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ABSTRACT 
 

The DirIchlet distribution is a generalization of the beta distribution. In 

Bayesian analysis the Dirichlet distribution is used as a conjugate prior 

distribution for the parameters of a multinomial distribution.  However, the dirichlet 

family is not sufficiently rich in scope to represent many important distributional 

assumptions, because the DirIchlet distribution has few number of parameters.  

We provide a generalization of the DirIchlet distribution with added number of 

parameters. 
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I.   Introduction 
 
 The Dirichlet distribution finds many uses in practical situations apart from 
its inherently interesting theoretical properties. Its main attraction is the fact that it 
is often used as a conjugate prior to the multinomial distribution in Bayesian 
analysis. It is well known, for instance, that using appropriate conjugate priors 
result in easy computation of Bayesian estimates of parameters (Lehmann, 
1984). 
 
 The distribution may be thought of as a natural generalization of the beta 
distribution.  The beta distribution is given by: 
 
 1b1a

)b()a(
)ba( )x1(x)x(f −−

ΓΓ
+Γ −=  , 0 < x < 1, a > 0, b>0.                   (1.1) 

The parameters a and b determine the shape of the distribution. Note, in 
particular, that if a = 1 and b = 1, then we obtain the uniform distribution on the 
interval [0,1]. Higher values of a and b result in high peaked distributions on the 
interval. The variety of shapes that the beta distribution can take when a and b 
change makes this particular distribution quite interesting as a prior conjugate 
distribution to the binomial distribution. The magnitude of a and b can 
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accommodate a host of the Bayesian’s belief of the actual shape of the 
distribution of the parameters. 

 
 It can be noted that defining x over the interval (0,1) does not restrict its 
use. If dxc ≤≤ , then )cd/()cx(x* −−= will define a new variable defined on the 
interval (0,1). 
 
 A natural way to extend the beta distribution is to consider a vector 

)z,z( K1 K  distributed as: 
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where the s'zi range from 0 to 1 such that  ∑
+

=

1K

1i
iz =1 and 0i >λ for 1K,,1i += K . 

The constant C can be found by actual integration and is given by: 
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The distribution given above is called the Dirichlet distribution with k+1 
parameters and reduces to the beta distribution if k = 1. Just as the beta 
distribution is the conjugate prior of the binomial distribution, the Dirichlet 
distribution is the conjugate prior of the multinomial distribution.  
 
 Consider 1K1 U,,U +K  which are independent Gamma random variables 
with shape parameters 1K1 ,, +λλ K and identical scale parameter β . Let 
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then the joint distribution of the s'zi  is given by (1.2), (Wilks (1962), Sec 7.7). 
Thus, the Dirichlet distribution appears naturally as the distribution of normalized  
(by the sum) gamma random variables. The denominator of (1.4) is seen 

immediately as having a gamma distribution with parameters ∑
+

=
λ
1K

1i
i  and β . 

 
II.   Importance of the Generalization of the Dirichlet distribution 
 
 In equation (1.2), we observed that the number of parameters for the K-
tuples is K+1. The said parameters are called the shape parameters. These 
parameters explain the shape of the distribution. To illustrate it clearly, we 
consider the case when k=1. When 121 =λ=λ , we have the uniform distribution 
on (0,1). When 21 λ=λ , 11 21 >λ>λ and , we have a function that is similar to the 
normal distribution on the interval (0,1). As ∞→λ=λ 21 , the distribution tends to 

),(N 2σµ , the normal distribution with mean µ  and variance 2σ . When 
11 21 <λ<λ and , the distribution (1.1) behaves as a function that concaves 



 

upward on (0,1). When 1and1 21 >λ<λ , we have a decreasing function from 0 to 
1. Lastly, when 1and1 21 <λ>λ , we get an increasing function from 0 to 1.  
 For 1K > , we can see that the distribution varies its shapes for different 
values and restrictions of iλ . By introducing another set of parameters, more 
types of probability models are obtained that are also useful. 
 
 Another reason for generalizing the distribution is explained below. 
 
 The mean, variance and covariance of iz  in (1.2) are given by λλ= /zE ii  

  )1(/()()z(Var 2
iii +λλλ−λλ=     (2.1) 

and 
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(See O’hagan, 1994). It is seen that the relative magnitude of the iλ 's determine 
the mean of iz . The overall magnitude λ  represents the strength of the prior 
information when the Dirichlet distribution is used as a prior distribution for the 
parameters of the multinomial distribution, because the variance of iz  decreases 
as λ  increases, keeping the value of λλ /i  fixed. There is no other parameter left 
to provide for important aspects of the prior belief. For example, the correlation 
between iz and  jz  is completely specified by the values of izE  and jzE . Thus, 
we see that the Dirichlet family can represent only a limited  range of prior belief. 
In view of this difficulty, several authors have proposed certain generalizations of 
the Dirichlet distribution (see Albert and Gupta(1982), Dickey(1983) and Leonard 
and Novick(1986)).   
 

In the next section, we provide a new generalization of the Dirichlet 
distribution by introducing a scale parameter. By introducing a new set of scale 
parameters, we can make the Dirichlet distribution more flexible and it can be 
used to model different real life situations and phenomena. 
 
III.  Generalization of the Dirichlet distribution 
 

In this study we provide a new generalization of the Dirichlet distribution, 
given by the distribution of ~w ),w,,w( 1K1 += K  where  

  )z/()z(w
1K
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0i >θ  . We can assume without loss of generality that 10 i <θ< , 1K,1,i += K . 

Note that  1w
1K
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i =∑

+

=
 and that ~w = ~z  for θ=θ==θ=θ +1K21 L . The distribution of 

~w contains 2K+3 parameters including the K+2 parameters of (1.2). Therefore the 
family of distributions represented by ~w  is more flexible and richer than the family 
of Dirichlet distributions. 
 
  



 

The inverse transformation of (3.1) gives  
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where ,/1 ii θ=β 1K,,1i += K . From (3.1) and (3.2) we derive the density function 
of ~w .  Its form is given by  
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where ~β ),,( 1K1
′ββ= +K  and ~λ ),,( 1K1

′λλ= +K .  
In the next Section we give certain properties of the distribution (3.3). 

 

IV.  Some Properties of the Distribution of ~w  
 
 Consider the generalized Dirichlet random variable ~w  whose distribution is 
given by (3.3). Some important summaries of the distribution for application in 
Bayesian analysis, as a prior distribution for the parameters of a multinomial 
distribution, are given by  
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We observe that by introducing K+1 additional parameters we have made the 
family of generalized Dirichlet distribution more flexible compared to the Dirichlet 
distribution, for the specification of prior belief. 
 A turning point of the distribution (3.3) is given by the solution of  

1ww

c),(c)(

1K1

w
11

w
11

1K
1K

1K1
1

1

=++

+==+

+

−λ
β

−λ
β +

+

+

L

L
 

where c is an undetermined constant.  
        
 Let ~ψ ),,( 1K1 +ψψ= K denote the parameters of a multinomial distribution. 
Since the Dirichlet family does not have enough parameters to represent prior 
beliefs regarding ~ψ , whereas the multivariate normal family is much richer, it has 
been proposed in the literature to assign a multivariate normal prior distribution to 
a set of log contrasts of the iψ  (see O’Hagan, 1994). We define  

 ∑
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and write ~φ logc= ~ψ , where c is a )1K(K +×  matrix of rank K. Together with the 

condition 1
1K

1j
j =ψ∑

+

=
, this defines a 1-1 transformation from ~φ  to ~ψ . We assume 

that ~φ  is distributed a priori according to a multivariate normal distribution 
N( ~ H),h . Given the multinomial data ~n )n,,n( 1K1 += K , the posterior distribution 
of ψ  ~n  is given by  

 f( ψ ~n ) logc(exp()(
1K

1j

1n
j

j −ψ∝ ∏
+

=

−
~ψ −

~ logc(H)h -1′ ~ψ − ~))h . (4.5) 

Aitchison (1985) has shown that the given transformed normal distributions 
constitute a rich family compared to the family of Dirichlet distribution. One 
drawback of (4.5) is that the normalizing constant can not be determined 
analytically through integration. 
 
 Suppose that ~

ψ  is distributed a priori according to the generalized 
Dirichlet distribution (3.3). The posterior distribution of ~

ψ , given the multinomial 
sample ~n  is given by the density function 

 f( ~
ψ ~n ) ∑

+

=
+λββ=

1K

1i ~~~ n,nii g)w(a ( ~ψ )     (4.6) 

where (aa = ~,β ~,λ ~n ) is a normalizing constant. 
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