi exists because of (3)). Hence, we get for 1 ≤ j ≤ i

(ajy) mod 2n+(biy) mod 2n
(4),(7)
< (aiy) mod 2n+(qi+1) ·2n−r

(6)

≤ 2n−1. (8)

Thus,
(
(aj + bi)y

)
mod 2n < 2n−1, which implies MUL∗n(aj + bi, y) = 0. This

already proves the claim (1) for the case i ≥ j.
We consider now the case i < j. First of all, we have

(ai+1y) mod 2n + (biy) mod 2n
(5),(7)

≥ (aiy) mod 2n + 2 · 2n−r + qi · 2n−r
(6)

≥
(aiy) mod 2n + 2 · 2n−r + 2n−1 − (aiy) mod 2n − 2 · 2n−r = 2n−1. (9)

Hence, by (4) we also obtain (ajy) mod 2n + (biy) mod 2n ≥ 2n−1. Thus,

2n−1 ≤ (ajy) mod 2n + (biy) mod 2n

= (ajy) mod 2n − (aiy) mod 2n + (aiy) mod 2n + (biy) mod 2n

(4),(8)
< 2n−1 + 2n−1 = 2n.

These inequalities tell us that
(
(aj + bi)y

)
mod 2n ≥ 2n−1, and hence

MUL∗n(aj + bi) = 1. Altogether, we have shown (1). ut

In order to derive a lower bound for integer multiplication by the use of
Theorem 2.1, we need to define an appropriate filter on the input variables.
We use the filters Fk(Z) which are defined on an m-element variable set Z for
1 ≤ k < m as Fk(Z) = {M ⊆ Z | |M | ≥ m− k + 1}. This definition ensures
that (ZA, ZB) is an Fk-partition if and only if |ZA| = k.

In the following let Xn−1 = {x1, . . . , xn−1} and Yn−1 = {y1, . . . , yn−1} be
the input variables for the odd x- and the y-integer, which are multiplied by
MUL∗n.
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Lemma 3.4. Let k = dn/3 + 2/3 log(n− 1)− 9/2e and ε = 2n/4−k−5/2. Fur-
ther, let XA,XB ⊆ Xn−1 and YA,YB ⊆ Yn−1. If Π = (XA ∪ YA,XB ∪ YB) is
an Fk(Xn−1 ∪ Yn−1)-partition of Xn−1 ∪ Yn−1 and f ′ is (ε,Π)-close to MUL∗n,
then NDA→B

ω (f ′,Π) ≥ n/12− log(n− 1)/3− 3 for any ω ∈ {∨,∧,⊕}.

A simple calculation using the parameters from the lemma above shows that(
ε · 4(n− 1)

)−1 ≥ 2n/12−log(n−1)/3−4. Using Corollary 2.3, this yields the follow-
ing exponential lower bound for well-structured g.d.-BP1s representing MULn.

Corollary 3.5. Let ω ∈ {∨,∧,⊕}. The size of any well-structured ω-nondeter-
ministic graph-driven BP1 for MULn is larger than 2n/12−4 · (n− 1)−1/3.

4 Separating Well-Structured Nondeterministic
Graph-Driven BP1s from Nondeterministic BP1s

Here we answer an open question from Brosenne, Homeister, and Waack [7]
whether the class of all Boolean functions representable in polynomial size by
ω-nondeterministic well-structured graph-driven BP1s is a proper subclass of all
Boolean functions representable in polynomial size by ω-nondeterministic BP1s
in an affirmative way.

The function n/2-MRCn is defined on an n × n Boolean matrix X on the
variables Xn×n = {x1,1, . . . , xn,n}. Its function value is 1 if and only if the
following two conditions are fulfilled (for the sake of readability we assume that
n is an even number.)

1. The number of ones in the matrix is at least n2/4+n and at most (3/4)n2−n.
2. The matrix either contains exactly n/2 monochromatic rows and each non-

monochromatic row contains exactly n/2 ones, or it contains exactly n/2
monochromatic columns and each non-monochromatic column contains ex-
actly n/2 ones.

Note that because of condition 1, there cannot be n/2 monochromatic rows and
n/2 monochromatic columns for a satisfying input. Furthermore, if condition 2 is
satisfied, then condition 1 is fulfilled if and only if at least one of the monochro-
matic rows (columns) satisfying condition 2 consists only of ones, and at least
one of the monochromatic rows (columns) consists only of zeros.

The Branching Program model for which we show the upper bound is even
more restricted than the general ω-nondeterministic BP1 model.

Definition 4.1. An (ω, k)-PBDD G consists of k OBDDs G1, . . . , Gk whoses
variable orderings may be different. If f1, . . . , fk are the functions represented by
G1, . . . , Gk, then G represents the function f1 ω f2 ω · · · ω fk. The size of G is
|G| = |G1|+ . . .+ |Gk|.

Note that we can regard an (ω, k)-PBDD as an ω-nondeterministic BP1 which
has k − 1 nondeterministic nodes at the top, which generate k paths leading to
the disjoint OBDDs G1, . . . , Gk. Motivated by applications, the model of (∨, k)-
PBDDs has been introduced in [14].
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Theorem 4.2. For ω ∈ {∨,⊕}, the function n/2-MRCn can be represented
by (ω, 2)-PBDDs with size O(n4), but its complexity is Ω(2n/4/n) for well-
structured ω-nondeterministic graph-driven BP1s.

A rowwise (columnwise) variable ordering is an ordering, where all variables of
one row (column) are tested one after another. The existence of an (ω, 2)-PBDD
for n/2-MRCn can be proven in a straight forward way by realizing that there
exists an OBDD of size O(n4), testing the variables in a rowwise (columnwise)
ordering and computing n/2-MRCn correctly if the input contains exactly n/2
monochromatic rows (columns), and returning 0 otherwise. Because any sat-
isfying input contains either n/2 monochromatic rows or n/2 monochromatic
columns, but not both, this is also sufficient for the parity case. Due to space
restrictions, we omit the full proof, but instead focus in the rest of this section
on proving the lower bound of the theorem.

We apply again the technique from Corollary 2.3. In order to do so, we have
to define an appropriate filter FM on the variable set Xn×n. A set T ⊆ Xn×n
is in the filter FM, if T contains all variables from n/2 + 1 arbitrary rows and
n/2+1 arbitrary columns. If Π = (XA,XB) is an FM-partition, then by definition
XB 6∈ FM and there exists a variable xi,j such that XB ∪ {xi,j} ∈ FM. Hence,
XA contains variables from exactly n/2 different rows and from at most n/2
different columns or vice versa.

The lower bound of Theorem 4.2 follows right away from the following lemma
and Corollary 2.3 by the choice ε = 1/

(
n · 2n/4

)
.

Lemma 4.3. Let 0 < ε ≤ 1 and Π be an arbitrary FM-partition of Xn×n. Then
for every function f ′ which is (ε,Π)-close to n/2-MRCn, it is NDA→B

ω (f ′,Π) ≥
n/2 + log ε.

Proof. Let Π = (XA,XB) be an FM-partition and f ′ be (ε,Π)-close to
n/2-MRCn. We may assume w.l.o.g. that XA contains variables from exactly the
rows 1, . . . , n/2, whereas there are at most n/2 columns from which variables
are contained in XA. Since f ′ is (ε,Π)-close to n/2-MRCn, there exists a subset
R ⊆ A(XA), |R| ≥ ε · 2|XA|, such that f ′ coincides with n/2-MRCn on all inputs
in R×A(XB). For 1 ≤ i ≤ n/2 let ki be the number of variables in row i which
are contained in XA. We consider the mapping

µ : A(XA)→ {0, . . . , k1} × . . .×
{

0, . . . , kn/2
}
,

which maps a partial assignment α to the tuple µ(α) = (z1, . . . , zn/2), where zi
is the number of bits in row i being fixed to 1 by α.

Let µ(R) = {µ(α) | α ∈ R}. Below, we show the following two inequalities
from which the lemma follows right away.

(I1) NDA→B
ω (f ′,Π) ≥ log |µ(R)|.

(I2) |µ(R)| ≥ ε · 2n/2.
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Proof of (I1): We show that the communication matrix contains a diagonal
s × s-submatrix, where s = |µ(R)|. For an arbitrary partial assignment α ∈
R let µ(α) =

(
µ1(α), . . . , µn/2(α)

)
. We fix for each such α a corresponding

partial assignment β ∈ A(XB) as follows. In row i, 1 ≤ i ≤ n/2, β sets exactly
n/2 − µi(α) variables to 1 and the other variables to zero. (Recall that XA
contains variables from at most n/2 columns, and hence at least n/2 variables
from each row are in XB .) All the variables in the rows n/2+1, . . . , n−1 are fixed
to 0 and the variables in row n are all set to 1. Then (αβ) contains exactly n/2
rows with exactly n/2 ones each (the rows 1, . . . , n/2), and it contains n/2−1 0-
monochromatic rows and one 1-monochromatic row. Hence, n/2-MRCn(αβ) = 1.

We consider now s arbitrary partial assignments α1, . . . , αs ∈ R such that
µ(αi) 6= µ(αj) for i 6= j. Let β1, . . . , βs be the corresponding partial assignments
in A(XB). (It is obvious that also βi 6= βj for i 6= j.) Clearly, the s × s-matrix
which has in row i and column j the entry n/2-MRCn(αiβj) is a submatrix of
the communication matrix of n/2-MRCn. Hence, for the claim (I1), it suffices to
show that this matrix is a diagonal matrix. For the diagonal elements, we have
already proven above that n/2-MRCn(αiβi) = 1. Consider now an element in
row i and column j, i 6= j. Since αi 6= αj , there exists an index 1 ≤ t ≤ n/2
for which µt(αi) 6= µt(αj). Hence, by construction the matrix X defined by
the input αjβi contains in row t not exactly n/2 ones. But the construction
also ensures that none of the rows n/2 + 1, . . . , n of X contains exactly n/2
ones, thus there exist less than n/2 rows with exactly n/2 ones. Finally, the
property that row n is 1-monochromatic and the row n− 1 is 0-monochromatic
ensures that there exists no monochromatic column. Altogether, this yields that
n/2-MRCn(αi, βj) = 0.

Proof of (I2): Recall that XA contains ki variables in row i of the matrix X
(1 ≤ i ≤ n/2). Hence, there are exactly 2ki possible settings of those variables in
row i and among these, there are

(
ki
zi

)
settings for which row i contains exactly zi

ones. Hence, for every tuple z = (z1, . . . , zn/2) ∈ {0, . . . , k1}× . . .×{0, . . . , kn/2}
we obtain that∣∣µ−1(z)

∣∣
|A(XA)|

=

(
k1
z1

)
· . . . ·

(
kn/2
zn/2

)
2k1 · . . . · 2kn/2

≤ 2k1−1 · . . . · 2kn/2−1

2k1 · . . . · 2kn/2
= 2−n/2. (10)

Since R is the union of all µ−1(z) for z ∈ µ(R), there exists by the pigeon-
hole principle an element z ∈ µ(R) for which

∣∣µ−1(z)
∣∣ ≥ |R|/|µ(R)|. Using the

precondition that |R| ≥ ε · 2|XA| together with inequality (10) yields

|µ(R)| ≥ |R|
|µ−1(z)|

≥ ε · 2|XA|

2−n/2 · |A(XA)|
= ε · 2n/2.

This finally proves (I2). ut
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