Poseidon House TELEPHONE: Cambridge (01223) 515010

Castle Park INTERNATIONAL: +44 1223 515010

Cambridge CB3 ORD FAX: +44 1223 359779

United Kingdom E-MAIL: apm@ansa.co.uk
ANSA Phase llI

Abstract Syntax Tree Design

Nicola Howarth

Abstract

TThis document describes the design of an Abstract Syntax Tree and Pretty Printer using C++.

APM.1551.01 Approved 23rd August 1995
Technical Report

Distribution:
Supersedes :
Superseded by :

Copyright [0 1995 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA Workprogramme.

Abstract Syntax Tree Design

A

ANS A

Abstract Syntax Tree Design

Nicola Howarth

APM.1551.01

23rd August 1995

The material in this Report has been developed as part of the ANSA Architec-
ture for Open Distributed Systems. ANSA is a collaborative initiative, managed
by Architecture Projects Management Limited on behalf of the companies
sponsoring the ANSA Workprogramme.

The ANSA initiative is open to all companies and organisations. Further infor-
mation on the ANSA Workprogramme, the material in this report, and on other
reports can be obtained from the address below.

The authors acknowledge the help and assistance of their colleagues, in spon-
soring companies and the ANSA team in Cambridge in the preparation of this
report.

Architecture Projects Management Limited

Poseidon House
Castle Park
CAMBRIDGE
CB3 ORD
United Kingdom

TELEPHONE UK (01223) 515010
INTERNATIONAL +44 1223 515010
FAX +44 1223 359779
E-MAIL apm@ansa.co.uk

Copyright [1995 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA
Workprogramme.

Architecture Projects Management Limited takes no responsibility for the con-
sequences of errors or omissions in this Report, nor for any damages resulting
from the application of the ideas expressed herein.

Contents

=

o 01 oo br~ DD WWW

0 0 N ~N~N NN

PR R R RPRRPRRREPRRERRERLERLR
DEDNDWWWNNNMNNRRERROO®© © © ©

21
2.2
221
222
2.3
2.4
241
24.2
243

3.1
3.11
3.1.2
3.2
3.3
331
3.3.2

4.1
411
4.1.2
4.1.3
41.4
4.1.5
4.1.6
4.1.7
4.1.8
419
4.1.10
41.11
4112
4.1.13
4.1.14
4.1.15
4.1.16
4.1.17
4.1.18
4.1.19

Introduction

The Various Approaches
The DPL Approach
Creating the AST
Walking the Tree
Comments
The Modula-3 Approach
The DIMMA AST Approach
Requirements
Useful Features of C++
Validation

Base classes for the AST
The Node Class
Constructors
Member Functions
The NodelList Group of Classes
Support Classes
The String Class
The Indent Class

Detailed method of AST Construction
The Nodes
The Attribute Node
The Binding Node
The Block Node
The Declaration Node
The Handled Node
The Handler Node
The Identifier Node
The Interface Node
The Invocation Node
The Literal Node
The Number Node
The Object Node
The Operation Node
The Signature Node
The Terminate Node
The Termination Node
The TypeBlock Node
The TypeConstructor Node
The TypeDefinition Node

APM.1551.01

Abstract Syntax Tree Design

Contents ANSA Phase Il
14 4.1.20 The TypeExpression Node
15 5 The Generic View
15 5.1 The Identifier Node
17 6 Specific Views
17 6.1 Pretty Printer
17 6.2 Scope
17 6.3 Type inferencing
ii Abstract Syntax Tree Design APM.1551.01

1 Introduction

This document describes the design of an Abstract Syntax Tree (AST) for
ANSA work on distributed interactive multimedia systems. The document is
intended to give the rationale behind that design, and to aid understanding of
the AST code and to facilitate amendments and additions to that code.

Two approaches are investigated: that used by DPL [ANSA 93], and that taken
by Modula-3. The actual approach taken is then discussed. These are
described in Chapter 2.

Chapter 3 describes the basic C++ classes on which the particular nodes and
other aspects are built.

Chapter 4 describes the construction of the individual nodes within the AST,
and how they relate to each other.

Chapter 5 describes the approach to providing generic and specific views of the
AST.

Chapter 6 describes the specific views provided for the AST. To date the only
specific view described here is that of the “Pretty Printer”.

APM.1551.01 Abstract Syntax Tree Design 1

Introduction ANSA Phase llI

2 Abstract Syntax Tree Design APM.1551.01

2 The Various Approaches

2.1 The DPL Approach

This section documents the AST used in a prototype set of DPL tools [ANSA 93,
Howarth95].

2.2 Creating the AST

Each node is represented by a structure for the particular type of node. A node
is created by invoking a function which returns a pointer to a structure
representing that node. The function takes as arguments the various sub-
nodes for the particular type of node. For example a Signature node can be
created using function node_signature. The syntax for signature is:

signature = operationName [attributes] arguments responses

so a signature node will have sub-nodes for the operation name, attributes,
arguments and responses. The structure and the function invocation which
creates it are:

struct Signature

{
struct AttributeList *attributes;
struct Identifier *name;

struct DeclarationList *arguments;

struct TerminationSet *responses;

J3

extern struct Signature *node_signature (

struct AttributeList *attributes,
struct Identifier *name,
struct DeclarationList *arguments,
struct TerminationSet *responses);

The parser works its way to the bottom of each branch, then backtracks up,
generating the nodes as it does so, hence the various arguments to the
node_signature function are known before it is called. Here the function which
parses signatures invokes functions which parse the various sub-trees. Each of
these returns a pointer to the node for the sub-tree. The function
node_signature is then invoked with these pointers as arguments. Function
node_signature then allocates space for a signature node, and copies the node
pointers into the structure for the new node.

Other nodes are handled in a similar manner.

Two main types of node are dealt with: those which take an assortment of sub-
nodes, of which signature is an example, and those which take a list. The
latter takes two arguments, pointers to the nodes at the head and tail of the
list. Each of these nodes will already have sub-nodes associated with it,
depending on the type of node.

APM.1551.01 Abstract Syntax Tree Design 3

The Various Approaches ANSA Phase Il

221

2.2.2

2.3

Walking the Tree

As when creating the tree, a function is provided for each type of node. For
DPL, different tree walks uses different code. For example, a pretty printer is
written in DPL, and a scope checker is written in C. Both walk the tree, with
no common code, although they perform similar operations.

The pretty printer has a function for each node. This invokes further functions
to print the sub-nodes, and adds in any syntax required (e.g. parenthesis etc.).
The scope checker performs a similar task, invoking functions to carry out
scope checking of sub-nodes.

Comments

The only problem area would appear to be the mapping of syntax to AST
nodes. In some cases additional nodes have been created to facilitate the code,
and there is not a direct mapping between nodes and items of syntax.

The Modula-3 Approach

The Modula-3 package provides basic facilities for specifying an Abstract
Syntax Tree. It defines a basic node type AST.NODE, and in separate
interfaces, specifies a set of standard methods applicable to an AST node.
Language specific ASTs are defined by subtyping AST.NODE and providing
implementations for the standard methods.

Standard methods and support include:
e init - provides a stub for any initialisation code
< name - returns the name of a node (useful for debugging)

e provision of node information (number of children, pointer to n'th child
etc.)

= iterator for node children through all levels

= support for tree walks - visit own children

= support for tree copies

= support for “displaying” a tree node - language specific

The “tree” is actually a graph, consisting of a set of connected nodes which are
all instances of subtypes of the object type NODE. Nodes can have attributes,
which are ultimately represented as object fields or methods. Typically, an
attribute is a reference or connection to some other node in the AST.

An AST for a specific language is specified as a set of interfaces, which share
the naming convention LLAST, where LL is a language-specific prefix. Within
this set, it is also conventional to specify the AST as a series of views, each of
which provides some new nodes (possibly none) and new attributes on nodes
defined in other layers.

The declarations of the node types and the specifications of the node attributes
are divided into separate interfaces. The node types for each view are defined
in an interface named LLAST_VV, where VV is a tag denoting the view. The
“fundamental” attributes on these nodes are specified in an interface named
LLAST_VV_K, where K is a tag which denotes either the kind of attribute that
is being added or indicates a sub-view. For example, F is conventionally used

Abstract Syntax Tree Design APM.1551.01

ANSA Phase Il The Various Approaches

to indicate attributes represented as object fields, and M indicates methods
that are applicable to this view.

Attribute types for the Modula-3 implementation fall into two groups. The
first group comprises lexical types, denoting, for example, the characters of an
identifier of the characters of a TEXT literal. These types are given concrete
definitions by the particular compiler implementation. The second group
comprises the children of a node, which are always node types.

The rationale behind this is that when a new node type is created, is has the
sum of all the attributes that were specified in the contributing views. The
different views, however, are distinct, and not aware of each other.

2.4 The DIMMA AST Approach
2.4.1 Requirements
= afacility to create nodes for each element of the syntax
= nodes should be generated bottom up, so that as each node is created, it
knows about its children (if any)
= access to information in the node is available only by invocation, to ensure
encapsulation and safety of data
= access to information in the node is view-based
= it should be possible to:
— iterate throughout the entire tree
— walk through the children of a node
— display a node
— add additional views of a node
« the AST code should be written in C++
2.4.2 Useful Features of C++

The most immediately apparent feature of C++ which will be of help is that of
the abstract class. A “node” class can contain pure virtual functions which can
then be implemented in a derived class for each type of node. By this means
nodes with different behaviour can be treated in the same way.

Taking each of the above requirements in turn:

< A node will be defined for each element of the syntax. This will be derived
from a base class “node” which contains (mostly) pure virtual functions.
This derivation may be indirect via other generic nodes. Nodes can then
be created using the new operator.

= Nodes will be generated bottom up, and pointers to subsequent nodes
passed to new nodes as they are created. Such subsequent nodes or groups
of nodes may comprise an object in their own right.

= All data will be private to the nodes (at some level of derivation) and
accessible to the outside world only by using member functions. In many
cases the data will not be available directly in any form, but its effect seen
by executing a member function.

APM.1551.01 Abstract Syntax Tree Design 5

The Various Approaches ANSA Phase Il

2.4.3

< Multiple constructors will facilitate application programming by
providing increased flexibility.

= The use of “views” can be supported by the use of member functions.
< Member functions will be provided to:

— iterate throughout the tree

— walk through the children of a node

— display a node

= Additional member functions can be added to support an additional view.
Initially no commonality will be determined between the views. When
such commonality becomes apparent, this may be apportioned to a
“generic view” member function for that node.

Validation
The AST has been validated by applying it to the DPL prototype language.

Abstract Syntax Tree Design APM.1551.01

3 Base classes for the AST

This section provides an outline of the construction of an AST node, and
identifies the data and member functions required in the base nodes.

There are two major types of classes: those that represent an individual node,
and those that represent a list of nodes. A management class is also required
to handle the latter group.

3.1 The Node Class

The most basic class within the AST design is the Node class. Each element of
the syntax is represented by a node. The basic node class provides a group of
constructors and several member functions, most of which are not generally
used by the derived classes, which provide their own constructors for their
specific member data. However those of the base node have been left in to
provide greater generality, and to provide a template for derived classes.

Two data members are provided: a pointer to a list of nodes, and a string,
which is generally used to hold the name of the derived class, and hence
provide an aid to debugging.

3.1.1 Constructors

= Node(char *name) uses the String constructor (see section 3.3.1) to set
the given character string into a String class.

3.1.2 Member Functions
= virtual void display() const displays the name of the node.

e intis_id(const char *other) invokes the compare function on the
String object holding the name of the node. This returns a 1 if the String
matches the char string given, otherwise it returns a 0.

3.2 The NodelList Group of Classes

A node list consists of a head, which is a pointer to a node, and a tail, which is
a pointer to a further nodelist. Items can be added to the head of an existing
list by setting the head of a new list to the new item, and the tail to the
existing list. An empty list will have both head and tail set to null. The last
item in a list will have its tail set to null.

3.3 Support Classes

Certain generic classes provide support for other classes by defining specific
data or operations.

APM.1551.01 Abstract Syntax Tree Design 7

Base classes for the AST ANSA Phase llI

331

3.3.1.1

3.3.1.2

3.3.1.3

3.3.2

3321

3.3.2.2

The String Class

The String class provides general string handling capability for the nodes. A

string is represented by a character buffer and a length, and supports the

following operations.

Constructors

Two constructors are provided:

e String::String() generates an empty string.

e String::String(const char *s) generates a string with the length and
content of the character string passed as an argument.

Destructor

The destructor deletes the buffer created by the constructors.

Member Functions
= void display() const outputs the string to the standard output device.
= void operator=(const String &other) overwrites the existing string

with the new string other .

* int compare(const char *other) compares the string with a
character string, and returns 1 if they are the same, otherwise returns 0.

e intcompare(const String *other) compares the string with another
string, and returns 1 if they are the same, otherwise returns 0.

= int get_length() const returns the length of the string.

The Indent Class

The Indent class is used by the Pretty Printer to control indentation. The
number of indentation steps is held in the member data steps , and this
determines the number of times an indent is printed when the display
function is invoked.

Constructors
e Indent() sets the number of steps to O.

= Indent(intn) sets the number of steps to n.
Member Functions
e void inc() increments the number of steps.

e voiddec() decrements the number of steps.

= void display() const outputs a new line followed by the current
indentation.

Abstract Syntax Tree Design APM.1551.01

4 Detailed method of AST Construction

This section describes the detailed design of the nodes for each element of the
syntax, in particular data members and constructors.Member functions are
handled under generic and specific views in Chapters 5 and 6.

The individual nodes are described in the following sections in alphabetical
order. At the start of the discussion on each node, the relevant syntax is
shown. This can then be easily related to the member data and constructors
for that node.

The use of optional constructors greatly simplifies the use of these nodes,
providing much greater flexibility for the application programmer.

4.1 The Nodes

4.1.1 The Attribute Node
attributeList = “<” {attributeName [attributeBlock] } “>"

An attribute takes a variable number of name and (optional) block pairs. This
is represented by an attributeList object, which is a list of pointers to
attributeNode objects.

An attributeNode object represents a single attributeName [attributeBlock]
pair.

The member data for an attribute name consists of pointers to two nodes:
= identifier, which represents the attributeName

= Dblock, which represents the attributeBlock

Since the attributeBlock is optional, there are two constructors:

AttributeNode(Node *id) takes a single argument, which is copied to the
identifier. Block is set to zero.

AttributeNode(Node *id, BlockNode *bl) takes two arguments, for the
identifier and the block.

Attributes are not currently used.

4.1.2 The Binding Node

definition = name {name} “=" expression
assignment = name {name} “:=” expression
initialisation = declaration {declaration} “:=" expression

A binding takes a list of at least one declaration, and an expression, and an
indication of the type of binding. This is represented as follows:

= declarations, a pointer to a list of nodes which represents a list of binding
names

APM.1551.01 Abstract Syntax Tree Design 9

Detailed method of AST Construction ANSA Phase llI

41.3

41.4

e expression, a pointer to a node representing the expression

= type, a value indicating whether the binding is a constant, initial or
variable binding

Since the binding can take either one or more names, indicated by a pointer
either to a single node or to a list, there are two constructors:

BindingNode(DeclarationList *decs, ExpressionNode *exp, e_type t
) takes as arguments a pointer to a list of declarations (names), a pointer to an
expression, and a value indicating the type of the binding.

BindingNode(DeclarationNode *dec, ExpressionNode *exp, e_typet)
takes as arguments a pointer to a node for a single name, a pointer to an
expression, and the value indicating the type of the binding.

The Block Node
block = “(* [expr_list] “)” | “[* [expr_list] “]”

A block consists of one or more expressions contained either in parenthesis “()”
or square brackets “[]”. This is represented as follows:

= value, a value indicating the type of terminations returned, from all
expressions (allExprs) or from the last expression only (lastExpr)

= order, a value indicating the ordering of the expression, which can be
empty, singleton, sequential, exclusive, unconstrained, or concurrent

e expressions, a pointer to a list of nodes which represents a list of
expressions.

Since the block can take either none, one or more expressions, there are three
constructors:

BlockNode(e_value val, e_order ordr, ExpressionList *exps) takes
the full complement of parameters, the value, order, and a pointer to a list of
expressions.

BlockNode(e_value val, Node *exps) takes the value and a pointer to a
single expression node. This block must be a singleton and is set up as such in
the constructor.

BlockNode(e_value val) takes only the value. This represents an empty
block, and the order is set up accordingly.

The Declaration Node
declaration = name { name } “:” type_expr

This design follows that of the DPL compiler which in practice only permits a
single name within a declaration node. This could easily be modified should it
become a requirement for a declaration to include a list of names.

A declaration list takes a variable number of name and type expression pairs.
This is represented by an declarationList object

An declarationNode object represents a single name typeExpr pair, although
the typeExpr is optional.

The member data for an declaration consists of pointers to two nodes:
= name, which represents the name
= type, which represents the typeExpr

10

Abstract Syntax Tree Design APM.1551.01

ANSA Phase llI Detailed method of AST Construction

415

4.1.6

4.1.7

There are two constructors:

DeclarationNode(IdentifierNode *i) takes a single argument, which is
copied to the name. type is set to zero.

DeclarationNode(IdentifierNode *i, TypeExprNode *n) takes two
arguments, for the name and the type.

The Handled Node

handledBlock = “after” block “handle”
“(* { namedHandler } [defaultHandler] *)”

The handled node is represented as follows:

< handled, a pointer to a block node

< handlers, a pointer to a list of handler nodes,

Since there many be none, one or many handlers, there are three constructors:

HandledNode(BlockNode *h) takes a single argument, a pointer to a block
node.
HandledNode(BlockNode *h, HandlerList *hset) takes a pointer to a

block node and a pointer to a list of handlers.

HandledNode(BlockNode *h, HandlerNode *hset) takes a pointer to a
block node and a pointer to a single handler.

The Handler Node
namedHandler = terminationName arguments block
defaultHandler = “?” block

All handlers are treated in the same way, and the default handler can be
distinguished since it has no termination name.

The handler node is represented as follows:
= block, a pointer to a block node

= name, a pointer to an identifier node

= args, a pointer to a list of arguments

There are several options here. All handlers must specify a block. Handlers
other than the default handler specify a name, and may optionally have
arguments. There are therefore four constructors:

HandlerNode(BlockNode *b) just takes a pointer to a block node. This
represents the default handler.

HandlerNode(IdentifierNode *i, BlockNode *b) takes both a name and
a block. This represents a named handler with no arguments.

HandlerNode(IdentifierNode *i, DeclarationNode *d, BlockNode *b)
takes a name, a block and a single argument.

HandlerNode(IdentifierNode *i, DeclarationList *d, BlockNode *b)
takes a name, a block, and a list of arguments.

The Identifier Node

The identifier node takes a single argument which is held as a String type. Its
constructor is:

APM.1551.01 Abstract Syntax Tree Design 11

Detailed method of AST Construction ANSA Phase llI

4.1.8

4.1.9

4.1.10

4.1.11

4112

IdentifierNode(char *name)

An identifier node also has data representing its length, its position in the file
which is being compiled, a pointer into the symbol table, and its type.

The Interface Node

interface = “interface” [attributes] [“data” embedded]
“(* {operation} “)”

The interface node is the first of the nodes which has too many constructors to
list here. The large number of constructors is due to the fact that both
attribute and data members are optional, and there may be none, one or more
operations. Also if there are attributes, there may be one or more of these. ince
“one or more” is represented either by a pointer to a node, or by a pointer to a
list, this leads in total to seventeen constructors.

The data is held as follows:

- attributes, a pointer to a list of attributes
< data, an object of the class LiteralNode

= operations, a pointer to a list of operations

The Invocation Node
invocation = unit “.” operationName block
An invocation node consists of the following:

= unit, a pointer to a node which might be either a name, an invocation, a
block or an object

= ident, a pointer to an identifier node representing the operation name
= Dblock, a pointer to a block node
The invocation node has only a single constructor:

InvocationNode(Node *u, IdentifierNode *i, BlockNode *b).

The Literal Node

The String node takes a single argument which is held as a String type. Its
constructor is:

LiteralNode(char *str)

The Number Node

The number node takes a single argument which is held as a String type. Its
constructor is:

NumberNode(char *name)

The Object Node
object = “object” [attributes] [“data” embedded] block

An object always takes a block as a sub-node, and may optionally have
attributes and/or embedded data. It is represented as follows:

= attributes, a pointer to a list of attributes
= data, a LiteralNode holding the data string

12

Abstract Syntax Tree Design APM.1551.01

ANSA Phase llI Detailed method of AST Construction

4.1.13

4.1.14

4.1.15

e block, a pointer to a block node

Since attributes and data are optional, and the attribute element may be a
single attribute or a list, there are six constructors:

ObjectNode(Node *bl) takes only a block pointer.

ObjectNode(AttributeList *attr, Node *bl) takes a list of attributes
and a block pointer.

ObjectNode(AttributeNode *attr, Node *bl) takes a single attribute
and a block pointer.

The final three constructors are similar to the three above but additionally
take char*dt as a second argument, to set up the data in a String type. The
number of attributes nattrs is set up in each constructor.

The Operation Node

operation = operationName [attributes] arguments responses
block | “code” embedded

The operation node is another of the nodes which have many options, resulting
in thirteen constructors, so these will not be detailed here. An operation node
is represented as follows:

= name, the operation Name. Each constructor expects a name as an
argument.

e attributes, a pointer to a list of attributes
e arguments, a pointer to a list of arguments
e responses, a pointer to a list of responses

< form, a pointer to a body node

The Signature Node
signature = operationName [attributes] arguments responses

The signature node is similar to the operation node, but does not take a block
or code. It is represented as follows:

e name, the operation Name. Each constructor expects a name as an
argument.

e attributes, a pointer to a list of attributes
e arguments, a pointer to a list of arguments
e responses, a pointer to a list of responses

The Terminate Node

termination = “->" terminationName block | “->” “reterminate”
The terminate node has a fixed format. It consists of the following:
= name, a pointer to an identifier node

= Dblock, a pointer to a block node

It has a single constructor:

TerminateNode(IdentifierNode *n, BlockNode *b)

APM.1551.01 Abstract Syntax Tree Design 13

Detailed method of AST Construction ANSA Phase llI

4.1.16

4.1.17

4.1.18

4.1.19

4.1.20

The Termination Node
response = “->” [terminationName] “(“ {declaration})"
The termination node consists of the following:

< name, a pointer to an identifier node. The name may be blank, but must
be specified, to avoid confusion with a single declaration node below.

= declarations, a pointer to a list of declarations
There are three constructors, for cases of none, one or more declarations:

TerminationNode(IdentifierNode *n) , sets up a node with no
declarations.

TerminationNode(IdentifierNode *n, DeclarationNode *dn) sets up a
node with a single declaration.

TerminationNode(IdentifierNode *n, DeclarationList *dec) setsup a
node with a list of declarations.

The TypeBlock Node

This is similar to a block node except that as a type block it is more restricted.
It holds a pointer to a list of type expressions.

The TypeConstructor Node
type = “type” [attributes] “(“ {signature} “)”

The type constructor node takes optional attributes (none, one or a list), and
one or a list of signatures. It has the following format:

e attributes, a pointer to a list of attributes
e signatures, a pointer to a list of signatures
There are six constructors for each of the various combinations of options.

The TypeDefinition Node

This is distinguished from the normal definition node to facilitate type
inferencing, and consists of a declarations list and a pointer to a type
expression node.

The TypeExpression Node
typeExpression = typeName | typeConstructor | typeBlock

The type expression node takes a type, indicating which of the possible
expressions is represents, and a pointer to the node of the appropriate type.

14

Abstract Syntax Tree Design APM.1551.01

The Generic View

5.1

This section describes the data and member functions provided as part of the
generic view for each node. Initially these will mostly be stubs called by the
specific view functions. When it becomes clear which aspects of the specific
views are generic, they will become part of the generic view.

To date the only generic functions are described below.

The Identifier Node

Two general-purpose member functions are provided, for comparing an
identifier with either a character string, or an object of type String. Each of
these invokes the compare function on the String for the current identifier,
and returns a 1 if a match is found, otherwise a 0. The two function definitions
are:

int IdentifierNode::compare(const IdentifierNode *other)

int IdentifierNode::compare(const char *other)

APM.1551.01 Abstract Syntax Tree Design 15

The Generic View ANSA Phase llI

16 Abstract Syntax Tree Design APM.1551.01

Specific Views

6.1

This section describes the data and member functions for nodes of the AST for
specific views.

Pretty Printer

6.2

Each node has a display function as one of its member functions. This function
will normally display any syntactical parts of the current node, and invoke the
display function on each of the sub-nodes. The display function therefore
carries out its own iteration throughout the tree. An invocation of display at
any level will display the specified node, and all sub-nodes of that node.

Each display function adds any syntax necessary for that node, e.g. the words
“object” or “after....handle”, any parenthesis, indentation or operators as
appropriate.

Scope

6.3

The scope checker accesses the AST by means of a scope function provided for
each node.

Type inferencing

The type inferencer accesses the AST by means of a function, normally called
findType, for each node. Some nodes may support several different methods for
use by the type inferencer.

APM.1551.01 Abstract Syntax Tree Design 17

Specific Views ANSA Phase Il

18 Abstract Syntax Tree Design APM.1551.01

References

[ANSA 93]

DPL Programmers’ Manual, TR.031.00, APM Ltd., Cambridge U.K., April
1993.

[HOWARTH 95]

Howarth, N. J., Rules for Type Inferencing, APM.1552, APM Ltd., Cambridge
U.K., August 1995.

APM.1551.01 Abstract Syntax Tree Design 19

References

ANSA Phase llI

20

Abstract Syntax Tree Design

APM.1551.01

