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Abstract. Maurer’s universal test is a very common randomness test,
capable of detecting a wide gamut of statistical defects. The algorithm
is simple (a few Java code lines), flexible (a variety of parameter combi-
nations can be chosen by the tester) and fast.
Although the test is based on sound probabilistic grounds, one of its
crucial parts uses the heuristic approximation:

c(L, K) ∼= 0.7 −
0.8

L
+
(

1.6 +
12.8

L

)

K−4/L

In this work we compute the precise value of c(L, K) and show that the
inaccuracy due to the heuristic estimate can make the test 2.67 times
more permissive than what is theoretically admitted.
Moreover, we establish a new asymptotic relation between the test pa-
rameter and the source’s entropy.

1 Introduction

In statistics, randomness refers to these situations where care is taken to see that
each individual has the same chance of being included in the sample group. In
practice, random sampling is not easy: being after a random sample of people,
it’s not good enough to stand on a street corner and select every fifth person
who passes as this would exclude habitual motorists from the sample; call on 50
homes in different areas, and you may end up with only housewives’ opinions,
their husbands being at work; pin a set of names from a telephone directory, and
you exclude in limine those who do not have a telephone.

Whilst the use of random samples proves helpful in literally thousands of
fields, non-random sampling is fatally disastrous in cryptography. Assessing the
randomness of noisy sources is therefore crucial and a variety of tests for doing
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so exists. Interestingly, most if not all such tests are designed around a common
skeleton, called the monkey paradigm. Informally, the idea consists in measuring
the expectation at which a monkey playing with a typewriter would create a
meaningful text. Although one can easily conclude that a complex text (e.g. the
IACR’s bylaws) has a negligible monkey probability, a simple word such as cat
is expected to appear more frequently (each ∼= 17, 576 keystrokes) and could be
used as a basic (yet very insufficient) randomness test.

However, analyzing textual features is much more efficient than pattern-
scanning where inter-pattern information is wasted without being re-cycled for
deriving additional monkeyness evidence.

Usually, parameters such as the average inter-symbol distance or the length
of sequences containing the complete alphabet are measured in a sample and a
parameter is calculated from the difference between the measure and its corre-
sponding expectation when a monkey, theorized as a binary symmetric source
(BSS), is given control over the keyboard. A BSS is a random source which
outputs statistically independent and symmetrically distributed binary random
variables. Based on the expected distribution of the BSS’ parameter, the test
succeeds or fails.

We refer the reader to [2, 4] for a systematic treatment of randomness tests
and focus the following sections on a particular test, suggested by Maurer in [5].

2 Maurer’s Universal Test

Maurer’s universal test [5] takes as input three integers {L, Q, K} and a (Q +
K) × L = N -bit sample sN = [s1, . . . , sN ] generated by the tested source.

Let B denote the set {0,1}. Denoting by bn(sN ) = [sL(n−1)+1, . . . , sLn] the
n-th L-bit block of sN , the test function fTU

: BN → IR is defined by:

fTU
(sN ) =

1

K

Q+K
∑

n=Q+1

log2 An(sN ) (1)

where,

An(sN ) =







n if ∀i < n, bn−i(s
N ) 6= bn(sN )

min{i : i ≥ 1, bn(sN ) = bn−i(s
N )} otherwise.

To tune the test’s rejection rate, one must first know the distribution of
fTU

(RN ), where RN denotes a sequence of N bits emitted by a BSS. A sample
would then be rejected if the number of standard deviations separating its fTU

from E[fTU
(RN )] exceeds a reasonable constant1.

1 the precise value of E[fTU
(RN )] is computed in [5] and recalled in section 3.3.
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For statistically independent random variables the variance of a sum is the
sum of variances but the An-terms in (1) are heavily inter-dependent; conse-
quently, [5] introduces a corrective factor c(L, K) by which the standard devi-
ation of fTU

is reduced compared to what it would have been if the An-terms
were independent:

Var[fTU
(RN )] = σ2 = c(L, K)2 × Var[log2 An(RN )]

K
(2)

A heuristic estimate of c(L, K) is given for practical purposes in [5]:

c(L, K) ∼= c′(L, K) = 0.7 − 0.8

L
+

(

1.6 +
12.8

L

)

K−4/L

In the next section we compute the precise value of c(L, K), under the ad-
missible assumption that Q → ∞ (in practice, Q should be larger than 10×2L);
this enables a much better tuning of the test’s rejection rate (according to [5]
the precise computation of c(L, K) should have required a considerable if not
prohibitive computing effort).

3 An Accurate Expression of c(L, K)

3.1 Preliminary computations

For any set of random variables, we have:

Var[

n
∑

i=1

Xi] =

n
∑

i=1

Var[Xi] + 2
∑

1≤i<j≤n

Cov[Xi, Xj ] (3)

where Cov[Xi, Xj ] is the covariance of Xi and Xj :

Cov[X1, X2] = E[X1X2] − E[X1] × E[X2] (4)

Throughout this paper the notation ai = log2 Ai will be extensively used
and, unless specified otherwise, Ai will stand for Ai(R

N ).
Formulae (1), (2) and (3) yield:

c(L, K)2 = 1 +
2

K × Var[an]

∑

1≤i<j≤K

Cov[aQ+i, aQ+j ]

Assuming that Q → ∞ (in practice, Q > 10 × 2L), the covariance of ai and
aj is only a function of k = j− i and by the change of variables k = j− i we get:

c(L, K)2 = 1 +
2

Var[an]
×

K−1
∑

k=1

(1 − k

K
) × Cov[an, an+k] (5)

whereas (4) yields:
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Cov[an, an+k] =
∑

i, j≥1

log2 i log2 j Pr[An+k = j, An = i] − E[an]2 (6)

Considering a source emitting the random variables UN = U1, U2, . . . , UN ,
and letting bn = bn(UN ), we get:

Pr[An(UN ) = i] =
∑

b∈BL

Pr[bn = b, bn−1 6= b, . . . , bn−i+1 6= b, bn−i = b]

and, when the bn(UN )-blocks are statistically independent and uniformly dis-
tributed,

Pr[An(UN ) = i] =
∑

b∈BL

Pr[bn = b]2 × (1 − Pr[bn = b])i−1

For a BSS we thus have:

Pr[An = i] = 2−L(1 − 2−L)i−1 for i ≥ 1

3.2 Expression of Pr[An+k = j, An = i]

Deriving the BSS’ Pr[An+k = j, An = i] for a fixed i ≥ 1 and variable j ≥ 1
is somewhat more technical and requires the separate analysis of five distinct
cases:

• Disjoint blocks 1 ≤ j ≤ k − 1
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Fig. 1. disjoint sequences.

When 1 ≤ j ≤ k − 1, the events 〈An+k = j〉 and 〈An = i〉 are independent,
as there is no overlap between [bn+k−j . . . bn+k] and [bn−i . . . bn] (figure 1);
consequently,

Pr[An+k = j, An = i] = Pr[An+k = j] × Pr[An = i]

Pr[An+k = j, An = i] = 2−2L(1 − 2−L)i+j−2
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Fig. 2. adjacent sequences.

• Adjacent blocks j = k

Letting b = bn+k = bn = bn−i and letting Ej=k [b] be the event (figure 2):

Ej=k[b] = Pr[Ej=k [b]] =
{bn+k = b, Pr[bn+k = b]×
bn+k−1 6= b, . . . , bn+1 6= b, Pr[bn+k−1 6= b, . . . , bn+1 6= b]×
bn = b, ⇒ Pr[bn = b]×
bn−1 6= b, . . . , bn−i+1 6= b, Pr[bn−1 6= b, . . . , bn−i+1 6= b]×
bn−i = b} Pr[bn−i = b]

we get,

Pr[Ej=k[b]] = Pr[bn = b]3 × Pr[bn 6= b]k+i−2 = 2−3L(1 − 2−L)k+i−2

Pr[An+k = k, An = i] =
∑

b∈BL

Pr[Ej=k[b]]

Pr[An+k = k, An = i] = 2−2L(1 − 2−L)i+k−2

• Intersecting blocks k + 1 ≤ j ≤ k + i − 1
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Fig. 3. intersecting sequences.

For k+1 ≤ j ≤ k+i−1, the sequence [bn+k−j . . . bn+k] intersects [bn−i . . . bn]
as illustrated in figure 3. Letting b = bn+k = bn+k−j and b′ = bn = bn−i, we
get the following configuration, denoted Ek+1≤j≤k+i−1[b, b

′]:
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Ek+1≤j≤k+i−1[b, b
′] = {bn+k = b,

bn+k−1 6= b, . . . , bn+1 6= b,
bn = b′,
bn−1 /∈ {b, b′}, . . . , bn+k−j+1 /∈ {b, b′},
bn+k−j = b,
bn+k−j−1 6= b′, . . . , bn−i+1 6= b′,
bn−i = b′}

whereby:

Pr[An+k = j, An = i] =
∑

b,b′∈BL

b6=b′

Pr[Ek+1≤j≤k+i−1 [b, b′]]

for Pr[bn = b] = Pr[bn = b′] = 2−L

Pr[bn 6= b] = 1 − 2−L

Pr[bn /∈ {b, b′}] = 1 − 2 × 2−L

and finally:

Pr[An+k = j, An = i] = 2−2L(1 − 2−L)i+k−2

(

1 − 1

2L − 1

)j−k−1

• The forbidden case j = k + i
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Fig. 4. the forbidden case.

If An = i, An+k can not be equal to k + i, as shown in figure 4.

Pr[An+k = k + i, An = i] = 0

• Inclusive blocks j ≥ k + i + 1

For j ≥ k + i + 1, the sequence [bn−i . . . bn] is included in [bn+k−j . . . bn+k].
As depicted in figure 5, the blocks of [bn+1 . . . bn+k−1] differ from b, those of
[bn−i+1 . . . bn−1] differ from both b and b′ and those of [bn+k−j+1 . . . bn−i−1]
differ from b. Letting Ej≥k+i+1[b, b

′] be the event:
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Fig. 5. inclusive sequences.

Ej≥k+i+1[b, b
′] = {bn+k = b,

bn+k−1 6= b, . . . , bn+1 6= b,
bn = b′,
bn−1 /∈ {b, b′}, . . . , bn−i+1 /∈ {b, b′},
bn−i = b′,
bn−i−1 6= b, . . . , bn+k−j+1 6= b,
bn+k−j = b}

Pr[An+k = j, An = i] =
∑

b,b′∈BL

b6=b′

Pr[Ej≥k+i+1[b, b
′]]

we obtain:

Pr[An+k = j, An = i] = 2−2L(1 − 2−L)j−2

(

1 − 1

2L − 1

)i−1

3.3 Expression of c(L, K)

Let us now define the function:

h(z, k) = (1 − z)

∞
∑

i=1

log2(i + k)zi−1

For a fixed z, the sequence
{

h(z, k)
}

k∈IN
has the inductive property:

h(z, k) = (1 − z) log2(k + 1) + z × h(z, k + 1) (7)

Let

u = 1 − 2−L and v = 1 − 1

2L − 1

The expected value E[fTU
(RN )] of the test parameter fTU

(RN ) for a BSS is
given by:

E[fTU
(RN )] = E[an] =

∞
∑

i=1

log2 i × Pr[An = i] = h(u, 0)

and the variance of an is:
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Var[an] = E[(an)2] − (E[an])2

= 2−L
∞
∑

i=1

(log2 i)2(1 − 2−L)i−1 − h(u, 0)2

From equation (6) and the expressions of Pr[An+k = j, An = i], one can
derive the following expression:

Cov[an, an+k] = uk

(

h(u, 0)
(

h(v, k) − h(u, k)
)

+2−L
∞
∑

i=1

log2 i ui−1vi−1
(

h(u, k + i) − h(v, k + i − 1)
)

)

and, using equation (5), finally obtain:

c(L, K)2 = 1 − 2

Var[an]

(

p(L, 1) − p(L, K)− q(L, 1) − q(L, K)

K

)

where:

p(L, K) = uK−1
∞
∑

l=1

F (l, L, K)ul−1 , q(L, K) = uK−1
∞
∑

l=1

G(l, L, K)ul−1 ,

F (l, L, K) = u2
(

h(v, l + K − 1) − h(u, l + K)
)(

h(v, 0) − vlh(v, l)
)

+u × h(u, 0)
(

h(u, l + K − 1) − h(v, l + K − 1)
)

and

G(l, L, K) = u
(

h(v, l + K − 1) − h(u, l + K)
)

(

u (l + K)
(

h(v, 0) − vlh(v, l)
)

− 2−L
l
∑

i=1

i log2 i vi−1

)

+u
(

l + K − 1
)

h(u, 0)
(

h(u, l + K − 1) − h(v, l + K − 1)
)

3.4 Computing c(L, K) in practice

The functions h(u, k), h(v, k), p(L, K) and q(L, K) are all power series in u or
v and converge rapidly (t = 33 × 2L terms are experimentally sufficient).
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To speed things further,

{

h(u, k)
}

1≤k≤2t
and

{

h(v, k)
}

1≤k≤2t

could be tabulated to compute c(L, K) in O(2L).
For K ≥ t, we get with an excellent approximation:

c(L, K)2 ∼= d(L) +
e(L) × 2L

K
(8)

where d(L) = 1 − 2
p(L, 1)

Var[an]
and e(L) =

q(L, 1)

Var[an]
× 2−L+1

In most cases approximation (8) is sufficient, as [5] recommends to choose
K ≥ 1000× 2L > 33× 2L.

Although rather complicated to prove (ten pages omitted for lack of space),
it is interesting to note that asymptotically:

lim
L→∞

(E[fTU
(RN )] − L) = C

4
=

∫ ∞

0

e−ξ log2 ξ dξ ∼= −0.8327462

lim
L→∞

Var[an] =
π2

6 ln2 2
∼= 3.4237147

lim
L→∞

d(L) = 1 − 6

π2
∼= 0.3920729

lim
L→∞

e(L) =
2

π2
(4 ln 2 − 1) ∼= 0.3592016

The distribution of fTU
(RN ) can be approximated by the normal distribution

of mean E[fTU
(RN )] and standard deviation:

σ = c(L, K)
√

Var[an]/K (9)

E[fTU
(RN )], Var[an], d(L) and e(L) are listed in table 1 for 3 ≤ L ≤ 16 and

L → ∞.

4 How Accurate Is Maurer’s Test?

Let c′(L, K) be Maurer’s approximation for c(L, K), and let σ′ be the standard
deviation calculated under this approximation.

c′(L, K) = 0.7 − 0.8

L
+

(

1.6 +
12.8

L

)

K− 4

L (10)

σ′ = c′(L, K)
√

Var[an]/K
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L E[fTU
(RN )] Var[an] d(L) e(L)

3 2.4016068 1.9013347 0.2732725 0.4890883

4 3.3112247 2.3577369 0.3045101 0.4435381

5 4.2534266 2.7045528 0.3296587 0.4137196

6 5.2177052 2.9540324 0.3489769 0.3941338

7 6.1962507 3.1253919 0.3631815 0.3813210

8 7.1836656 3.2386622 0.3732189 0.3730195

9 8.1764248 3.3112009 0.3800637 0.3677118

10 9.1723243 3.3564569 0.3845867 0.3643695

11 10.1700323 3.3840870 0.3874942 0.3622979

12 11.1687649 3.4006541 0.3893189 0.3610336

13 12.1680703 3.4104380 0.3904405 0.3602731

14 13.1676926 3.4161418 0.3911178 0.3598216

15 14.1674884 3.4194304 0.3915202 0.3595571

16 15.1673788 3.4213083 0.3917561 0.3594040

∞ L − 0.8327462 3.4237147 0.3920729 0.3592016

Table 1. E[fTU
(RN )], Var[an], d(L) and e(L) for 3 ≤ L ≤ 16 and L → ∞

Letting y′ be the approximated number of standard deviations away from
the mean allowed for fTU

(sN ), a device is rejected if and only if fTU
(sN ) < t1

or fTU
(sN ) > t2, where t1 and t2 are defined by:

t1 = E[fTU
(RN )] − y′σ′ and t2 = E[fTU

(RN )] + y′σ′

y′ is chosen such that N (−y′) = ρ′/2, where ρ′ is the approximated rejection
rate. N (x) is the integral of the normal density function [3] defined as:

N (x) =
1√
2π

∫ x

−∞

e−ξ2/2dξ

The actual number of allowed standard deviations is consequently given by
y = y′ σ′/σ, yielding a rejection rate of ρ = 2N (−y) = 2N (−y′ σ′/σ).

The worst and average rationes ρ′/ρ are listed in table 2 for 3 ≤ L ≤ 16 and
1000× 2L ≤ K ≤ 4000× 2L and ρ′ = 0.001 (i.e. y′ = 3.30), as suggested in [5].
Figures show that the inaccuracy due to (10) can make the test 2.67 times more
permissive than what is theoretically admitted.

The correct thresholds t1 and t2 can now be precisely computed using for-
mulae (8), (9) and:

t1 = E[fTU
(RN )] − yσ and t2 = E[fTU

(RN )] + yσ

where y is chosen such that N (−y) = ρ/2 and ρ is the rejection rate.

5 The Entropy Conjecture

Maurer’s test parameter is closely related to the source’s per-bit entropy, which
measures the effective key-size of a cryptosystem keyed by the source’s output.
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L lim
K→∞

c′(L, K) lim
K→∞

c(L, K) worst ρ′/ρ average ρ′/ρ

3 0.4333333 0.5227547 0.1541921 0.1547350

4 0.5000000 0.5518244 0.3462276 0.3464583

5 0.5400000 0.5741591 0.5058411 0.5097624

6 0.5666667 0.5907426 0.6245271 0.6394724

7 0.5857143 0.6026454 0.7215661 0.7565605

8 0.6000000 0.6109165 0.8118111 0.8775954

9 0.6111111 0.6164930 1.0607613 1.0117992

10 0.6200000 0.6201505 1.2317137 1.1634270

11 0.6272727 0.6224903 1.4245388 1.3337681

12 0.6333333 0.6239543 1.6386583 1.5223726

13 0.6384615 0.6248524 1.8723810 1.7278139

14 0.6428571 0.6253941 2.1234364 1.9481901

15 0.6466667 0.6257157 2.3893840 2.1814850

16 0.6500000 0.6259042 2.6678142 2.4257316

Table 2. A comparison of Maurer’s {c′, ρ′} and the actual {c, ρ} values.

[5] gives the following result, which applies to every binary ergodic stationary
source S with finite memory:

lim
L→∞

E[fTU
(UN

S )]

L
= HS (11)

where HS is the source’s per-bit entropy. Moreover, [5] conjectures that (11) can
be further refined as:

lim
L→∞

[

E[fTU
(UN

S )] − LHS

]

c
= C

4
=

∫ ∞

0

e−ξ log2 ξ dξ ∼= −0.8327462

In this section we show that the conjecture is false and that the correct
asymptotic relation between E[fTU

(UN
S )] and the source’s entropy is:

lim
L→∞

[

E[fTU
(UN

S )] −
L
∑

i=1

Fi

]

= C

where Fi is the entropy of the i-th order approximation of the source, and:

lim
L→∞

FL = HS

5.1 Statistical model for a random source

Consider a source S emitting a sequence U1, U2, U3, . . . of binary random vari-
ables. S is a finite memory source if there exists a positive integer M such that
the conditional probability distribution of Un, given U1, . . . , Un−1, only depends
on the last M emitted bits:
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PUn|U1...Un−1
(un|u1 . . . un−1) = PUn|Un−M ...Un−1

(un|un−M . . . un−1)

for n > M and for every binary sequence [u1, . . . , un] ∈ {0, 1}n. The smallest
M is called the memory of the source. The probability distribution of Un is thus
determined by the source’s state Σn = [Un−M , . . . , Un−1] at step n.

The source is stationary if it satisfies:

PUn|Σn
(u|σ) = PU1|Σ1

(u|σ)

for all n > M , for u ∈ {0, 1} and σ ∈ {0, 1}M .
The state-sequence of a stationary source with memory M forms a finite

Markov chain: the source can be in a finite number (actually 2M ) of states σi,
0 ≤ i ≤ 2M −1, and there is a set of transition probabilities Pr[σj |σi], expressing
the odds that if the system is in state σi it will next go to state σj . For a general
treatment of Markov chains, the reader is referred to [1].

In the case of a source with memory M , each of the 2M states has at most
two successor states with non-zero probability, depending on whether a zero or
a one is emitted. The transition probabilities are thus determined by the set of
conditional probabilities pi = Pr[1|σi], 0 ≤ i ≤ 2M − 1 of emitting a one from
each state σi. The entropy of state σi is then Hi = H(pi), where H is the binary
entropy function:

H(x) = −x log2 x − (1 − x) log2(1 − x)

For the class of ergodic Markov processes the probabilities Pj(N) of being in
state σj after N emitted bits, approach (as N → ∞) an equilibrium Pj which
must satisfy the system of 2M linear equations:



























2M−1
∑

j=0

Pj = 1

Pj =
2M−1
∑

i=0

Pi Pr[σj |σi) for 0 ≤ j ≤ 2M − 2

The source’s entropy is then the average of the entropies Hi (of states σi)
weighted by the state-probabilities Pi:

HS =
∑

i

PiHi (12)

5.2 Asymptotic relation between E[fTU
(UN

S
)] and HS

The mean of fTU
(UN

S ) for S is given by:

E[fTU
(UN

S )] =
∑

i≥1

Pr[An(UN
S ) = i] log2 i (13)
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with

Pr[An(UN
S ) = i] =

∑

b∈BL

Pr[bn = b, bn−1 6= b, . . . , bn−i+1 6= b, bn−i = b] (14)

Following [6] (theorem 3), the sequences of length L can be looked upon as
independent for a sufficiently large L:

Pr[An(UN
S ) = i] =

∑

b∈BL

Pr[b]2(1 − Pr[b])i−1

and

E[fTU
(UN

S )] =
∑

b∈BL

Pr[b]2
∑

i≥1

log2 i (1 − Pr[b])i−1

Re-using the function v(r) defined in [5],

v(r) = r
∞
∑

i=1

(1 − r)i−1 log2 i (15)

we have
E[fTU

(UN
S )] =

∑

b∈BL

Pr[b]v(Pr[b])

wherefrom one can show that,

lim
r→0

[v(r) + log2 r] =

∫ ∞

0

e−ξ log2 ξ dξ
4
= C ∼= −0.8327462 (16)

which yields:

lim
L→∞

[

E[fTU
(UN

S )] +
∑

b∈BL

Pr[b] log2 Pr[b]
]

= C (17)

Let GL be the per-bit entropy of L-bit blocks:

GL = − 1

L

∑

b∈BL

Pr[b] log2 Pr[b]

then,

lim
L→∞

[

E[fTU
(UN

S )] − L × GL

]

= C

Shannon proved ([6], theorem 5) that

lim
L→∞

GL = HS

which implies that:

lim
L→∞

E[fTU
(UN

S )]

L
= HS
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Let Pr[b, j] be the probability of a binary sequence b followed by the bit
j ∈ {0, 1} and Pr[j|b] = Pr[b, j]/ Pr[b] be the conditional probability of bit j
after b. Let,

FL = −
∑

b,j

Pr[b, j] log2 Pr[j|b] (18)

where the sum is taken over all sequences b of length L − 1 and j ∈ {0, 1}.
We have:

FL =
∑

b∈BL−1

Pr[b]H(Pr[1|b])

and, by virtue of Shannon’s sixth theorem (op. cit.):

FL = L × GL − (L − 1)GL−1 , GL =
1

L

L
∑

i=1

Fi

and

lim
L→∞

FL = HS

wherefrom

lim
L→∞

[

E[fTU
(UN

S )] −
L
∑

i=1

Fi

]

= C

5.3 Refuting the entropy conjecture

FL is in fact the entropy of the L-th order approximation of S [1, 6]. Under
such an approximation, only the statistics of binary sequences of length L are
considered. After a sequence b of length L− 1 has been emitted, the probability
of emitting the bit j ∈ {0, 1} is Pr[j|b]. The L-th order approximation of a source
is thus a binary stationary source with less than L−1 bits of memory, as defined
in section 5.1. A source with M bits of memory is then equivalent to its L-th
order approximation for L > M , and thus ∀i > M, Fi = HS , and:

lim
L→∞

[

E[fTU
(UN

S )] −
M
∑

i=1

Fi − (L − M)HS

]

= C

For example, considering a BMSp (random binary source which emits ones
with probability p and zeroes with probability 1 − p and for which M = 0 and
HS = H(p)), we get the following result given in [5]:

lim
L→∞

[

E[fTU
(UN

S )] − LH(p)
]

= C

The conjecture is nevertheless refuted by considering an STPp which is a
random binary source where a bit is followed by its complement with probability
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p. An STPp is thus a source with one bit of memory and two equally-probable
states 0 and 1. It follows (12 and 18) that F1 = H(1/2) = 1, HS = H(p), and:

lim
L→∞

[

E[fTU
(UN

S )] − (L − 1)HS − 1
]

= C

which contradicts Maurer’s (7-years old) entropy conjecture:

lim
L→∞

[

E[fTU
(UN

S )] − LHS

]

c
= C

6 Further Research

Although the universal test is now precisely tuned, a deeper exploration of Mau-
rer’s paradigm still seems in order: for instance, it is possible to design a c(L, K)-
less test by using a newly-sampled random sequence for each An(sN ) (since in
this setting the An(sN ) are truly independent, c(L, K) could be replaced by
one). Note however that this approach increases considerably the total length
of the random sequence; other theoretically interesting generalizations consist
in extending the test to non-binary sources or designing tests for comparing
generators to biased references (non-BSS ones).
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