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Dedicated to the memory of my grandfather Paul Alexander

Abstract

Contrary to popular belief, Mathis an experimental science. Hence I am an experimental scie
just like my beloved grandfather, Dr. Paul Alexander (1870–1942, Dr. Phil. Rer. Nat., Chemie,
 2003 Elsevier Inc. All rights reserved.

Leipzig

This is my first visit to Leipzig. My main reasons for coming here arepersonal: to look
up the graves and dwellings of my great-grandparents, Salomon and Rebecka Ale
and to explore the city and the university where my grandfather, Paul Alexander,
up and studied. But I thought that it would be nice to combine the business of f
pilgrimage with the pleasure of giving a math talk.

Even though this talk is supposed to be onmathrather than onfamily history, let me
nevertheless spend a few minutes telling you about my grandfather Paul Alexan
whom this talk is dedicated.

✩ First version: October 9, 2002. Edited version of the transcript of a talk (entitled: ‘Determinant
Computer Algebra’) given at the Max Planck Institute, Leipzig, August 5, 2002, 15:00–16:00. Accomp
by the Maple package CLD available from http://www.math.rutgers.edu/~zeilberg/programs.html. Suppo
part by the NSF.

E-mail address:zeilberg@math.rutgers.edu.
URL: http://www.math.rutgers.edu/~zeilberg/.
0196-8858/$ – see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0196-8858(03)00025-3
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A few words about Paul Alexander

1. Paul got his Dr. Phil. in 1897, here in Leipzig. His dissertation was entitled:“Über die
Einwirkung von o-Nitrobenzylchlorid auf Natriummalonsäureäthylester.”

2. Paul was the inventor of efficientverfahrensfor the regeneration (recycling) o
caoutchouc (rubber).

3. Paul had many patents, e.g., US # 844077, issued in 1907 entitled“Process for the
production of aqueous caoutchouc solution and the regeneration of rubber wast

4. He contributed several articles to the famous UllmannEnzyklopädieof Industrial
Chemistry.

Paul’s academicvater was the great chemistJohaness Wislicensus(1835–1902), who
made many important contributions to chemistry. One was the suggestion that the
geometrical isomersexemplified by the two forms of the lactic acid. He inspired, and l
enthusiastically endorsed the revolutionary theory of Le-Bell and J. van t’ Hoff (who
the very first chemistry Nobel, in 1901). He was, most probably, a very nice guy!

But not all Leipzig professors were so nice. One especially nasty specimen wa
great organic chemistHermann Kolbe, who was Wislicensus’s predecessor at the Leip
chemistry chair. Kolbe, known for his very acerbic wit, commented on the Le-Bell–v
Hoff theory as follows:

“. . . There is an overgrowth of the weed of the seemingly learned and ingeniou
in reality trivial and stupefying natural philosophy. . . which had been dressed
modern fashion and rouged freshly like a whore whom one tries to smuggle into
society where she does not belong. . . ”

It would be unfair to ridicule Kolbe for thesubstanceof his critique, since now we hav
the benefit of hindsight, and it is not his fault that history proved him wrong. Science
need its share of conservatives to serve as bouncers to guard us against wild spec
like cold fusion and organic transistors. Nevertheless, one can be critical without
mean, and often we are critical because we feel like being mean.

Controversy is much more prevalent in science than it is in math, but even
has its share. As late as 1903 there were still people who did not accept non-Euc
Geometry. We all heard about the Kronecker–Cantor and Hilbert–Brouwer feuds.
recently we witnessed the heated debate concerning the role of ‘theoretical math,’ a
as the Andrews–Zeilberger mini-controversy about semi-rigorous mathematics. As
will become more scientific, we should expect more controversy, which will make th
more interesting!

Yet another Leipziger wasHermann Hankel, who said:

“In most sciences one generation tears down what another has built, and what o
established, another undoes. In MATHEMATICS ALONE each generation adds a ne
story to the old structure.”
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In other words, math is a peaceful, non-violent, cumulative enterprise. Hanke
expressed another “obvious truth” about our profession:

“Mathematics is purely intellectual, a pure theory of forms, which has for its ob
not the combination of quantities and images, but things of thought to which
could correspond effective objects or relations, even though such a corresponde
not necessary” (my emphasis).

But even though Hankel was probably much nicer than Kolbe, his statements t
starting to be wrong. Because of theComputer, Mathematics is becoming an empiric
descriptive, and experimental science, just like Chemistry! ‘Modern’ Math, tha
supposedlya priori, will soon join the ranks of Aristotelian physics that was alsoa priori.
Unlike the latter, however, it will not be labelled false, but, perhaps worse, wou
considered utterly trivial, since computer-generated math will be able to discove
prove, much deeper results.

The first mathematical area that took advantage of the computer revolution
Numerical Math.

Here is a quotation form yet another Leipziger, do you know who?, that in a very m
International Congress said:

“In the former times there were obvious reasons whyn was rather small. This is wh
Numerical Mathdid not appear as a discipline of itsownbefore the help of electroni
computerswas available.”

That same person also said, later at the same talk:

“Large scale computations are those which arealmost too large to be computed o
presentmachines” (emphasis added).

I am sure that most of you will recognize these words as belonging to your este
colleague, Wolfgang Hackbusch, who in his insightful plenary ICM 1998 talk prese
the state of the art in numerical math and scientific computation, and stated t
order to be able to solve very large problems, one has to make somecompromises. The
first compromise is to abandon theexactand settle for theapproximate(what he called
ε-oriented). Another compromise is to abandon thegeneraland settle for thespecial, i.e.,
trying to solve special classes that often come up in practice, e.g.,sparsesystems, or his
own favorite,H -systems.

He also talked aboutAlgorithmic Paradigms. In particular, aboutHierarchy, Adaptivity,
and (De)composition.

All this sounds like asoundmethodology for asciencethat has a strong empirical an
experimental flavor. In addition, numerical mathematicians donumerical experimentson
a regular basis to test their algorithms, and the empirically observed performance i
much better than the theoretical,a priori, prediction.

I strongly feel that Hackbusch’s talk [H] should be required reading to allpure
mathematicians, especially to those, like myself, who try to get as much as possib
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of the computer. We too should be able to developalgorithmic paradigmsand research
methodologiesof our own. A good start is by adapting to our needs the already acq
wisdom from numerics, as described by Hackbusch.

So far the use of computers in ‘pure’ math, with a few exceptions, was r
methodologicallyboring. It consisted mainly in testing conjectures.

Much more interesting, from themethodologicalpoint of view, arecomputer-assiste
proofs. The most famous being the Appel–Haken Four Color Theorem. Here ther
a human-machine dialogthat helpeddesignthe proof, and once the proof was propos
(a certain explicit unavoidable set of reducible configurations), it was verified by com

There is also a rapidly growing effort inautomated proving. These can be roughl
divided to logic-basedprogramming, pursued in AI and computational logic, that u
resolution, tableauxand other methods, andansatz-basedprogramming, in which the
objects are known to belong to a well-defined algebraic class that possessescanonical
forms, or at leastnormal forms, making it decidable whetherA = B or A = 0, respectively

A famous example isEuclidean Geometry, in which, thanks to Rene Descartes,
objects arerational functions in the parameters, and in more complicated situat
ideals, for which the Buchberger algorithm supplies a canonical form. There is alsWZ
theory, that is analgorithmic proof theoryfor hypergeometric summation and integrati
identities. However, in both these cases the algorithms themselves were created by h
and while it is true that they can prove many results that previously required ad hoc h
proofs, the very existence of these algorithms makes these ‘computer-generated
and hence also the results that they prove, trivial in some sense, since we areguaranteed
to get a proof or refutation, time- and space-limitations permitting.

But what makes research so exciting is that it is agamble. You do not know, beforehand
whether you will succeed or fail. You also want to allow forserendipity, the possibility
that in your computer’s attempts to prove Goldbach it will discover something
more interesting. So what we desperately need areAlgorithmic Paradigms for Compute
Generated Research.

In other words, we need methodologies for creating new algorithms that will e
computers to discover, andprove, new results, without knowing, beforehand, whethe
will succeed, but with a fair chance that it will.

For the sake of simplicity, let us focus on provingidentities. These are mathematic
statements whose format isA = B. The traditional way is to try and manipulateA,
finding another objectA1 that ‘looks different’ but is really the same. The problem
that there are usually several choices. Then one can try to findA2, getting a string
A = A0 = A1 = A2 = · · · , and if in luck, or one has a good intuition, or the problem
not very deep, one gets toB. Since at every stage there are several choices, and there
upper bound for the number of steps, this method leads to exponential explosion.

If both A and B belong to a class of mathematical objects for which there exis
canonical form, and there is also analgorithmA → c(A), for reducing any object to it
canonical form, then all one has to do is computec(A) andc(B) and see whether they a
the same.

But what if you do not knowB? In other words, you have an inputA that is ‘ugly,’
and belongs to ageneral ansatz, but you hope that there exists aniceB, such thatA = B.
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By ‘nice’ I mean belonging to a suitablesubansatz, a specific ansatz. Can the compute
find B? (if it exists?).

Let us assume that the objects of thespecific ansatzhave a natural complexity, suc
that one can express the objects of any given, finite, complexity, in generic form
undeterminedcoefficients.

To make this non-trivial, we must assume thatA andB are really infinite classes, i.e
A(n) and B(n), wheren is an integer parameter. We assume that for any specificn0,
A(n0) andB(n0) are computable, where the latter is in terms of undetermined coeffic
Then by plugging-in enough values forn0 and solving the systemA(n0) = B(n0), n0 =
1,2, . . . ,L, for sufficiently largeL, for the unknown undetermined coefficients ofB(n),
and if the computer finds a solution, then we have a genuine new theorem, that the co
discovered from scratch. Once conjectured, it should be routine to prove thatA(n) = B(n)

by plugging into the defining equation ofA in thegeneral ansatz.
Many times it is not possible to prove thatA(n) = B(n) directly. Then one looks

for more general objectsA′(n, r), that does belong to a general ansatz, and such
A(n) = A′(n,0). If that general ansatz contains a subansatz of nice objectsB ′(n, r), one
may try to find it, prove algorithmically thatA′(n, r) = B ′(n, r), and finally deduce tha
A(n,0) = B ′(n,0), whereB ′(n,0) is nice sinceB ′(n, r) is.

If the above seems a bit vague, I hope that the case-study below, ofautomated
(symbolic) determinant-evaluation, using theDodgson ansatzfor thegeneralansatz, and
the hyperhypergeometricansatz for thespecific(nice) ansatz, would make this approa
crystal clear.

Trying to abstract from the well-known explicit evaluation of the determinant of the
Hilbert matrix

The Hilbert matrix

A(n)i,j := 1

i + j + 1
, 0 � i, j � n − 1,

is dear to numerical analysts because it is a famous example of a badly-conditioned
Its determinant has a well-known explicit evaluation

det(A(n)) =
n−1∏

i=1

i!4
(2i + 1)!(2i)! .

Let us call the right-hand sideb(n). What is nice aboutb(n) is that the ratio:c(n) :=
b(n + 1)/b(n), is a hypergeometric sequence namely,c(n) = n!4/((2n + 1)!(2n)!). But a
hypergeometric sequenceis precisely one whose consecutive ratio is a rational functio
this cased(n) := c(n)/c(n − 1) equalsn2/(4(2n + 1)(2n − 1)).

How would anyonestart to prove it? A natural way would be by induction onn.
However, having only one parameter is too restrictive.

My favorite way to evaluate determinants [Z1,Z2] is
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Reverend Charles Lutwidge Dodgson’s determinant condensation rule

It states the following. For anyn by n matrix A, let Ar(i, j) denote ther by r minor
consisting ofr contiguous rows and columns ofA, starting with rowi and columnj . In
particular,An(1,1) = detA. Then, according to Dodgson [D],

An(i, j)An−2(i + 1, j + 1)

= An−1(i, j)An−1(i + 1, j + 1) − An−1(i + 1, j)An−1(i, j + 1). (Lewis)

The desired determinant isAn(1,1). In many cases,An(i, j) turns out, conjecturally a
first, to have an explicit expression, involving single and double products. Wheneve
is the case the proof of the conjectured evaluation is completely routine, by inductionn,
by checking that (Lewis) is satisfied by that conjectured expression, and by checki
trivial initial conditions forn = 0 andn = 1. Finally, to get an explicit expression for th
original determinant, all one has to do is plug ini = 1 andj = 1.

In [AE2] this method was used to get computer-assisted proofs of numerous deter
identities. But my goal is to make thingscompletelyautomatic, and human-free.

To keep things simple (after all, the main point here is to introduce aresearch
methodology, not to find exciting new results), let us focus on Hankel matrices, w
have the form(h(i + j)) for some sequenceh(r) (that for us would have to be an explic
expression).

So given a discrete functionh(r) (say a hypergeometric sequence), we have theGeneral
Problemof evaluating then × n determinant

A(n, r) := det(h(r + i + j)), 0 � i, j � n − 1. (Hankel)

Even if we are only interested inA(n,0), we still need ther, as will become apparen
shortly. For Hankel matrices (Hankel), Dodgson’s rule specializes to:

A(n, r) = A(n − 1, r)A(n − 1, r + 2) − A(n − 1, r + 1)2

A(n − 2, r + 2)
. (HankelDod)

Now, in some sense, this isalready an answer, since it displaysA(n, r) in the ansatz
of double sequences satisfyingpartial non-linear recurrence equations with consta
coefficients. Indeed sinceA(0, r) = 1 andA(1, r) = h(r), (HankelDod), gives a quic
way to crank out the sequenceA(n0, r) for n0 = 0,1,2, . . . ,N0 for any desiredN0. Of
course, one can argue that the very definition is already an ‘answer’ just declare th
of determinants of hypergeometric determinants a legitimate ansatz! But we would
do better.

Inspired by the Hilbert matrix, for whichA(n,0) turned out to be hyperhypergeomet
in n, it turns out (experimentally, at first), thatA(n, r) also has this property for eachr. Not
only that, the ratio-of-ratios(A(n, r)/A(n − 1, r))/(A(n − 1, r)/A(n − 2, r)) is not only
a rational function ofn, but of bothn andr. Furthermore, it also turns out that it is al
hyperhypergeometric inr, i.e.,(A(n, r)/A(n, r −1))/(A(n, r −1)/A(n, r −2)) is another
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A(n − 1, r − 1)) is also a rational function of(n, r).

A new ansatz is Born: hyperhypergeometric double-sequences

Definition. A double sequenceB(n, r) is hyperhypergeometricif the three discrete
functions

B11(n, r) := B(n, r)B(n − 2, r)

B(n − 1, r)2 , B12(n, r) := B(n, r)B(n − 1, r − 1)

B(n − 1, r)B(n, r − 1)
,

B22(n, r) := B(n, r)B(n, r − 2)

B(n, r − 1)2 ,

are all rational functions of(n, r). Hence, hyperhypergeometric double-sequences
be identified withtriples of rational functions(B11,B12,B22) satisfying the obvious
compatibility conditions:

B11(n, r)

B11(n, r − 1)
= B12(n, r)

B12(n − 1, r)
,

B22(n, r)

B22(n − 1, r)
= B12(n, r)

B12(n, r − 1)
. (Compatibility)

In addition we have to specify the initial conditionsb00 = B(0,0), b01 = B(0,1), b10 =
B(1,0).

So suppose you have a conjectured hyperhypergeometric expressionB(n, r) for the
family of Hankel determinantsA(n, r) := det(h(r+i+j)), 0� i, j � n−1. By Dodgson’s
rule, it is enough to verify thatB(0, r) = 1, B(1, r) = h(r), and

B(n, r) = B(n − 1, r)B(n − 1, r + 2) − B(n − 1, r + 1)2

B(n − 2, r + 2)
. (HankelDod′)

By taking ratios, this is equivalent to, in terms of the rational functionsB11,B12,B22:

B12(n − 1, r + 2)B12(n − 1, r + 1)

B11(n, r)
− B12(n, r + 2)B12(n − 1, r + 2)

B22(n, r + 2)B11(n, r + 1)
= 1,

(VerifyHankelDod)

which Maple (or Mathematica, etc.) can verify routinely, and henceprovethe conjecture.
But what aboutdiscoveringthe identity in the first place?Can a computer do that? All

by itself?
You bet it can! Now that we have a well-definedhaystack, the ansatz of hyperhyperge

metric double-sequences, we can let the computer compile a table ofA(n, r) for n, r � L

for some finiteL, either by using the determinant definition, or more efficiently, by us
(HankelDod), starting withA(0, r) = 1,A(1, r) = h(r). Then we let our beloved comput
compute the iterated ratios
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A11(n, r) := A(n, r)A(n − 2, r)

A(n − 1, r)2 , A12(n, r) := A(n, r)A(n − 1, r − 1)

A(n − 1, r)A(n, r − 1)
,

A22(n, r) := A(n, r)A(n, r − 2)

A(n, r − 1)2
,

for 2 � n, r � L.
Then, assuming thatA(n, r) is indeed hyperhypergeometric, we putB11,B12,B22 in

generic form for rational functions in(n, r) with undetermined coefficients, where the top
and bottom of each are generic polynomials of a guessed degreed . Now by plugging-in,
we have(L − 1)2 equations

B11(n0, r0) − A11(n0, r0) = 0, 2 � n0, r0 � L.

Clearing denominators, and setting the numerator equal to zero, will give us a sys
linear equations in the unknown ‘undetermined’ coefficients ofB11. Similarly for B12
andB22. If the computer finds a solution, then we are done! If it does not, we can m
the guessed degree one higher, and try again. We can keep upping the degree
succeed or give up. Of course, no one said thatA(n, r) must be hyperhypergeometric,
was only ourconjecturethat it might. So humans still have todecidewhich ansatzes to
try, but once that decision is made, and the program already exists, the compute
everythingfrom α to ω: conjecture the expressionB(n, r) (in its equivalent form as th
triple of rational functionsB11(n, r),B12(n, r),B22(n, r)), and then proves it, all by itself
Finally, it also verifies the compatibility conditions (Compatibility), which also consis
routine manipulations of rational functions.

Toeplitz determinants

As far as I know, Otto Toeplitz was not a Leipziger, and hence it is unlikely that he
bumped into my grandfather Paul in the street or cafeteria. But he is still dear to m
part because his widow was my nanny between the ages of 0 and 1, and in part b
I like his determinants, that have the form det(h(i − j)). All we said above about Hanke
determinants carries over, with obvious modifications, to Toeplitz determinants. For d
see the source-code in the Maple packageCLD, described below.

A user’s manual for the Maple package CLD

(CLD stands for Charles Lutwidge Dodgson.) First download it from my website
going to my homepage (search Google for “Zeilberger” (or even for “Doron”) or
http://www.math.rutgers.edu/~zeilberg/) then click onprograms, then click onCLD.
Alternatively, just download http://www.math.rutgers.edu/~zeilberg/tokhniot/CLD.

Once my Maple packageCLD is in your own computer, stay in the same directory,
into Maple, by typingmaple, or xmaple, or by clicking on the Maple icon. Once i
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Maple, type:read CLD (if you decide to go to a different directory, you need the
path name of the fileCLD).

Now, all you have to do is follow theon-lineinstructions. In particular, typingezra();
will give you a list of all the main procedures, i.e., those that you are likely to use. Ty
ezra1(); will give a list of all procedures, so thatyoucan understand what is going o
and will be able to improve and extend this rudimentary program to more general c
of determinants and to explore other, more general, or completely different, ansatze

The main procedures areEvalH for the automatic discovery and proof of Hank
determinant-evaluations, and the Toeplitz analogEvalT. These give you the output i
terse style. If you want a math paper, ready for submission, use theverboseversions,
EvalHpaper andEvalTpaper.

For example, typing the 28-character stringEvalHpaper(r!*(m-r)!,n,r4):
would, after a couple of minutes (on my rather slow computer), output a paper tha
ALL the following steps, previously done by humans, with only some machine help
lead to [AE1].

1. Conjecture the expression (this was first done by the smart humans Greg Kup
and Jim Propp).

2. Prove it, by human-machine interaction (previously done by Human Tewo
Amdeberhan and Machine Shalosh B. Ekhad).

3. Write up the paper [AE1] for publication (formerly done by the human-partner o
A–E collaboration).

For the celebrated MacMahon determinant [M] (very important in plane-partition
meration, first proved by the great Percy MacMahon, and then reproved by me [Z1],
Dodgson’s rule (with help from Ekhad)), type:EvalTpaper(1/(m+r)!,n,r,4):.

Finally, for a completely automated performance of all the phases of mathem
activity: conjecture-proof-writing-it-up, for the closed-form evaluation of the Hilb
matrix, type:EvalHpaper(1/(r+1),n,r,4):.

Sample input and output files

The webpage of this paper (clickable from my homepage) contains sample inp
output files.

How to be immortal

Dying is a stupid reason to stop publishing. If you are lucky, someone might find
unfinished work, finish it up, and publish it as joint work (like Bruce Berndt did to B
Wilson). But this will, at best, get you at most one or two posthumous papers. What
want to keep on publishing papers for ever? Easy! First make your system-admini
promise not to close your account after your demise. Then in the Maple package,
‘Unix-escape’ shell-program that submits the paper to one of the many electronic jou
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It might be a good idea to sign an inclusive copy-right-transfer form for all your fu
submissions.

Now write aninfinite do-loop, with increasingly more complicated determinants to
evaluated. Most of them will turn out not to fit the given ansatz (in this case the hyp
pergeometric ansatz), but whenever it does, and the computer succeeded in conje
and then, automatically proving it, the computer can completely automatically, also
submission.

You can do even more! Suppose that after 100 papers on this subject, the editor
decides to reject your 101th posthumous paper, because it is ‘not interesting.’ The
can automatically send an angry rebuttal. The variations are endless.

Suggestions for further work

It should be relatively painless to do theq-analog of this, and to also deal wi
determinants of general matrices(a(i, j)) (1 � i, j � n), i.e., not necessarily Hankel o
Toeplitz. Now we would have a 3-parameter discrete functionA(n, r, s) := det(A(i + r,

j + s)), 0 � i, j � n − 1, and the appropriate ansatz would be hyperhypergeom
sequences fortriple sequences.

Recall that B(n, r) is hyperhypergeometricmeans thatB(n, r)/B(n, r − 1) and
B(n, r)/B(n−1, r) are hypergeometric. This naturally leads to the more general ansa
which the above two ratios areP -recursive. Even more generally we can consider solut
of linear recurrence whose coefficients areP -recursive (holonomic). I am sure that wi
these more general ansatzes, many more determinants will be computer-evaluable

Why is this exciting?: the medium is the message!

With all due respect to thesubstanceof this research, i.e. determinant-evaluation, w
makes this endeavorsoexciting is theformand theresearch methodology, of doingpurely
theoreticalandcompletely rigorousmathematics usingexperimental methods. Of course,
these are just crude and clumsy beginnings, but as we, and the computer, will ge
experienced, this methodology will be applicable to provingGoldbach, RH, Navier–Stoke,
etc. Paraphrasing Archimedes, all I need to know is theRight Ansatzand my computer will
prove the Riemann Hypothesis.

As already mentioned before, often we are stumped because we do not have
parameters. In the present humble case, it was impossible to evaluate the determina
n × n Hilbert matrix(1/(i + j − 1)), because it only depended on the single parametn,
but evaluating the more general det(1/(r + i + j − 1)) was possible, since this enabl
induction onn andr.

So the reason that my computer is unable, at this time, to prove the Riemann Hypo
is thatζ(s) only depends on one variable. With an appropriate generalization, belong
an appropriate ansatz, it would be doable.
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Building up experiments is even more important than performing them

Physical science consists of an interplay oftheory (hypothesis-forming) andexperi-
ments(hypothesis testing). But in order to perform experiments, one has todesignthem,
andbuild instruments. So ultimately, the most important members of the scientific c
munity are neither theorists nor experimentalists, butengineersandtechnicians, who build
the instruments needed to carry out the experiments.

The analog of scientific instruments aresoftware. My role in this project was neithe
hypothesizing, i.e., conjecturing, nor,experimenting, it was all done by my computer. All
did was ‘build the equipment,’ i.e., design an algorithm and implement it, that is, writ
program. But this would not have been possible without the computer algebra syste
its associatedprogramming language, (Maple in my case), developed through many ye
of dedicated labor by such pioneers as Keith Geddes and Gaston Gonnet. And of
even more importantly, the meta-equipment, i.e., the computer itself, that is thehardware.

Eventually, such computer programs will also be written by computers, thanks to
programs and future meta-Maple. But hopefully there will still be a role for human
thinking up new ansatzes andmeta-ansatzes, and in finding thetrivializing generalization.
But then again, eventually computers will learn how to do these things all by thems
and we might not be able to even follow the generaldrift of what they are doing, becau
of its immense complexity.

I am even more like my grandfather Paul than I thought before

My grandfather Paul Alexander was a chemist, hence an experimental sci
However he was not a ‘pure’ scientist, but rather an ‘applied’ and ‘industrial’ one,
designedverfahrensto do specific tasks, in his case, recycling rubber. In my case too,
not interested in probing the ‘nature of mathematics’ per se, only in designingalgorithms
do to specific tasks. That specific task happens to be discovering and proving mathe
facts, but the ‘recycled rubber’ itself (i.e., mathematical theorems) are much less ex
than the process (i.e., computer program) that generated them.
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