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ABSTRACT
Ad hoc networks consist of wireless hosts that communi-
cate with each other in the absence of a fixed infrastructure.
Clustering is commonly used in order to limit the amount
of routing information stored and maintained at individual
hosts. A k-clustering is a framework in which the wire-
less network is divided into non-overlapping sub networks,
also referred to as clusters, and where every two wireless
hosts in a sub network are at most k hops from each other.
The algorithmic complexity of k-clustering is known to be
NP-Complete for simple undirected graphs. For the special
family of graphs that represent ad hoc wireless networks,
modeled as unit disk graphs, we introduce a two phase dis-
tributed polynomial time and message complexity approxi-
mation solution with O(k) worst case ratio over the optimal
solution. The first phase constructs a spanning tree of the
network and the second phase then partitions the spanning
tree into subtrees with bounded diameters.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: COMPUTER-
COMMUNICATION NETWORKS; C.2.1 [COMPUTER-
COMMUNICATION NETWORKS]: Network Archi-
tecture and Design—Wireless communication

General Terms
Algorithms

Keywords
wireless ad hoc networks, distributed algorithm, k-clustering,
connected dominating set, competitive ratio

1. INTRODUCTION
Ad hoc networks offer the vision of true ubiquitous com-

puting, providing connectivity to everyone, anywhere and
from any device. Due to the inherent scale and dynamism
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of this vision, technical challenges in supporting ad hoc net-
working are demanding and often daunting. One of the
successful approaches for tackling the maintenance of these
networks is by decomposing the network into clusters: Since
clusters are manageable, intra-cluster maintenance is done
tightly, while inter-cluster connectivity is reduced by orders
of magnitude this way. In this paper, we enhance exist-
ing clustering technology with the first competitive, dis-
tributed algorithm for partitioning an ad hoc network into
limited-diameter clusters (k-clustering). Our algorithm ap-
proximates the best k-clustering partitioning of a graph that
represents a mobile communication network. More specifi-
cally, if one makes the assumption that each mobile device
has a known range of broadcast interception, then, using the
well-known unit disk graph model, we can show that our al-
gorithm approximates the lowest number k-clustering with
a competitive ratio of O(k).

The motivation for our work is the need to maintain rout-
ing strategies in the demanding settings of ad hoc networks.
Ad hoc networks consist of mobile hosts which can commu-
nicate with each other over multi-hop wireless paths without
any static network infrastructure. As such, ad hoc networks
are characterized by dynamic topology, multi-hop commu-
nication and certain strict limitations such as high power
consumption, low bandwidth and high error rates. Conse-
quently, routing in ad hoc networks that consist of large
numbers of nodes is a challenging problem and much re-
search has been done on the subject. Existing routing pro-
tocols can be divided into three categories: proactive, reac-
tive and a hybrid of the two. Proactive routing protocols
attempt to maintain consistent, up-to-date information at
every node about the route needed to reach every other node
in the network. Such routing protocols respond to changes in
network topology by propagating route updates throughout
the network. Reactive routing protocols use source-initiated
on-demand routing. When a source node requires a route
to a destination node, it initiates a route discovery process
within the network. Once the route has been discovered, it
is maintained until the destination becomes inaccessible or
the route is no longer required. No conclusions about the
definite advantages of either of the categories have yet been
made and any such conclusions are likely to be effected by
conditions of network mobility.

The third routing category is a hybrid of the previous two.
It maintains only partial topology information of the net-
work. One example of this type of routing is a cluster-based
routing protocol, proposed in [15]. In a cluster-based rout-
ing protocol, the network is divided into non overlapping



subnetworks, also referred to as clusters. When a source
node wishes to send a packet to another network node that
is not in the same cluster, the node uses a reactive rout-
ing protocol in order to discover the route. One advantage
of this is that the route discovery time can be reduced by
flooding the discovery packet to the cluster’s border hosts
only. However, within the confines of the cluster itself, a
proactive routing protocol is used since cluster connectivity
is maintained by periodically exchanging updates about any
changing link information among neighbor nodes.

Until now, clustering algorithms for ad hoc networks con-
centrated on a single instance of the k-clustering problem,
namely finding a clique partition (1-clustering partition).
Our objective is to allow more flexibility by choosing k as a
dynamic parameter of the network. Note that the same flex-
ibility is achieved by a distributed algorithm for a somewhat
similar cluster topology problem, k-dominating set, that was
introduced in [4]. In keeping with this goal, we introduce
a distributed asynchronous algorithm for k-clustering in a
wireless ad hoc network. In essence, we investigate the fol-
lowing partitioning problem.

Minimum k-clustering: Given an unit disk graph denoted
by G = (V, E) and a positive integer k, find the small-
est value of ` such that there is a partition of V into
` disjoint subsets V1, ..., V` and diam(G[Vi]) ≤ k for
i = 1..`. Let pk(G) denote the minimum order of a
k-clustering partition for G.

The algorithmic complexity of k-clustering is known to be
NP-Complete for simple undirected graphs [8], and no gen-
eral approximation of it is known. Moreover, no reduction
of the difficulty, nor any approximation, is known for the re-
stricted case at hand, i.e., for unit disk graphs. This paper
presents the first distributed asynchronous algorithm for k-
clustering that has a competitive ratio of O(k) for wireless
ad hoc networks.

Our solution consists of two phases. The first phase con-
structs a spanning tree. Although any spanning tree would
suffice for finding a correct k-clustering, for competitive per-
formance we choose to employ a special algorithm for the
spanning tree. The second phase partitions the spanning
tree into subtrees whose diameter is k bounded, yielding a
k-clustering of the network.

Regarding the first phase, we observe that generally, span-
ning trees might yield a bad k-clustering for the graph. That
is, the optimal k-clustering for a particular spanning tree
may have far more partitions than the optimal k-clustering
partition of the graph. Fortunately, in the case of unit disk
graphs, we can make use of the Minimum Connected Domi-
nating Set (MCDS) technique for the creation of a spanning
tree, which was recently developed [14]. For a spanning tree
generated by MCDS, the k-subtree partition has a worst
case ratio of O(k) over the best k-clustering of the graph.
This competitive ratio may be derived in the following way.
The MCDS used here has the property of containing a max-
imal independent set IS, such that every path of length ` in
the tree contains at least `/2 members of IS. It should then
be noted that in a unit disk graph, independence of nodes
implies that every node is at a distance greater than 2 from
every other node.

Let us look at the second phase. This phase solves the
k-clustering problem for trees, a restricted class of graphs.
This version of the problem is known as the minimum k-

subtree partitioning problem. It has been addressed in [9],
and has a simple, linear time solution. In a nutshell, the
solution works by finding a minimal subtree whose diameter
exceeds k, where minimality means that no child subtree
already has a diameter that is larger than k. It then detaches
the highest child of the subtree and repeats over. We provide
a straightforward distributed asynchronous implementation
of this strategy, which works in a linear number of messages
and has a time proportional to the tree height.

Putting these facts together, we are able to show that each
partition formed by the k-subtree partitioning takes up cer-
tain geometric space, limiting the number of partitions that
can exist as compared with the space taken by an optimal
k-clustering partitioning. The result our algorithm achieves
is a competitive ratio of O(k) over the best k-clustering par-
tition.

The paper is organized as follows. System model, defini-
tions and preliminaries of graph theory are given in section 2.
Section 3 describes a distributed asynchronous algorithm for
the k-clustering problem and proves its performance. Sec-
tion 4 discusses extensions. Section 5 reviews related work
and the conclusion is given in Section 6.

2. SYSTEM MODEL AND PRELIMINAR-
IES

A wireless ad hoc network can be modeled as an undi-
rected graph G = (V, E) in which V , |V | = n, is the set of
nodes and there is an edge (u, v) in E, |E| = m, if and only
if u and v can mutually receive each other’s transmission.
Although wireless ad hoc networks are modeled using a spe-
cial class of graphs, unit disk graphs, this section will first
focus on some general definitions related to the k-clustering
problem on simple undirected graphs, which will then be
followed by a more detailed description of unit disk graphs.

Given an undirected graph G = (V, E) the distance be-
tween two nodes, u and v, denoted by d(u, v), is the num-
ber of edges that together form the shortest path between
those nodes. The diameter of G is defined by diam(G) =
max{d(u, v) : u, v ∈ V }. For any non-empty subset C of V ,
G[C] denotes the subgraph of G induced by C. A tree,
denoted by T , is an acyclic connected graph. The tree
T (u) is the subtree of T rooted at u. The height of T ,
denoted by h(T ), is the length of the longest path from the
root to a leaf. For a leaf node x, of a tree T , we have
h(T (x)) = diam(T (x)) = 0.

In [7], Johnson, Clark and Colbourn describe three canon-
ical definitions for modeling a unit disk graph, one of which
is called the intersection model. In the intersection model
a set of n unit disks in the plane is represented by an n-
node graph, where every node corresponds to a unit disk
and there is an edge between two nodes if the corresponding
unit disks intersect or tangent.

Our system model includes two general assumptions re-
garding the state of the network’s communication links and
topology. The first assumption is that the network topol-
ogy remains unchanged throughout the execution of the k-
clustering algorithm. The second assumption is that the net-
work may be modeled using a unit disk graph, even though
communication between network nodes is, in actuality, a
dynamic function involving a number of factors such as in-
terference and signal propagation conditions. An ad hoc
network can be viewed as a unit disk graph by viewing every



transmitter/receiver in the broadcast network as a point in
the graph and by representing the effective broadcast range
of each point as a unit disk.

3. ALGORITHM
In this section, we describe the approximation algorithm

for the k-clustering partitioning problem. We begin the ex-
position in Section 3.1 with a particular spanning tree algo-
rithm. The way in which the spanning tree is constructed af-
fects the goodness of the partition induced by the k-subtree
partition, as compared with the best k-clustering partition
of the original graph. In Section 3.3 we prove that the span-
ning tree we choose produces a clustering whose order is
within factor O(k) of the optimal.

Our exposition then outlines the k-subtree algorithm in
Section 3.2. This algorithm finds the optimal partition of a
given tree. Note that once a spanning tree is fixed in our
graph, there will be but few choices for optimal k-subtree
partitions. Our algorithm finds one in a distributed manner
with linear complexity.

3.1 The spanning tree algorithm
Any of various known algorithms may be used in order

to construct a spanning tree in the first phase of the k-
clustering algorithm and achieve a correct k-clustering par-
tition. However, the spanning tree strategy may affect the
quality of the clustering substantially. To shed some light
on this, consider the following two extreme examples.

BFS spanning ree: Many applications use a Breadth First
Search (BFS) tree in order to develop efficient commu-
nication between nodes in a network. Unfortunately,
using BFS in order to build the spanning tree in the
k-clustering algorithm can have a worst case ratio of
n/diam(G). Consider a unit disk graph G = (V, E)
which corresponds to the following set of n points in
the plane:

S = {r = (0.5, 1)}S{Sk
j=1

Sf
i=1{(i/f, 2j)}}

where n − 1 = fk. The optimal k-clustering of G
has exactly one cluster. However, consider the BFS
spanning tree T for G rooted at r. The order of the
optimal k-clustering on T is f +1. Therefore, the ratio
pk(T )/pk(G) ≤ n/diam(G).

DFS spanning tree: Using DFS in order to build the span-
ning tree can have catastrophic results. Consider us-
ing the DFS spanning tree on a clique. The resulting
spanning tree could be a simple path with a worst-case
ratio of n/k.

The approach we have chosen to adopt makes use of a recent
algorithm for constructing a Minimum Connected Dominat-
ing Set (MCDS) [14].

Preliminaries..We begin with some notation. A Domi-
nating Set (DS) of a graph G = (V, E) is a subset D ⊆ V
such that each node in V \ D is adjacent to some node in
D. If the induced subgraph G[D] is connected, then D is a
Connected Dominating Set (CDS). The problem of finding a
minimal CDS is called the Minimum Connected Dominating
Set (MCDS) problem. One can construct a spanning tree
using D as the ‘spine’ of the tree and having the nodes in
V \D as the leaves of the tree. An Independent Set (IS) of

a graph G = (V, E) is a subset S ⊆ V such that there is
no edge between any pair of nodes in S. An independent
set S is maximal if no proper superset of S is also an inde-
pendent set. It is easy to see that for any graph a maximal
independent set is also a dominating set.

MCDS Algorithm.The algorithmic complexity of MCDS
is known to be NP-hard for unit disk graphs according to [7].
Therefore, several approximation algorithms have been pro-
posed for MCDS. For example, in [14], Breu et al. present
some simple heuristics for a number of classical NP-hard
optimization problems on unit disk graphs, including the
MCDS problem. The heuristics do not require a geometric
representation of a unit disk graph as part of the input. Geo-
metric representations are used only for establishing certain
properties of unit disk graphs. These properties, in turn, are
used in order to derive the performance guarantees provided
by the heuristics.

The sequential approximation algorithm for MCDS pre-
sented in [14] has a constant worst case ratio of 10. Given
a unit disk graph G = (V, E), the algorithm first constructs
a BFS spanning tree T , rooted at a given arbitrary node
r. The tree T partitions the nodes of G into disjoint sets
Si, 0 ≤ i ≤ h(T ), where Si is the set of nodes in the tree
at height i. The connected dominating set produced by the
algorithm is the union of the following two sets of nodes.
The first set is a maximal independent set for G, obtained
by appropriately selecting an independent set ISi from each
graph G[Si], 1 ≤ i ≤ h(T ). More precisely, after choos-
ing ISi−1, all dominated nodes in Si are removed, and ISi

is chosen from the remaining nodes. In this way,
S`

i=0 ISi

forms a maximal independent set IS. The second set of
nodes is used to ensure connectivity of IS, by connecting
members of ISi with members of Si−1, 1 ≤ i ≤ `. Note
that in this way, each edge is incident to one member of
IS. For completeness, Appendix A provides a pseudo code
description of the MCDS sequential algorithm.

We use the distributed implementation of MCDS, pro-
vided in [2], which has a time complexity of O(n) and a
message complexity of O(n log n). The main property de-
rived from the MCDS based spanning tree construction is
the following:

Property 3.1. Let T be a spanning tree constructed by
the MCDS algorithm above. Then there exists a maximal
independent set IS ⊆ V , such that every path in T of length
` contains at least `/2 members of IS.

3.2 Thek-subtree algorithm

Preliminaries. We begin the exposition by noting two key
properties of trees that facilitate decomposition into bounded
diameter k-subtrees. The first one is a simple statement re-
garding the calculation of the tree diameter.

Lemma 3.1. Consider a tree T rooted at a given, arbi-
trary node r. Let S be a set of children of r. Then the
following holds:

(i) If S is empty, then diam(T ) = h(T ) = 0.

(ii) If |S| = 1 and let S = {v}, then diam(T ) = max
{diam(T (v)), h(T (v)) + 1}.



(iii) If |S| > 1 then diam(T) = max {max{diam(T (v)) :
v ∈ S}, max{h(T (v)) + h(T (u)) + 2 : u, v ∈ S, u 6= v}
} .

Proof.

(i) This holds by definition.

(ii) For any pair of nodes x and y in T , if x and y belong
to T (v), it follows that d(x, y) ≤ diam(T (v)). Otherwise,
either x or y is r. Without loss of generality, assume y = r.
Then d(x, r) = d(x, v) + d(v, r) ≤ h(T (v)) + 1.

(iii) For any pair of nodes x and y in T , if x and y be-
long to any single subtree T (u), it follows that d(x, y) ≤
diam(T (u) ≤ max{diam(T (v) : v ∈ S}.

If y is r and x belongs to T (v), then d(x, y) = d(x, v) +
d(v, r) ≤ h(T (v)) + 1.

Otherwise, let x belong to T (rootx) and y belong to T (rooty).
Therefore,

d(x, y) = d(x, rootx) + 2 + d(y, rooty)

≤ h(T (rootx)) + 2 + h(T (rooty))

The second lemma is taken from [9] and we provide the
proof for the sake of completeness. The algorithm presented
below is a distributed implementation of this lemma and
uses a divide and conquer approach to arrive at a k-subtree
partitioning of a tree.

Lemma 3.2. [9] Consider a tree T rooted at a given, ar-
bitrary node r. Let u be a node in T , such that u 6= r and
diam(T (u)) > k. Let S be any set of children of u where
∀s ∈ S : diam(T (s)) ≤ k. Let t be a node in S such that
∀s ∈ S : h(T (t)) ≥ h(T (s)). Then pk(T ) = 1+ pk(T \T (t)).

Proof. Clearly, a k-subtree partition of (T (t), T \T (t)) is
a valid k-subtree partition of T . Hence, pk(T ) ≤ 1 + pk(T \
T (t)). We now show the reverse.

Let P (u) denote the cluster that u belongs to in an op-
timal k-subtree partition of T . From diam(T (u)) > k, it
follows that T (u) cannot be contained in its entirety in a
single subtree of a k-subtree partition. Hence, P (u) 6⊇ T (u),
and some subtree T (s) ⊆ T (u) must be a partition by itself,
where s is a child of u (smaller sub-trees are suboptimal,
since by assumption, diam(T (s)) ≤ k for all s ∈ S). We
claim that we can swap T (s) with T (t). Indeed, by Lemma
3.1 the diameter of P (u) can only decrease. Therefore, the
new P (u) (including T (s), excluding T (t)) is a valid clus-
ter of diameter up to k. The rest of the tree is not af-
fected by this change. As result, we conclude the following:
pk(T ) = 1 + pk(T \ T (s)) ≥ 1 + pk(T \ T (t)).

The algorithm.The second phase of the k-clustering algo-
rithm, the k-subtree partition, is a distributed asynchronous
algorithm that partitions the spanning tree into subtrees of
bounded diameter using a convergecast procedure. Figure 1
depicts the code of each node.

The algorithm executed by each node is as follows. Ev-
ery node’s input is its maximum height, which is initially
equal to zero. Beginning with the leaves, each leaf sends
its height (zero) to its parent. Each parent node p acts as
follows. Every node maintains its own height in the variable

height and the identifier of the child with maximal height
in variable highest child. When it receives a new height h
from one of its children, it checks whether h+1+height ex-
ceeds k. If it does, then the subtree rooted at the node has
a diameter that is greater than k (by Lemma 3.1). Hence,
the node partitions the subtree according to the rule spec-
ified in Lemma 3.2. That is, it instructs the child whose
height is the largest (highest child) to detach. Otherwise,
both height and highest child are updated. After receiving
the heights of all its children, p sends its own height to its
parent.

Correctness.We now argue the correctness of the k-subtree
partitioning algorithm above.

Theorem 3.3. The k-subtree partitioning algorithm achie
ves the following: (i) It partitions a tree into subtrees of di-
ameter at most k, and (ii) it obtains the minimum order of
such a partition.

Proof. For part (i), let T (`) be a detached subtree rooted
at node `. According to lines 2 and 3 in the algorithm of
Figure 1, the execution of the algorithm on node ` obtains
the following: height(T (`)) ≤ k, and diam(T (`)) ≤ k.

Moving to (ii), we will use an induction on the order of
pk(T ) in order to prove that the algorithm obtains the op-
timal value of pk(T ). Let R be a set of nodes that become
roots of the subtrees of a partition resulting from the ex-
ecution of the algorithm. The size of this set – |R| – is
the order of the algorithm partition. For pk(T ) = 1 it fol-
lows that diam(T ) ≤ k. The algorithm terminates with
R = {root of T}, since the diameter is never exceeded in
line 2 of the code.

Our inductive hypothesis is that the algorithm obtains
pk(T ) = |R| for pk(T ) < n. Now consider pk(T ) = n and
consider the first node ` that sets its root state to true. Since
detaching is done according to the conditions of Lemma 3.2,
It follows that pk(T ) = 1+pk(T \T (`)). Since pk(T \T (`)) <
n, the inductive hypothesis holds and the algorithm obtains
a global optimization.

Complexity.The number of messages sent during an ex-
ecution of the second phase of the k-subtree partition al-
gorithm is at most 2n, where n is the number of nodes in
the network. This stems from the fact that each edge in
the spanning tree is used for sending at most two messages
(child to parent and parent to child) and that the number
of edges in a tree is at most n − 1. The time until all the
messages reach the root node is equal to h(T ) ≤ n, since
this is the longest path from a leaf in the spanning tree to
the root node.

3.3 Solution Analysis
In this section, we analyze the quality of the k-clustering

algorithm that combines the MCDS spanning tree with the
k-subtree partitioning. We first state and prove the main re-
sult: The order of the k-clustering partition of our algorithm
approximates the optimal k-clustering solution to within a
factor of O(k).

Theorem 3.4. Given a unit disk graph, the distributed
algorithm for k-clustering using the MCDS spanning tree
specified above has a partition order worst case ratio of 4k +
o(1) over the optimal.



Input:
node id cn.
receive(h)i, h is a positive integer and
Parent[i] = cn.
receive(r)i, r is a boolean and
Parent[cn] = i.

Output:
send(h)j , h is a positive integer and Parent[cn] = j.
send(r)j , r is a boolean and Parent[j] = cn.

State:
height is a positive integer, initially 0.
highest child, Parent[highest child] = cn,

initially null.
root is a boolean, initially false except

for the root of the spanning tree.

Transitions:

receive(h)i

Effect:
[1] h++;
[2] if ((h + height) > k) {

; must detach some child
[3] if (h > height)

; i is the highest child
[4] send(true)i;
[5] else {

; detach the highest recorded child
[6] send(true)highest child;
[7] height ← h;
[8] highest child ← i;
[9] }
[10] }
[11] else if (h > height) {

; record i as highest child
[12] height ← h;
[13] highest child ← i;
[14] }

send(h)i

Precondition:
Current node received messages from all its
children. Immediately satisfied in a leaf node.

receive(r)i

Effect:
if (r = true) root ← true;

Figure 1: Pseudo code of k-subtree algorithm.

Proof. Let opt denote the order of the optimal k-clustering
on G and let {opti}i=1..opt denote the clusters in it. Let
approx denote the order of our k-clustering approximation
on G and let {approxi}i=1..approx denote its clusters. The
following lemmas will help us prove the above theorem.

Lemma 3.5. Every cluster opti, 1 ≤ i ≤ opt, is bounded
by a 2k × 2k-square.

Proof. Consider the path between the node with the
smallest x coordinate and the node with the largest x co-
ordinate. The length of the path is at most k. Therefore,
the distance between the two points is at most 2k. The
case of the y coordinate is symmetric and the same logic
applies.

Lemma 3.6. Every cluster approxi, 1 ≤ i ≤ approx, ex-
cept possibly one, includes at least d k

4
e independent members

of IS.

Proof. It is easy to see from lines 2 and 3 that the
k-subtree partition algorithm obtains clusters with diam
(approxi) ≥ d k

2
e, with the exception of the cluster rooted at

the root of the spanning tree. Let ρ be the longest path in
the cluster approxi, with a length of at least d k

2
e. It follows

from the construction of MCDS that half of the nodes in
ρ, i.e., at least d k

4
e, are part of the maximal independent

set.

We are now ready to complete the theorem’s proof. With-
out lose of generality, assume that the smallest cluster in the
approximate solution is approx1, and, as such, we omit it
from the calculation. The proof is by contradiction. More
specifically, we show that there exists an opti that contains
more than k2 elements of IS, which contradicts Lemma 3.5
– a (2k × 2k)-square cannot contain more than k2 disjoint
unit disks. To show that such an opti exists, note that the
nodes in IS are partitioned according to {opti} and like-
wise they are partitioned differently according to {approxi}.
There are two cases. The first case is that there are more
IS members in some {opti} than some approxj 6= approx1

by a factor of 4k. In this case, opti contains more than
4k(k/4) = k2 members of IS, and the contradiction follows.
The second case is that there is no such opti, and it follows
that approx − 1 ≤ (4k)opt. In this case, the competitive
ratio holds.

More specifically, let us denote by ai = |approxi∩IS|, i =
1..approx. Assume w.l.o.g. that a1 = mini=1..approx ai, and
that a2 = mini=2..approx ai. Similarly, denote by oi = |opti∩
IS|, i = 1..opt, and let omax = maxi=1..opt oi. We have that
|IS| =

Papprox
i=1 ai =

Popt
i=1 oi. We assume by contradiction

approx > (4k)opt + 1. We now have two cases. (i) The
first case is that omax > (4k)a2. Hence, by Lemma 3.6,
omax > (4k)(k/4) = k2. But as we already noted, this
contradicts Lemma 3.5 – a (2k× 2k)-square cannot contain
more than k2 disjoint unit disks.

(ii) The second case is omax ≤ (4k)a2. In this case we
have:

|IS| =

approxX
i=1

ai ≥ a1 + a2(approx− 1)

≥ a1 + (approx− 1)omax/(4k)

> a1 + opt× omax

≥ a1 +

optX
i=1

oi ≥ |IS| .



A contradiction.

The complexity of the algorithm is dominated by the com-
plexity of the spanning tree algorithm. Therefore, we have
the following:

Theorem 3.7. The message complexity of the k-clustering
algorithm using the MCDS spanning tree building block is
O(n log n), and its time complexity is O(n).

4. EXTENSIONS

4.1 MST Spanning Tree1

Using MST [10] in order to build the spanning tree will
not improve the theoretical worst-case ratio, but may have
more practical advantages. By setting the weight function
according to specified preferences, MST allows for the con-
struction of a spanning tree with predefined attributes for a
mobile ad hoc network. Below we illustrate how to utilize
such a paradigm. A topic for further research is to explore
whether the advantages of both the MCDS and the MST
paradigms can be combined.

Power Control.Power usage in wireless ad hoc networks
is a cause of some concern and has motivated research into
power-aware and power-efficient wireless protocols. Algo-
rithms designed to conserve power currently address data-
link, network and transport layer protocols. Wireless trans-
mission reception, retransmission and beaconing operations
all consume power, making advanced power conservation
techniques an essential factor in the design of wireless pro-
tocols.

Consider using Maximum Spanning Tree (MST) to con-
struct the spanning tree during the first phase of our algo-
rithm, with the weight of an edge reflecting the strongest of
the battery power of the two nodes that are incident to the
edge. Using MST will enhance the stability of the cluster-
ing by reducing the amount of power-consuming activities
on nodes that have a low battery life. The latter holds since
the edges belonging to the subtrees of the resulting partition
will each contain at least one node with a long battery life.

5. RELATED WORK
Contemporary research done in the area of clustering in

ad hoc networks has concentrated on two main topologies.
In the first topology, the more common cluster-based scheme
for ad hoc networks, a set of nodes, referred to as cluster-
heads, forms a dominating set of the network. This set of
nodes is also an independent set of the network. The role
of cluster-heads is to control channel access, perform power
measurements, maintain time division frame synchroniza-
tion and guarantee bandwidth for real time traffic, as il-
lustrated in [13]. In this type of centralized hierarchical
architecture, cluster-heads play an important role by coor-
dinating their one-hop neighbors. However, unlike the base
station in a conventional cellular system, cluster-heads have
no special hardware and may change dynamically. Thus, a
radio station that acts both as a local radio node and as

1Since the objective according to the definition of our weight
function is to maximize the spanning tree weight, we will
assume our MST calculates a Maximum Spanning Tree, in-
stead of the conventional minimum.

a cluster-head can easily become the system bottleneck. A
generalized load-balancing solution which resolves the asym-
metrical loads induced on cluster-heads is given in [3]. This
is achieved by a circular queue that distributes the respon-
sibility of acting as a cluster-head evenly among all of the
cluster nodes. A number of algorithms have been proposed
for dealing with cluster formation in ad hoc networks. Most
of the algorithms that have been proposed for this topol-
ogy are based on two fundamental algorithms, the lowest-
ID [5] and the highest degree [16]. A generalization of this
topology, where each node is at most k hops from a cluster-
head, was proposed in [4]. A different approach [6] is to
elect cluster-heads from a Weakly Connected Dominating
Set (WCDS) of the input network, which is modeled as a
simple undirected graph. The authors in [6] presented a dis-
tributed approximation for the WCDS problem with a worst
case ratio of O(lan∆), where ∆ is the maximum degree of
the input graph.

The second topology that has been proposed for clustering
in ad hoc networks is the one that is dealt with in this paper
- the k-clustering. The k-clustering approach maintains an
infrastructure where the network is decomposed into clusters
of nodes. This approach is more symmetric than the previ-
ous one since there are no specific nodes that are designated
cluster-heads. This sort of clustering infrastructure serves to
create a dynamic backbone of a network for the purpose of
minimizing the amount of data to be exchanged in order to
maintain routing and control information in a mobile envi-
ronment. Although k-clustering was suggested and defined,
until now only the case of 1-clusters (i.e., cliques) have been
explored in the context of ad hoc networks. In [12], Krishna
et al. presented algorithms for forming clique partitioning,
as well as algorithms for maintaining the cliques in the face
of various network occurrences. A slightly similar approach,
the (a, t)-cluster proposed in [15], is a framework for dynam-
ically organizing mobile nodes in wireless ad hoc networks
into clusters for which the probability of path availability
can be bounded. Combining our k-clustering algorithm for
cluster formation with the (a, t)-cluster for cluster mainte-
nance will provide a full paradigm for clustering in ad hoc
networks.

The problem of k-clustering in general undirected graphs
is known to be NP-Complete [8]. No previous research has
been done on the subject of approximating k-clustering on
simple undirected graphs and unit disk graphs. Contempo-
rary (mostly theoretical) research relating to graph cluster-
ing is restricted to special classes of graphs. For example, in
[9], the k-clustering problem is investigated on trees and a
linear time algorithm solving the k-clustering problem is pre-
sented. In addition, in [1], Abbas and Stewart give a linear-
time algorithm for solving the k-clustering problem on re-
stricted special classes of graphs, such as interval graphs and
bipartite permutation graphs. Furthermore, they demon-
strate that the k-clustering problem remains NP-Complete
when restricted to bipartite graphs for any fixed k, such
that k > 1. In [8], Deogun et al. introduce a polynomial-
time approximation algorithm of constant worst case ratio
that computes a k-clustering for graphs having a domina-
tion diametric path. Our work differs from all of the above
in providing an approximation for general unit disk graphs,
and in providing a distributed algorithm realizing it.

Another problem that is closely related to k-clustering is
geometric clustering. In geometric clustering, the objective



is to minimize the size of the clusters while the order of the
partition is given. The problem of geometric k-clustering
was shown to be NP-Complete by Gonzales in [11] and a
sequential approximation algorithm with a worst case ratio
of 2 was given. Although the k-clustering and the geometric
k-clustering problems are similar, we cannot use an approxi-
mate solution to one in order to solve the other. In addition,
geometric k-clustering makes use of geometric coordinates,
which means that deployment on mobile devices necessitates
the use of Global Positioning Systems (GPS).

6. CONCLUSION
K-clustering is a framework in which the wireless network

is divided into non-overlapping clusters and where the size
of such clusters is at most k. The purpose of this network
decomposition is to support a hybrid approach to routing
that maintains only partial information of network topol-
ogy. This type of routing scheme was proposed in order
to overcome the mobility of ad hoc networks by adjusting
cluster size according to network stability, and it is capable
of supporting routing in large ad hoc networks with high
mobility rates.

This paper investigates k-clustering formation, a funda-
mental requirement of this type of routing scheme, and pro-
poses a distributed asynchronous algorithm for the problem
that approximates the optimal solution with a worst case
ratio of O(k). The algorithm has polynomial time and mes-
sage complexity. Our approach offers a generic two-stage
algorithm for k-clustering that may be used to set various
cluster properties, and which causes the resulting clusters to
have a virtual backbone.
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APPENDIX

A. MCDS ALGORITHM PSEUDO-CODE
In this section, we provide for completeness a pseudo-

code description of the Minimum Connected Dominating Set
(MCDS) algorithm, which is employed in the first stage of
the k-clustering partitioning algorithm.

[1] Arbitrarily pick a node v ∈ V .
[2] Construct the BFS tree T of G rooted at v.
[3] Let ` be the height of T .
[4] Let Si denote the nodes at height i in T
[5] Set IS0 = {v}; NS0 = ∅.
[6] for i = 1 to ` do begin
[7] DSi = {v|v ∈ Si and
[8] v is dominated by some node in ISi−1}.
[9] Pick a MIS ISi in G[Si \DSi].
[10] NSi = {u|u is the parent (in T )
[11] of some v ∈ ISi}
[12] (Note that NSi ⊆ Si−1.)
[13] end

[14] output (
S`

i=0 ISi)
S

(
S`

i=0 NSi) as the CDS.

Figure 2: Pseudo code of sequential minimum con-
nected dominating set.


