standard hydrogen electrode

For solutions in protic solvents, the universal *reference electrode* for which, under standard conditions, the standard electrode potential (H^+/H_2) is zero at all temperatures.

The *absolute electrode potential* of the hydrogen electrode under standard conditions can be expressed in terms of thermodynamic quantities by applying a suitable Born–Haber cycle, thus:

$$E^{O}(H^{+}/H_{2})(abs) = (\Delta_{at}G^{O} + \Delta_{ion}G^{O} + \alpha_{H^{+O}}S/F)$$

where $\Delta_{\rm at}G^{\rm o}$ and $\Delta_{\rm ion}G^{\rm o}$ are the atomization and ionization Gibbs energies of H₂, $\alpha_{\rm H}^{+0}$, s is the real potential of H₂ in solvent S and F is the Faraday constant.

The recommended absolute electrode potential of the hydrogen electrode is:

$$E^{0} (H^{+}/H_{2})^{H_{2}O} (abs) = (4.44 \pm 0.02) V$$

at 298.15 K

1986, *58*, 957

IUPAC Compendium of Chemical Terminology

2nd Edition (1997)