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Dedicated to the memory of my grandfather Paul Alexander

Abstract

Contrary to popular belief, Matis an experimental science. Hence | am an experimental scientist,
just like my beloved grandfather, Dr. Paul Alexander (1870-1942, Dr. Phil. Rer. Nat., Chemie, 1897).
0 2003 Elsevier Inc. All rights reserved.

Leipzig

This is my first visit to Leipzig. My main reasons for coming herepeesonal to look
up the graves and dwellings of my great-grandparents, Salomon and Rebecka Alexander,
and to explore the city and the university where my grandfather, Paul Alexander, grew
up and studied. But | thought that it would be nice to combine the business of family
pilgrimage with the pleasure of giving a math talk.

Even though this talk is supposed to bermathrather than orfamily history let me
nevertheless spend a few minutes telling you about my grandfather Paul Alexander, to
whom this talk is dedicated.
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A few words about Paul Alexander

1. Paul got his Dr. Phil. in 1897, here in Leipzig. His dissertation was entitl#iaer die
Einwirkung von o-Nitrobenzylchlorid auf Natriummalonsaureéathylester”

2. Paul was the inventor of efficienterfahrensfor the regeneration (recycling) of
caoutchouc (rubber).

3. Paul had many patents, e.g., US # 844077, issued in 1907 efiRtleckss for the
production of agueous caoutchouc solution and the regeneration of rubber waste”

4. He contributed several articles to the famous Ulim&mzyklopé&dieof Industrial
Chemistry.

Paul's academiwater was the great chemislohaness Wislicensyd835-1902), who
made many important contributions to chemistry. One was the suggestion that there are
geometrical isomersexemplified by the two forms of the lactic acid. He inspired, and later
enthusiastically endorsed the revolutionary theory of Le-Bell and J. van t' Hoff (who got
the very first chemistry Nobel, in 1901). He was, most probably, a very nice guy!

But notall Leipzig professors were so nice. One especially nasty specimen was the
great organic chemisiermann Kolbewho was Wislicensus's predecessor at the Leipzig
chemistry chair. Kolbe, known for his very acerbic wit, commented on the Le-Bell-van t’
Hoff theory as follows:

“... There is an overgrowth of the weed of the seemingly learned and ingenious but
in reality trivial and stupefying natural philosophy... which had been dressed up in
modern fashion and rouged freshly like a whore whom one tries to smuggle into good
society where she does not belong...”

It would be unfair to ridicule Kolbe for theubstancef his critique, since now we have
the benefit of hindsight, and it is not his fault that history proved him wrong. Science does
need its share of conservatives to serve as bouncers to guard us against wild speculations
like cold fusion and organic transistors. Nevertheless, one can be critical without being
mean, and often we are critical because we feel like being mean.

Controversy is much more prevalent in science than it is in math, but even math
has its share. As late as 1903 there were still people who did not accept non-Euclidean
Geometry. We all heard about the Kronecker—Cantor and Hilbert—Brouwer feuds. More
recently we witnessed the heated debate concerning the role of ‘theoretical math, as well
as the Andrews—Zeilberger mini-controversy about semi-rigorous mathematics. As math
will become more scientific, we should expect more controversy, which will make things
more interesting!

Yet another Leipziger waldermann Hankelwho said:

“In most sciences one generation tears down what another has built, and what one has
established, another undoes. IMAMHEMATICS ALONE each generation adds a new
story to the old structure.”
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In other words, math is a peaceful, non-violent, cumulative enterprise. Hankel also
expressed another “obvious truth” about our profession:

“Mathematics is purely intellectual, a pure theory of forms, which has for its objects
not the combination of quantities and images, but things of thought to which there
could correspond effective objects or relations, even though such a correspondence is
not necessary(my emphasis).

But even though Hankel was probably much nicer than Kolbe, his statements too are
starting to be wrong. Because of t@®mputey Mathematics is becoming an empirical,
descriptive, and experimental science, just like Chemistry! ‘Modern’ Math, that is
supposedha priori, will soon join the ranks of Aristotelian physics that was adgoriori.

Unlike the latter, however, it will not be labelled false, but, perhaps worse, would be
considered utterly trivial, since computer-generated math will be able to discover, and
prove, much deeper results.

The first mathematical area that took advantage of the computer revolution was
Numerical Math

Here is a quotation form yet another Leipziger, do you know who?, that in a very major
International Congress said:

“In the former times there were obvious reasons whyas rather small. This is why
Numerical Mathdid not appear as a discipline of ibsvn before the help of electronic
computersvas available.”

That same person also said, later at the same talk:

“Large scale computations are those which almosttoo large to be computed on
presentmachines” (emphasis added).

| am sure that most of you will recognize these words as belonging to your esteemed
colleague, Wolfgang Hackbusch, who in his insightful plenary ICM 1998 talk presented
the state of the art in numerical math and scientific computation, and stated that in
order to be able to solve very large problems, one has to make somgromisesThe
first compromise is to abandon tlegactand settle for thepproximate(what he called
e-oriented). Another compromise is to abandongkeeraland settle for thepecial i.e.,
trying to solve special classes that often come up in practice , sparsesystems, or his
own favorite,H -systems.

He also talked abowtlgorithmic Paradigmsin particular, aboutlierarchy, Adaptivity,
and Oe)composition

All this sounds like ssoundmethodology for aciencethat has a strong empirical and
experimental flavor. In addition, numerical mathematiciansdmerical experimentsn
a regular basis to test their algorithms, and the empirically observed performance is often
much better than the theoreticalpriori, prediction.

| strongly feel that Hackbusch’'s talk [H] should be required reading topale
mathematicians, especially to those, like myself, who try to get as much as possible out
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of the computer. We too should be able to devedtgorithmic paradigmsandresearch
methodologiesf our own. A good start is by adapting to our needs the already acquired
wisdom from numerics, as described by Hackbusch.

So far the use of computers in ‘pure’ math, with a few exceptions, was rather
methodologicallyporing. It consisted mainly in testing conjectures.

Much more interesting, from theethodologicapoint of view, arecomputer-assisted
proofs The most famous being the Appel-Haken Four Color Theorem. Here there was
a human-machine dialothat helpeddesignthe proof, and once the proof was proposed
(a certain explicit unavoidable set of reducible configurations), it was verified by computer.

There is also a rapidly growing effort iautomated provingThese can be roughly
divided tologic-basedprogramming, pursued in Al and computational logic, that uses
resolution, tableauwand other methods, anahsatz-basegrogramming, in which the
objects are known to belong to a well-defined algebraic class that possessmscal
forms, or at leashormal forms making it decidable whether = B or A = 0, respectively.

A famous example i€uclidean Geometryin which, thanks to Rene Descartes, the
objects arerational functionsin the parameters, and in more complicated situations
ideals for which the Buchberger algorithm supplies a canonical form. There isvel50
theory, that is amalgorithmic proof theoryfor hypergeometric summation and integration
identities. However, in both these cases the algorithms themselves were created by humans,
and while it is true that they can prove many results that previously required ad hoc human
proofs, the very existence of these algorithms makes these ‘computer-generated proofs,
and hence also the results that they prove, trivial in some sense, since gunaanateed
to get a proof or refutation, time- and space-limitations permitting.

But what makes research so exciting is that itgaable You do not know, beforehand,
whether you will succeed or fail. You also want to allow &erendipity the possibility
that in your computer’s attempts to prove Goldbach it will discover something even
more interesting. So what we desperately needddgerithmic Paradigms for Computer-
Generated Research

In other words, we need methodologies for creating new algorithms that will enable
computers to discover, amtove new results, without knowing, beforehand, whether it
will succeed, but with a fair chance that it will.

For the sake of simplicity, let us focus on proviitgntities These are mathematical
statements whose format i = B. The traditional way is to try and manipulatg,
finding another object that ‘looks different’ but is really the same. The problem is
that there are usually several choices. Then one can try to Aindgetting a string
A=Ap=A1=Ar=---, and if inluck, or one has a good intuition, or the problem is
not very deep, one gets ®. Since at every stage there are several choices, and there is no
upper bound for the number of steps, this method leads to exponential explosion.

If both A and B belong to a class of mathematical objects for which there exists a
canonical formy and there is also aalgorithm A — ¢(A), for reducing any object to its
canonical form, then all one has to do is compt(té) andc(B) and see whether they are
the same.

But what if you do not knowB? In other words, you have an inpdtthat is ‘ugly,
and belongs to general ansatzbut you hope that there existsie B, such thatA = B.
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By ‘nice’ | mean belonging to a suitabkubansatza specific ansatzCan the computer
find B? (if it exists?).

Let us assume that the objects of #@ecific ansathave a natural complexity, such
that one can express the objects of any given, finite, complexity, in generic form, with
undeterminedaoefficients.

To make this non-trivial, we must assume tliaand B are really infinite classes, i.e.,
A(n) and B(n), wheren is an integer parameter. We assume that for any spegific
A(ng) and B(np) are computable, where the latter is in terms of undetermined coefficients.
Then by plugging-in enough values fag and solving the system (ng) = B(no), no =
1,2,..., L, for sufficiently largeL, for the unknown undetermined coefficients ®fn),
and if the computer finds a solution, then we have a genuine new theorem, that the computer
discovered from scratch. Once conjectured, it should be routine to prova thet B(n)
by plugging into the defining equation dfin thegeneral ansatz

Many times it is not possible to prove thdt(n) = B(n) directly. Then one looks
for more general objectd’(n, r), that does belong to a general ansatz, and such that
A(n) = A'(n, 0). If that general ansatz contains a subansatz of nice ohE¢tsr), one
may try to find it, prove algorithmically thad’(n, r) = B’(n, r), and finally deduce that
A(n,0) = B'(n, 0), whereB’(n, 0) is nice sinceB’(n, r) is.

If the above seems a bit vague, | hope that the case-study beloatomated
(symbolic) determinant-evaluation, using thedgson ansatfor the generalansatz, and
the hyperhypergeometriansatz for thespecific(nice) ansatz, would make this approach
crystal clear.

Trying to abstract from the well-known explicit evaluation of the determinant of the
Hilbert matrix

The Hilbert matrix

1

A(”)i,j = m,

0<i, j<n—-1,
is dear to numerical analysts because it is a famous example of a badly-conditioned matrix.
Its determinant has a well-known explicit evaluation

n—1 14

detA(m) =] | m

i=1

Let us call the right-hand side(n). What is nice aboub(n) is that the ratioc(n) :=
b(n + 1)/b(n), is a hypergeometric sequence namely,) = n!*/((2n + 1)!(2n)!). But a
hypergeometric sequenissprecisely one whose consecutive ratio is a rational function. In
this casel (n) := c(n)/c(n — 1) equalsi?/(4(2n + 1)(2n — 1)).

How would anyonestart to prove it? A natural way would be by induction en
However, having only one parameter is too restrictive.

My favorite way to evaluate determinants [Z1,Z2] is
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Reverend Charles Lutwidge Dodgson’s determinant condensation rule

It states the following. For any by n matrix A, let A, (i, j) denote the- by » minor
consisting ofr contiguous rows and columns df, starting with rowi and columnj. In
particular,A, (1, 1) = detA. Then, according to Dodgson [D],

Al‘l(iv ])An—Z(l + 17 ] + 1)
=Ap-10, DAp-1G+1,j+ 1) — Ap-1(G + 1, HAn-1G, j+1).  (Lewis)

The desired determinant i, (1, 1). In many cases4, (i, j) turns out, conjecturally at

first, to have an explicit expression, involving single and double products. Whenever this
is the case the proof of the conjectured evaluation is completely routine, by inductiqn on
by checking that (Lewis) is satisfied by that conjectured expression, and by checking the
trivial initial conditions forn = 0 andn = 1. Finally, to get an explicit expression for the
original determinant, all one hasto dois plugia 1 and;j = 1.

In [AE2] this method was used to get computer-assisted proofs of numerous determinant
identities. But my goal is to make thingempletelyautomatic, and human-free.

To keep things simple (after all, the main point here is to introducesgarch
methodologynot to find exciting new results), let us focus on Hankel matrices, which
have the form(h(i 4+ j)) for some sequendeg(r) (that for us would have to be an explicit
expression).

So given a discrete functionr) (say a hypergeometric sequence), we havé&tbeeral
Problemof evaluating the: x n determinant

A, ry:=deth(r+i+j)), 0<i, j<n-1 (Hankel)

Even if we are only interested id (n, 0), we still need the-, as will become apparent
shortly. For Hankel matrices (Hankel), Dodgson’s rule specializes to:

_ _ _ _ 2
A,y =201 ”A(”A(l’ r ;r 2)+ 2;‘(” Lr+ D% HankelDod)
n—2,r

Now, in some sense, this mready an answer, since it display4(n, r) in the ansatz
of double sequences satisfyiqmartial non-linear recurrence equations with constant
coefficients Indeed sinceA(0,r) =1 and A(1,r) = h(r), (HankelDod), gives a quick
way to crank out the sequenegno, r) for no=0,1,2,..., Ng for any desiredvy. Of
course, one can argue that the very definition is already an ‘answer’ just declare the class
of determinants of hypergeometric determinants a legitimate ansatz! But we would like to
do better.

Inspired by the Hilbert matrix, for which (r, 0) turned out to be hyperhypergeometric
in n, it turns out (experimentally, at first), that(n, ) also has this property for eachNot
only that, the ratio-of-ratiosA(n,r)/A(n — 1,r))/(A(n — 1,r)/A(n — 2, r)) is not only
a rational function ofz, but of bothn andr. Furthermore, it also turns out that it is also
hyperhypergeometricin, i.e.,(A(n,r)/A(n,r —1))/(A(n,r —1)/A(n, r — 2)) is another
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rational function of(n, r). Finally the ‘mixed-ratio’(A(n,r)/A(n — 1, r))/(A(n,r — 1)/
A(n —1,r — 1)) is also a rational function afz, r).
A new ansatz is Born: hyperhypergeometric double-sequences

Definition. A double sequenceB(n,r) is hyperhypergeometriéf the three discrete
functions

__Bn,r)B(n—2,r) _Bn,r)Bn—-1,r-1)
Buln.r) = B(n—1,r?2 ° Buoln, 1) = B(n—1,r)B(n,r — 1)’
Bn,r)B(n,r — 2
Boo(n,r) = (’;8 r(’i ;)2 ),

are all rational functions ofn, r). Hence, hyperhypergeometric double-sequences may
be identified withtriples of rational functions(Bi11, B12, B2p) satisfying the obvious
compatibility conditions

Bui(n,r)  Bian,r) Baa(n,r)  Bian,r)
Bll(”v r— 1) BlZ(n - 17 r) ' BZZ(” - 17 r) BlZ(”y r— 1) .

(Compaitibility)

In addition we have to specify the initial conditiobgg = B(0, 0), bo1 = B(0, 1), b1p =
B(1, 0).

So suppose you have a conjectured hyperhypergeometric exprasgion for the
family of Hankel determinantd (n, r) :=deth(r+i+j)),0<i, j <n—1. By Dodgson’s
rule, it is enough to verify thaB(0,r) =1, B(1,r) = h(r), and

Bn—1,r)Bn—21,r+2)— B(n—1,r + 1)2

Bln,r) = B(n—2,r+2)

(HankelDod)

By taking ratios, this is equivalent to, in terms of the rational functiBng B12, B22:

Bion — 1, r +2)Bi2(n — 1,r +1) _ Bix(n,r + 2)Bion—1r+2)
Bii(n,r) Boo(n,r +2)B1i(n,r +1)
(VerifyHankelDod)

)

which Maple (or Mathematica, etc.) can verify routinely, and hggrogethe conjecture.

But what aboutliscoveringthe identity in the first place@an a computer do thatAll
by itself?

You bet it cahNow that we have a well-defindtaystackthe ansatz of hyperhypergeo-
metric double-sequences, we can let the computer compile a taldle:of) for n,r < L
for some finiteL, either by using the determinant definition, or more efficiently, by using
(HankelDod), starting wittd (0, r) = 1, A(1, ) = h(r). Then we let our beloved computer
compute the iterated ratios
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A, rAn—-2r) A, nAn-1r-1)
An(n, 1) = An—-1,r2 ~ Asz(n, r) = An—1nrAmn,r-1)’
An,r)A(n,r —2
Ago(n,r) = (r;(r’z r(’i ;)2 ),

for2<n,r <L.

Then, assuming that (n, r) is indeed hyperhypergeometric, we pRi1, B12, B22 in
generic form for rational functions iz, r) with undetermined coefficientwhere the top
and bottom of each are generic polynomials of a guessed dégi¢ew by plugging-in,
we have(L — 1)2 equations

B11(no, ro) — A11(no, r0) =0, 2<no,ro< L.

Clearing denominators, and setting the numerator equal to zero, will give us a system of
linear equations in the unknown ‘undetermined’ coefficientsBafi. Similarly for Bi2

and By;. If the computer finds a solution, then we are donel! If it does not, we can make
the guessed degree one higher, and try again. We can keep upping the degree until we
succeed or give up. Of course, no one said that, r) must be hyperhypergeometric, it

was only ourconjecturethat it might. So humans still have ttecidewhich ansatzes to

try, but once that decision is made, and the program already exists, the computer does
everythingfrom « to w: conjecture the expressia(n, r) (in its equivalent form as the

triple of rational functionB11(n, r), B12(n, r), B22(n, r)), and then proves it, all by itself!
Finally, it also verifies the compatibility conditions (Compatibility), which also consist of
routine manipulations of rational functions.

Toeplitz determinants

As far as | know, Otto Toeplitz was not a Leipziger, and hence it is unlikely that he ever
bumped into my grandfather Paul in the street or cafeteria. But he is still dear to me, in
part because his widow was my nanny between the ages of 0 and 1, and in part because
| like his determinants, that have the form @&t — j)). All we said above about Hankel
determinants carries over, with obvious modifications, to Toeplitz determinants. For details
see the source-code in the Maple packa@gp, described below.

A user’s manual for the Maple package CLD

(CLD stands for Charles Lutwidge Dodgson.) First download it from my website, by
going to my homepage (search Google for “Zeilberger” (or even for “Doron”) or type
http://www.math.rutgers.edu/~zeilberg/) then click pnogr ans, then click onCLD.
Alternatively, just download http://www.math.rutgers.edu/~zeilberg/tokhniot/CLD.

Once my Maple packagéLD is in your own computer, stay in the same directory, go
into Maple, by typingmapl e, or xmapl e, or by clicking on the Maple icon. Once in
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Maple, type:r ead CLD (if you decide to go to a different directory, you need the full
path name of the fil€LD).

Now, all you have to do is follow then-lineinstructions. In particular, typingzr a( ) ;
will give you a list of all the main procedures, i.e., those that you are likely to use. Typing
ezral(); will give alist of all procedures, so thgbucan understand what is going on,
and will be able to improve and extend this rudimentary program to more general classes
of determinants and to explore other, more general, or completely different, ansatzes.

The main procedures afeval H for the automatic discovery and proof of Hankel-
determinant-evaluations, and the Toeplitz analvgl T. These give you the output in
terse style. If you want a math paper, ready for submission, usgdtmseversions,

Eval Hpaper andEval Tpaper.

For example, typing the 28-character striggal Hpaper (r!*(mr)!,n,r4):
would, after a couple of minutes (on my rather slow computer), output a paper that does
ALL the following steps, previously done by humans, with only some machine help, that
lead to [AE1].

1. Conjecture the expression (this was first done by the smart humans Greg Kuperberg
and Jim Propp).

2. Prove it, by human-machine interaction (previously done by Human Tewodros
Amdeberhan and Machine Shalosh B. Ekhad).

3. Write up the paper [AE1] for publication (formerly done by the human-partner of the
A-E collaboration).

For the celebrated MacMahon determinant [M] (very important in plane-partition enu-
meration, first proved by the great Percy MacMahon, and then reproved by me [Z1], using
Dodgson’s rule (with help from Ekhad)), typgval Tpaper (1/ (nmtr)!,n,r, 4):.

Finally, for a completely automated performance of all the phases of mathematical
activity: conjecture-proof-writing-it-up, for the closed-form evaluation of the Hilbert
matrix, type:Eval Hpaper (1/ (r+1),n,r,4):.

Sample input and output files

The webpage of this paper (clickable from my homepage) contains sample input and
output files.

How to be immortal

Dying is a stupid reason to stop publishing. If you are lucky, someone might find your
unfinished work, finish it up, and publish it as joint work (like Bruce Berndt did to B.M.
Wilson). But this will, at best, get you at most one or two posthumous papers. What if you
want to keep on publishing papers for ever? Easy! First make your system-administrator
promise not to close your account after your demise. Then in the Maple package, have a
‘Unix-escape’ shell-program that submits the paper to one of the many electronic journals.
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It might be a good idea to sign an inclusive copy-right-transfer form for all your future
submissions.

Now write aninfinite do-loop, with increasingly more complicated determinants to be
evaluated. Most of them will turn out not to fit the given ansatz (in this case the hyperhy-
pergeometric ansatz), but whenever it does, and the computer succeeded in conjecturing,
and then, automatically proving it, the computer can completely automatically, also do the
submission

You can do even more! Suppose that after 100 papers on this subject, the editor finally
decides to reject your 101th posthumous paper, because it is ‘not interesting.” Then you
can automatically send an angry rebuttal. The variations are endless.

Suggestions for further work

It should be relatively painless to do thganalog of this, and to also deal with
determinants of general matricés(i, j)) (1 < i, j < n), i.e., not necessarily Hankel or
Toeplitz. Now we would have a 3-parameter discrete functi@m, r, s) := det(A( + r,
j+s), 0<i,j <n—1, and the appropriate ansatz would be hyperhypergeometric
sequences fdriple sequences.

Recall that B(n,r) is hyperhypergeometrieneans thatB(n,r)/B(n,r — 1) and
B(n,r)/B(n—1,r) are hypergeometric. This naturally leads to the more general ansatz for
which the above two ratios are-recursive. Even more generally we can consider solutions
of linear recurrence whose coefficients d@taecursive (holonomic). | am sure that with
these more general ansatzes, many more determinants will be computer-evaluable.

Why is this exciting?: the medium is the message!

With all due respect to theubstancef this research, i.e. determinant-evaluation, what
makes this endeavapexciting is theform and theresearch methodologef doingpurely
theoreticalandcompletely rigorousnathematics usingxperimental method©f course,
these are just crude and clumsy beginnings, but as we, and the computer, will get more
experienced, this methodology will be applicable to prov@wdbach, RH, Navier—Stokes
etc. Paraphrasing Archimedes, all | need to know iRlgdht Ansatand my computer will
prove the Riemann Hypothesis.

As already mentioned before, often we are stumped because we do not have enough
parameters. In the present humble case, it was impossible to evaluate the determinant of the
n x n Hilbert matrix(1/(i + j — 1)), because it only depended on the single parameter
but evaluating the more general det(r +i + j — 1)) was possible, since this enabled
induction onn andr.

So the reason that my computer is unable, at this time, to prove the Riemann Hypothesis,
is that¢ (s) only depends on one variable. With an appropriate generalization, belonging to
an appropriate ansatz, it would be doable.
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Building up experiments is even more important than performing them

Physical science consists of an interplaytioéory (hypothesis-forming) anéxperi-
ments(hypothesis testing). But in order to perform experiments, one hdegignthem,
andbuild instrumentsSo ultimately, the most important members of the scientific com-
munity are neither theorists nor experimentalists gmgineerandtechnicianswho build
the instruments needed to carry out the experiments.

The analog of scientific instruments ageftware My role in this project was neither
hypothesizingi.e., conjecturing, noexperimentingit was all done by my computer. All |
did was ‘build the equipment,’i.e., design an algorithm and implement it, that is, write the
program. But this would not have been possible without the computer algebra system, and
its associategrogramming languaggMaple in my case), developed through many years
of dedicated labor by such pioneers as Keith Geddes and Gaston Gonnet. And of course,
even more importantly, the meta-equipment, i.e., the computer itself, thathaittieare

Eventually, such computer programs will also be written by computers, thanks to meta-
programs and future meta-Maple. But hopefully there will still be a role for humans, in
thinking up new ansatzes antkta-ansatzesind in finding therivializing generalization
But then again, eventually computers will learn how to do these things all by themselves,
and we might not be able to even follow the genelrét of what they are doing, because
of its immense complexity.

| am even more like my grandfather Paul than | thought before

My grandfather Paul Alexander was a chemist, hence an experimental scientist.
However he was not a ‘pure’ scientist, but rather an ‘applied’ and ‘industrial’ one, who
designedrerfahrendo do specific tasks, in his case, recycling rubber. In my case too, | am
not interested in probing the ‘nature of mathematics’ per se, only in desigigogithms
do to specific tasks. That specific task happens to be discovering and proving mathematical
facts, but the ‘recycled rubber’ itself (i.e., mathematical theorems) are much less exciting
than the process (i.e., computer program) that generated them.

Acknowledgments

| am very grateful to Wolfgang Hackbusch for kindly accepting my offer to give
a seminar talk here. | am also very thankful to all of you for coming!

References

[AE1] T. Amdeberhan, S.B. Ekhad, A condensed condensation proof of a determinant evaluation conjectured by
Greg Kuperberg and Jim Propp, J. Combin. Theory Ser. A 78 (1997) 169-179.

[AE2] T. Amdeberhan, S.B. Ekhad, Determinants through the looking glass, Adv. Appl. Math. 27 (2001) 225—-
230.

[D] C.L. Dodgson, Condensation of determinants, Proc. Roy. Soc. London 15 (1866) 150-155.



D. Zeilberger / Advances in Applied Mathematics 31 (2003) 532-543 543

[H] W. Hackbusch, From classical numerical mathematics to scientific computing, Documenta Mathematica,
extra volume, ICM, Berlin, Vol. 1, 1998, pp. 235-254, based on a plenary talk.

[M] P.A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, 1918; Vol. 2, reprinted by Chelsea, 1984.

[21] D. Zeilberger, Reverend Charles to the aid of Major Percy and Fields Medalist Enrico, Amer. Math.
Monthly 103 (1996) 501-502.

[22] D. Zeilberger, Dodgson’s determinant evaluation rule proved WpITIMING MEN and WOMEN, Electron.
J. Combin. 4 (2) (1997) R22.



