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Abstract - For applications such as capactiy ex- 
pansion planning and screening studies of alternative 
expansion plans, there is a need for a fast, accurate, 
reliable and robust method to approximate the equiva- 
lent load duration curves (e.1.d.c.'~) for production 
costing. The concept of equivalent load, which is the 
sum of the customer load demand and the outage capacity 
of the generating blocks, plays a key role in probabi- 
listic production costing. This paper describes a 
newly developed approximation technique based on mix- 
tures of normal distributions. The mixtures of normals 
approximation (m.o.n.a.1 for e.1.d.c.'~ proceeds in 
three steps. First, the system load random variable is 
approximated by a mixture of normals distribution. 
Next, the approximation of the outage random variable 
of a gsoup of one or more units by a mixture of 
normals distribution is obtained. Finally, these two 
approximations are combined to derive the m.0.n.a. of 
each e.1.d.c. The technique makes extensive use of the 
properties of mixtures of normal distributions. The 
construction of the m.0.n.a. for the system load random 
variable can be interpreted in terms of partitioning 
the load into various categories based on the load 
magnitudes. A salient feature of the m.0.n.a. tech- 
nique is the simple recursive formula for convolving or 
"rolling in" and for deconvolving or "rolling out" the 
contribution of each generating block. The performance 
of the m.0.n.a. technique is analyzed in terms of its 
ability to fit the original load duration curve, its 
ability to fit the e.l.d.c.'s, its accuracy and robust- 
ness. Numerical results indicate that the m.0.n.a. 
technique is very robust, accurate and rapid. Compari- 
son with conventional and cumulant-based techniques 
shows that the m.0.n.a. technique has excellent compara- 
tive computational performance on both well-behaved and 
pathological systems. 

INTRODUCTION 

Production costing is the basic tool used for 
assessing the variable effects of alternative resource 
plans. To take into account the uncertainty inherent 
in both the system load demand and the supply system, a 
probabilistic production costing framework is used 
[1,3]. In this framework, the planning period is 
divided into study periods. For each study period, the 
load is modeled as a random variable (r.v.1 with the 
complement of its cumulative distribution function 
(c.d.f.) given by the load duration curve (1.d.c.). 
The loading of each generation unit of the supply 
system is represented by the outage capacity r.v. that 
incorporates the effects of forced outages. Under the 
reasonable assumption of mutual independence of the 
outage capacity r.v. of each unit and load r.v., the 
basic element in the simulation of the energy 
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production process is the convolution of the 
distributions of r.v.'s. 
production costing analysis is the equivalent load 
duration curve (e.1.d.c.). The e.1.d.c. is the 
complement of the c.d.f. of the equivalent load r.v. 
The equivalent load is the sum of the system load and 
the outage capacity of one or more generation units. 

The major difference among various probabilistic 
production costing approaches lies in the manner in 
which the e.1.d.c. is represented. In the conventional 
approach, the e.1.d.c. is represented at each point of 
a uniformly spaced grid. Linear interpolation is then 
used to determine the value at intermediate points. In 
a piece-wise linear approximation of this kind, the 
numerical convolution process is time consuming since 
each successive e.1.d.c.. which is the result of the 
convolution, must be evaluated at each grid point, 

the approximation of e.1.d.c.'~ are the cumulant-based 
techniques [4,5,7.8]. These are based on the use of 
moments of the equivalent load. An extremely 
attractive feature of this approach is that the 
convolutionldeconvolution involves merely the 
additionlsubraction of cumulants. 

obtain good fits to the e.l.d.c.'s, they have some in- 
herent limitations resulting in poor performance (61. 
Moreover, since the approximation to the e.1.d.c.'~ 
provided by the cumulant-based techniques is not the 
complement of an actual c.d.f., it is possible in cer- 
tain cases to obtain negative values for the e.1.d.c. 
[d]. 
approaches is their poor performance in obtaining a 
good fit of the system load duration curve 171 .  Since 
the inaccuracy in the approximation of the original 
load duration curve is propagated through the convolu- 
tion process to each e.l.d.c., it is seen that this is 
a serious problem. 

For applications such as capacity expansion 
planning and screening of alternative expansion plans, 
thers is a need for a fast, accurate, robust method to 
approximate the e.1.d.c.'~. We have developed a new 
approximation technique based on mixtures of normals 
distributions [9]. In this paper we describe the 
mixture of normals approximation (m.o.n.a.1 technique 
and its implementation. The m.0.n.a. technique uses 
mixtures of normals to represent the 1.d.c. and the 
supply system and makes extensive use of the properties 
of these distributions. 
1.d.c. by a mixture of normals distribution is used in 
the development of a cumulant-based technique in [al. 
We present representative numerical results. 
testing of the m.0.n.a. technique indicates that it is 
accurate, efficient and robust. Comparison with 
conventional and cumulant-based techniques indicates 
that the m.0.n.a. technique has excellent comparative 
computational performance on both well-behaved and 
pathological systems. 

Central to the probabilistic 

Among the most prominent alternative approaches to 

While in many cases cumulant-based techniques 

The most serious drawback of cunulant-based 

The representation of the 

Extensive 

MIXTURE OF N O L W S  

We consider a set of normally distributed r.v.'s 
A mix- each with mean pi and variance U:, i=l, ... w. 

ture of normals distribution (m.0.n.d.) is a convex 
combination of normal distributions. Let e(-; pi, ai) 
denote the c.d.f. of the ith normal r.v. F(.) is said 
to be a m.0.n.d. if 
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phase let us consider for the sake of simplicity a sys- 
tem with N two-state units each loaded as a single 
block. 

The probability of unit i being forced out is then 
q.=l-p.. The outage capacity r.v. 2.  of unit i is 

Let unit i have capacity ci and availability p.. 

-1 

Y 

Here W .  is the weight of the ith normal component and w 
is the'number of terms in the mixture. 
normals density function, its mean and variance are 
readily evaluated from the parameters w, Wi, pi, and 0.. 
M.0.n.d.'~ have the important property that the convolu- 
tion of two m.0.n.d.'~ is itself a m.0.n.d. Appendix A 
gives a precise statement of the m.0.n.d. properties. 

The mixture of 

THE M . O . N . A .  TECHNIQUE 

The m.0.n.a. technique for the representation of 
e.1.d.c.'~ makes extensive use of m.0.n.d.'~ and their 
properties. The first phase of  the m.0.n.a. technique 
is the representation of the system 1.d.c. Recall that 
the 1.d.c. for a particular period such as a week or a 
month is obtained by rearranging the hourly loads in 
order of decreasing magnitude. The rearranged hourly 
loads are samples from distinct populations, e.g., week- 
day peak, shoulder, off-peak and weekend loads. Each 
population may appear in the system 1.d.c. as a separate 
"mode." This is seen by the sequence of alternating 
flat and steep regions of the 1.d.c. Secause the 1.d.c. 
is interpreted as the complement of a c.d.f. we may view 
the c.d.f. as a multimodal distribution. Regions of 
high density correspond to sharply sloping sections of 
the 1.d.c. This observation motivates the application 
of a mixture of normals distribution for approximating 
the system 1.d.c. Thus we approximate g ( x )  by 

K K 

k= 1 k= 1 
= 1 - c Wk @(x; Pk, Uk) c w ,  = 1, q 0 ( 2 )  

I n  this approximation, the loads of the simulation 
period are partitioned into K classes based on load 
level. 

variance U: are evaluated. 

the fraction of  the period that the loads belong to 
class k. The m.0n.a. ga(x) can approximate very 
closely the multimodal behavior of the 1.d.c.'~. An 
example of a typical utility system 1.d.c. and its 
m.0.n.a. is given in Fig. 1. 

For each class k = 1 , 2 ,  ..., K the mean pk and the 

The weight cok is set to be 

5500 
1 
11500 

Fig. 1. System 1.d.c. and its m.0.n.a. with K = 3 .  The 
demarcation points dl and d2 are tunable para- 
meters of the m.0.n.a. 

0 with probability pi 

c. with probability qi -1 

1 

The c.d.f. of the outage capacity of n units is 

n' The m.0.n.a. of F (x) is obtained by partitioning 

the set of all possible states of units l,Z, ..., n. Let 
r >  0 be some integer. 
states in which j units are on outage, for j =  0, 
1,2, ..., r-1. 
which r or more units are on outage. Then 

Sn =Qn,o U gn,l U ... U Qn,r,Qn,i "Qn,j = o 

LetQn be the subset of the 
, j  

Letqn,r be the subset of the states in 

i # j 

Conditioning over the subsets of 8 

We approximate each conditional probability density 
term in the summation by a normal so that we may approx- 
imate Fn(x) by 

F : ( x )  = P n , j >  'Jn,j) A n , j  

where, 

j =O 
(3 )  

An important feature of this approximation is that 

n, j 9 'n, j 9 
simple recursive formulae for evaluating 

and U can be derived for adding (convolution) or 

withdrawing a unit (deconvolution). Tables I and I1 
present the recursive relations. 

The general case of multiple-state multiple-block 
units is treated in Appendix B .  The m.0.n.a. of the 
outage capacity has the identical form of Eq. (3); the 
recursive formulae to evaluate the parameters are, how- 
ever, different. 

convolution property of the m.0.n.d.'~ to derive the 
m.0.n.a. of the e.1.d.c. corresponding to the loading 
of the group of units 1 , 2 ,  ..., n. 
C the following relation: 

n , j  

The last phase of the m.0.n.a. technique uses the 

We derive in Appendix 

The application of the m.0.n.a. technique to a 
simple system is presented in [ 9 ] .  The numerical 
example reproduces the m.0.n.a. computations for a 3 
generating unit system. 

The second phase of the m.0.n.a. technique is the 
approximation of the outage capacity r.v. for a group 
of 1 or more units by a m.0.n.d. To illustrate this 
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IMPLEMENTATION AND TEST RESULTS 

The m.0.n.a. technique was implemented within the 
framework of a test-bed developed specifically for the 
purpose of testing e.1.d.c. approximation techniques. 
The m.o.n.a., cumulant-based, and piece-wise linear 
approximation techniques were implemented into the 
test-bed. The test-bed permits the testing and the 
comparison of the performance of e.1.d.c. approximation 
techniques on a consistent basis. 

Table I: Recursive evaluation of the outage capacity 
m.0.n.a. parameters for convolution for 
two-state units. 

O <  j < c 

Table 11: Recursive evaluation of the outage capacity 
m.0.n.a. parameters for deconvolution for 
two-state units. 

The performance of the m.0.n.a. technique was 
assessed based on tests using a variety of utility 
systems and conditions. The test results described in 
this paper utilize the EPRI Synthetic Utility D, PGandE 
Derived, and Texas Electric Systems. Basic character- 
istics of these systems are given in [91. 
considered include both well-behaved and pathological 
systems. The EPRI D [ 2 ]  and PGandE Derived [ 9 ]  systems 
are large. The Texas Electric Utility System, on the 
other hand, is small. It was selected in order to 
include in the testing a system on which cumulant-based 
techniques have not had completely satisfactory 
performance [ 6 ] .  The accuracy of m.0.n.a. and the 
other alternative e.1.d.c. approximation techniques 
evaluated are measured with respect to benchmark 
results obtained using a piece-wise linear 
approximation with a 1 MW grid [ 9 ] .  

of-fit of the m.0.n.a. for the system 1.d.c. show the 
strong capability of the m.0.n.a. technique to fit 
1.d.c.'~ of any shape and form [ 9 ] .  Fig. 2 displays 
the performance of m.0.n.a. on the Texas Electric sys- 
tem. 

The cases 

The results of the investigation of the goodness- 

The accuracy of the m.0.n.a. in Eq. (2) is vir- 

TEXAS ELECTRIC SYSTEM 
1 

0.75 

0.50 

0.25 

0 
M.O.N.A. 

I 1 
0 500 I000 SO0 2000 2500 3000 

Fig. 2. Plots of the m.0.n.a. computed 1.d.c. and the 
benchmark for the Texas Electric system. 

tually the same for the number of terms 2 2 K 2 4 .  
accuracy of the m.0.n.a. fit to the 1.d.c. is also not 
sensitive to the exact location of the chosen load de- 
marcation points. 
technique to accurately approximate 1.d.c.'~ overcomes 
a major disadvantage of cumulant-based methods [ a ] .  

techniques's ability to approximate e.1.d.c.'~ indicate 
that the m.0.n.a. for e.1.d.c.'~ is accurate even for a 
small number of blocks, i.e., even when the large sample 
property of the central limit theorem does not hold. 
That is, the m.0.n.a. technique gives acceptable 
accuracy for base-loaded blocks. Test results show 
that the accuracy of the e.1.d.c. approximation is 
quite insensitive to the number of classes (r+l) in the 
m.0.n.a. in Eq. (3) [ 9 ] .  Fig. 3 shows the pointwise 
error in the "mixed" e.1.d.c. using the m.0.n.a. tech- 
nique for the EPRI D system. The "mixed" e.1.d.c. is 
obtained by plotting for each block k the (k-l)th 
e.1.d.c. over the interval where the block is loaded. 
The good fit of the m.0.n.a. technique computed 
e.1.d.c. 's .  as evidenced by the error plot of Fig. 3 ,  is 
representative of the very good accuracy of the m.0.n.a. 
technique. The insensitivity of the m.0.n.a. to the 
number of terms in the representation of the load r.v. 
and the precise location of the load demarcation points 
also hold in the approximation for e.1.d.c'~ [ 9 ] .  The 
m.0.n.a. technique is very robust, as it performs very 
well on pathological cases. 
evidence indicates that the m.0.n.a. techniques produces 

The 

The excellent ability of the m.0.n.a. 

The results of the investigation of the m.0.n.a. 

The overall experimental 
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excellent results for the evaluation of production CONCLUSION 
costs [ 9 ] .  

pared to that of the following three alternative approx- 
imate techniques: homogeneous and nonhomogeneous 
piece-wise linear algorithms and the Type A Gram-Charlier 

The performance of the m.0.n.a. technique was com- We have reported on the development and testing of 
an efficient and accurate approximation technique for 
the evaluation of e.1d.c.'~. The strong capability of 
the m.0.n.a. technique to approximate 1.d.c.'~ and 
e.1.d.c.'~ overcome one of the principal deficiencies 

___ 
1 8 1 curnutant 

I $ 1 '  1 CRASS. I 1  
I 

0 5000 10000 I5000 20000 25000 

8 moments-based cumulant scheme. 
that the comparative performance of the m.0;n.a. is 

The results indicate 

Approximation Technique 

Benchmark 

CPU Seconds 

173.08 

excellent in terms of accuracy and speed. Fig. 3 
provides a comparison cf the m.0.n.a. technique with 
the cumulant-based technique and the variant of the 
homgeneous piece-wise linear approximation algorithm of 
the GRASS production costing package developed at 
PGandE [3,91. Table 111 provides a comparison of the 
m.0.n.a. technique with alternative approximation 
schemes in terms of computation times. The accuracy 
and efficiency of the m.0.n.a. technique coupled with 
its robustness lead to the conclusion that it is a 
superior scheme for evaluating e.1.d.c.'~. 

Cumulant-based technique 

GRASS 

1.70 

4.48 

Linear homogeneous 

Linear non homogeneous 14.07 

rn.0.n.a. with 2 terms in the 
supply side mixture 

m.0.n.a. with 6 terms in the 
supply side mixture 2.69 

of other approximation techniques such as cumulant- 
based ones [7]. The excellent comparative performance 
of the m.0.n.a. technique with respect to that of 
commonly used approximation schemes leads to the con- 
clusion that the m.0.n.a. technique is a superior 
scheme for evaluating e.1.d.c.'~. An extension of the 
ideas used for the m.0.n.a. technique is the development 
of a scheme based on a mixture of cumulants. Limited 
testing indicates this to be a promising approach. An 
extension in a different direction is the approach re- 
ported in 1101. 
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APPENDIX A: PROPERTIES OF THB M.O.N.D. We next provide the details for developing an approxi- 
mation to F (x) based on a m.0.n.d. The joint genera- 
tion state,nor simply state, of a group of n units 
refers to a possible realization of the r.v.'s ki,k, 

A. The mean p of the m.0.n.d. or Eq. (1) is 

W i=1,2, ..., n; k=1,2, ..., si. A tate is characterized !I c c =  c UiPi  (A-1) by a vector = [kl,k2,. . . ,kn] . Here k .  corres- 
i=1 

ponds to that index k for which X -i,k=L i.e. 
B. The variance U* of the m.0.n.d. of Eq. (1) is 5 ,  I 

ki = k Xik 
k=O 

(A-2) 
With each state we can associate an index: 

C. The convolution of two m.0.n.d.'~ is itself a mix- 

i=l ture of normals distribution whose parameters can 
be simply determined from those of the two m.0.n.d.'~. 

en [k(n)l = E ki 
The derivation of Eqs. (A-1) and (A-2.) is a simple 
exercise. We prove Property C using the following 
Lemma [9]: Let and be two independent r.v.'s each 

with corresponding m.o-n-d.'s FX(x)= 
W 

ai @(x; pi, ui) 
Y - 1=1 

andFy(y)= z qj @(y; mj, sj). 

of X + 1 obtained from the convolution of F ( e )  with 
dF 

fY(.), where f (y) = - s is given by dY 

Then the distribution - j=1 

x 
W 

(z) = yk @P(z; p k ' ?  uk" 
k=l Fz + 1 

with 

wz = wx wy , yk = ai qj , pkl = pi + mj ; uk* = [0i+s?1' 
J 

APPENDIX B: SUPPLY SYSTEM REPRESENTATION 

Each generating unit may be represented using a 
multi-state model. 
unit i by ci. 

k=O,l, ..., si the quantities: 
cik 4 capacity of unit i associated with state k 

We denote the maximum capacity of 
If unit i has (si+l) states, define for 

1 if unit i is in sta te  k 

0 otherwise zik 

(n) The maximum value e n,max- of en [& 

en,max = Zl 
] is: 

n 

which corresponds to the state of no outages in any of 
the n units. Let sn denote the state space, i.e., the 
set of all possible states, of the group of n units. 
Let r >  0 be some integer value. We decompose the set 
S into r+l nonintersecting subsets. For j=O,l, ..., r-1 
w$ define subsetsq, . of 5 
an index whose valueSJis e ' 

of states characterized by 
- j : n , m  

And we define 

q,,, = (,(n) e S, I e, I~(~)I 5 en,ppilx - r~ 
A state &(n) may belong to one and only one of the r+l 
subsets Qn,w Qn, l,. . ,Qn,r. It follows that 
S,, =qo,o U Q,,l U ... U Qn,r,qn,i nQn,j = @ i # j 

We may evaluate F (x) by conditioning over these r+l 
subsets of Sn [9] :n 

where 
S .  

Pik = p = 11 c Pik = 1 
F = P x I ((') &Qn,j  
n,j I n  i=l 

k=O 

Note that by definition cio=O, the capacity when unit 

i is on full outage and Cis =ei, the rated Capacity Of 
i 

We approximate the F 
approximate F,(~) bynsJ p:(x) where: 

. by normals so that we may 

unit i. For simplicity, let 

Pi e Pi,si and qi e Pi,0 
The outage capacity of unit i is 

S .  I ~. 
z . = c  - 
-1 i ? 'ik Xik 

k=O 
For a group of arbitrary generating units 1,2, ..., n, we 
define F-(x) to be the c.d.f. of the outage capacity I =varI zi I EQ,,~ i=l 

The use of the approximation in Eq. (B-1) makes numeri- 
cal convolution unnecessary for evaluating e.l.d.c's. 
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The recursive evaluation of the parameters A 

pn,j, and u:,~ in Eqs. (B-Z)-(B-lO) corresponds to the 

convolution operation in production simulation. For 
every additional unit loaded to meet the demand, the 
values of A 

duction simulation involves the loading of multiple- 
block units it is necessary to compute the parameters 

pn,j, u:,~ for both loading and unloading. This 

is so because when an additional block of a previously 
loaded unit is loaded in the simulation, the previously 
loaded portion of the unit is first removed. The unit 
is then loaded with a capacity equal to the sum of the 
capacities o f  the previously loaded block and the addi- 
tional block. Unloading of a unit (or part of a unit) 
corresponds to deconvolution in the production simula- 
tion. In the m.0.n.a. technique the deconvolution 
operation is implemented by reevaluating the parameters 

n,j ' 

and U are computed. When pro- 
n,j' "n,j* n,j 

nn,j 

pn, and U* 
nn,j' n,j' 

For deconvolution, we assume that the parameters 
representing the outage distribution F,+,(X) to the 

group of n+l units 1 , 2 ,  ..., n+l are known, and that the 
impact of the removal of unit n+l is to be determined. 
The formulae used for updating the values of A 

and U:, 

arguments as in the derivation of Eqs. (B-Z)-(B-lO) [91.. 

n,j' " n , j  
are obtained using the same probabilistic 

and UZ . must 
n, j 'n, j 9 n , J  

Instead, the outage parameters A 

be evaluated. The evaluation is performed recursively 
each time the value of n is increased/decreased due to 
the incorporation/withdrawal of another unit into the 
group of units being considered. 

to introduce some simplifying notation. Ne define: 
It is convenient for the development that follows 

A A 
s = s  n+l t = min ts,j> v i  mints,r> 

The recursive evaluation of the parameters is based on 
the properties of the subsetsq [91. 

n,j 
Recursive Evaluation of the n Recall that 

n,j. 
A = P { q  . I  is the probability associated with the 
n,j n , J  
subset in which all the states have an index value of 
[en,mx-j]. The nn can be recursively evaluated 

using simple probabilistic arguments [9]: 
, j  

t 
'n+l , j  = $CO 'n,j-E ' n + l , s - I  O < j < r  (B-3) 

V S - a .  

' n + l , r  = n n , r - Q  'zo 'n+l ,k)  (B-4) 

Recursive Evaluation of the p . .  The conditional 
n9J 

expectation p . = E 5 2 ,  I k(n) E ' B ~ , ~ ]  gives the ex- 
n , J  i=l.-l 

pected value of the outage capacity conditioned over 

p n , j  may be recursively evaluated [ 9 ] :  

the subset of states with the index [e n,mx-jl. n e  

S-Q 

k=O E c  n + l , k  ' n+ l ,k  1 
(B-7) 

The conditional 

gives the 

variance of the outage capacity conditioned over the 

n,j 
subset of states with index [e -j], The 0 

be recursively evaluated using basic probabilistic 
arguments [9]: 

n,max 

Deconvolution: Evaluation of the A 
n , j .  

(B-11) 

t 
- E  

n "  n , j  = n+l,j P=I 'n,j-n *n+~,s-i 0 < j < r (B-12) 
*n+l,s 

V s-e  

Deconvolution: Evaluation of the pn 
,j* 

(B-13) 

pn,o = O 
(B-14) 

t 

o < j < r (B-15) 

(B-16) 
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v I-9. 
E 

k l  k=O [ai,~-9. ’ (’n,r-t “n+l - Cnt1,k)21 pn+l,k ‘n,r-9.1 ’ ‘n,r 

(B-19) 
Two-State Case. The recursive equations for con- 

volution and deconvolution in the m.0.n.a. framework 
are considerably simplified if it is assumed that no 
unit can be in a partial outage state; that is, s =1, 
l(i5N. W e  use the following notation for this case: 

i 

91 pi,o Pi Pi,l and 

System originally distributed by EPRI in 1983, is the efficiency of its 
production costing subroutine. The calculation utilizes the equivalent load 
duration curve, but instead of the original Baleriaux method, which is based 
on numerical integration, an analytical expression is formed using a series 
expansion based on statistical cumulants. This significantly reduces the 
calculation effort but also introduces inaccuracies. The shortcoming is 
mainly apparent in analysis of smaller power systems. The tests described in 
this paper show that MONA is almost as fast as the cumulant method but 
reduces its inaccuracies. MONA first sorts load data strictly by magnitude, 
forming, for example, three groups of bounded loads. Bell-shaped normal 
distributions are fitted to each group of load data. These normal 
distributions are then combined into a single analytical representation of the 
load. A problem may arise.because the goodness of fit depends on the 
boundary levels selected for sorting the load data. A related problem is that 
each normal distribution, fitted to a defined range of loads, actually covers 
an infinite ranee. The tails of the distribution that extend on either side of - 

A subset Qn of the state space sn is the collection of the load boundaries are not only superfluous but also may degrade the final 
analytical expression for the complete load distribution. To help overcome 

n units have failed for O i j  <r. qn,r is the collection error graphics program was designed by R. Taber Jenkins to facilitate 
of selection of the load subdivisions [l]. A further advance was made through 
a group of -its. In this the recursive an automatic optimum search technique, based on minimization of error 
of Eqs. (B-2)-(B-10) and Eqs. (B-11)-(~-19) reduce to through a least squares fit, that was applied to this problem by Danny 

Sutanto and his coworkers [2]. In Sutanto’s methcd complete n o d  those given in Tables I and 11, respectively. 
distributions are used from the very beginning of the subdivision process. 
This method not only removes the arbitrariness in the division of the loads 
into groups but also assures that the tails of the individual distributions will 
not degrade the final curve fit. In summary, this paper demonstrates a 
technique, MONA, that offers an attractive improvement over the basic 
cumulant technique, particularly for smaller power systems. Developments 
have continued, and as illustrated by Sutanto’s technique, MONA itself may 
also be ready to be supplanted. 

. j  
with the Property that j units Out Of a group of these limitations, an interactive but somewhat h e a n s u - g  trial and 

such that or more units have failed out of 

APPENDIX C: EQUIVALEbR LOAD REPRESENTATION 

The e.1.d.c. CJ,(X) associated with the equivalent 
. load, which is the sum of tbe system load and the out- 
ages of a group of n units, is defined to be 

n 
References ancx, = PI& + 2. > x]  

i=1-= 

5fn(x) may be computed by convolving the original 1.d.c. 
with the density of the sum of the outage r.v. , of the 
n units: 

[l] P. S. Hill and R. T. Jenkins, “Compensation for Cumulant Load Fit 
Discrepancies-A Computer Graphics Approach,” Proc. on Electric 
Generating System Expansion Analysis, March 5-6, 1981, The 
Ohio State University, Columbus, OH. 

[2] D. Sutanto, H. R. Outhred, and B. Manhire, “Improvements to 
Probabilistic Production Cost Calculation Using Cumulant Method. 
Part I: Cumulant Load Fit,” Proc. Chattanooga Conference on 
production Simulation, October 22-24, 1985. EPN ~ ~ ~ r t  in 

Lp,(x) = a ( X )  * fn(x) 

where f (XI is the density function of the outage =pa- 
city publication. 

f,(x) = d F n (XI 

In the m*o.n.a* technique framework* we George Gross: I wish to thank Dr. Delson for his discussion which 
q $ X )  by provides the reader with his view of some of the developments in the 

computation of e.l.d.c.’s after our work on m.0.n.a. was completed in 
a p  = $(x) * P ( X )  1984. We are in clear agreement with his comments on the shortcomings of 

the cumulant technique [9]. However, I wish to make two clarifications 
where concerning his remarks on the m.0.n.a. technique. Our extensive tests show 

that the goodness-of-fit of the m.0.n.a. to the 1.d.c. and the e.l.d.c.’s is 
f i ( x )  = c nn,j +(x; Pn,j ,  unn,j) relatively insensitive to the location of the boundary demarcations of the K 

classes of loads. These results are reported in [9]. Moreover, the goodness- 
of-fit is also insensitive to the number of classes K in the range 2 Q K Q 4. 

is the derivative of F t ( x )  as defined by Eq. (B-1). Dr. Delson points out correctly that in the m.0.n.a. each normal 
approximating the distribution in the class extends over an infinite range. 

Property c of Appendix A implies that gt(x) is a m.0-n.d. This, however, is not a problem except at the base load point. At this point, 

Manuscript received February 17, 1987. 
d x  

r 

j =O 

It can be shown that the weights of this m.0.n.d. are 
w n The means are p +p and the standard devia- 
tions and (U: + u2 .I#, k = 1 , 2  ,..., K; j = O , l ,  ..., r [91. 
Thus 

k n, j  k n , j  

n,J 

Discussion 

J. K. Delson (Electric Power Research Institute, Palo Alto, CA): An 
important feature of EGEAS, the Electric Generation Expansion Analysis 

a small correction is mabe to ensure that the m.0.n.a. ofthe 1.d.c. is exactly 
1 for all values less than or equal to the base load. Judging from our 
extensive test results, and contrary to Dr. Delson’s view, this correction in 
no way degrades the goodness-of-fit of the approximation to l.d.c.’s and 
e.l.d.c.’s. 

We are pleased that our work on m.0.n.a. has acted as a stimulant for 
additional developments in the computation of e.l.d.c.’s as cited by Dr. 
Delson and additional references in Appendix D of [9]. Our results with the 
m.0.n.a. technique indicate, indeed, that it is a very robust and accurate 
technique. Readers may be interested to learn that, based on these results, 
the m.0.n.a. approach was used in the implementation of a major 
commercial microcomputer-based production costing package. 
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