Constructing a covering set for numbers $2^{k}+p$

While optimizing a program for calculating small members of Sloane's A094076, I noticed that the order of $2 \bmod 2^{1}+1=3,2^{2}+1=5,2^{4}+1=17$, $2^{8}+1=257,2^{16}+1=65537$, and 641 were, respectively, $2,4,8,16,32$, and 64 . By the Chinese remainder theorem, there are n such that $2^{k}+n$ is divisible by one of these primes for all but one residue class mod 64. If a prime q could be found modulo which 2 had order 64 , all $2^{k}+q$ would be divisible by one of $\{3,5,17,257,641,65537, q\}$. In fact there would be 64 clases mod $3 \cdot 5 \cdot 17 \cdot 257 \cdot 641 \cdot 65537 \cdot q$ depending on the choice of which residue mod 641 (or q). By Dirichlet's Theorem, each of these classes would have an infinite number of primes.

A simple Pari search reveals that modulo 6700417, the order of 2 was 64 , as required: forprime $(p=3,1 e 8, i f(\operatorname{znorder}(\operatorname{Mod}(2, p))==64, \operatorname{print}(p)))$

Enumerating the powers of $2 \bmod 6700417$, associating the appropriate powers of the other primes, taking the negatives of all powers (since the result in each congruence class should be 0 mod the prime), and applying the Chinese remainder theorem gave 64 classes mod 18446744073709551615. The smallest positive residue was 201446503145165177 .

Searching each class, I determined that 3367034409844073483 was the smallest prime of the 64 classes. This 19-digit prime, then, is a counterexample to Dr. Zumkeller's conjecture that an integer k exists such that $2^{k}+p$ is prime for each prime p, even though the conjecture holds with probability 1 in the Cramér model.
$\mathrm{A} 067760(100723251572582588)=-1$.
A094076(80869739673507329) $=-1$, where $p_{80869739673507329}=3367034409844073483$.
(Concerned with sequences A094076 and A067760)

