
Web Design Patterns and T2 Components
(DRAFT)

Massimo Di Pierro

October 21, 2008

1 Introduction

Source Code:

http://mdp.cti.depaul.edu/examples/static/web2py.app.plugin_t2.tar

Video Tutorial (old):

http://www.vimeo.com/1790354

In this paper we discuss typical design patterns that seem common to
many web applications. We do not claim that all web applications should
follow our patterns nor that the patterns described here are in any way
unique, but we do believe that the majority of the web applications can
be implemented or re-implemented using the patterns described here. The
purpose of identifying such patterns is that of defining and building reusable
software components and simplifying the development of web applications.

We provide an implementation of all the patterns described here. Our
code works on most database engines including Oracle and the Google App
Engine.

Here we distinguish the developer of a web application from the user (or
visitor) of a web application. We also distinguish three types of patterns:
low-level patterns, high-level patterns, and aesthetical patterns. Low-level
patterns concern exclusively the developer; the user does not see them and
does not need to know about them. High-level patterns instead are perceived
by the user and basically describe the building blocks that comprise web
pages and how these blocks are logically connected. Aesthetical patterns only

1

deal on the presentation of each of those building blocks and each individual
page.

In this paper notes we are mainly interested in high-Level patterns.

Acknowledgements

Bill, CJ, Keith, Krista and Yarko for correcting errors.
All the JS and CSS files used in the example belong to their respective

owners.

2 Low-Level Patterns

Low-level patterns concern exclusively the developer, the user does not see
them and does not need to know about them. Here we simply provide a list
of the most important and recurrent patterns:

• Concurrency: The ability of a web application to serve multiple clients
at the same time. Often concurrency is handled by the web server but
it does affect the application because of possible race conditions.

• Logging: All requests have to be logged (including their source, path,
time stamp and HTTP response number).

• Transactional Safety: The ability of a web application to store and
retrieve persistent information (for example in a database) in such a
way that information does not get corrupted or becomes inconsistent.

• Database Abstraction: The ability of a web application to communicate
with the database in a way that is independent of the type of database
engine. For example, there any many SQL dialects and using raw
SQL locks the application into one database solution. A Database
Abstraction Layer instead provides APIs that write SQL dynamically
for different types of database engines.

• Session Management: A session is the data that is uniquely associated
to one user and its continuous interaction with the web site. Typically
a session stores information about the user, whether the user is authen-
ticated, and in general the state of that user on the web site. Sessions

2

should be stored server side (never sent to the user) and retrieved via
the use of secure cookies (that only travel on a Secure Socket Layer),
where a cookie only contains a unique identifier that appears random
and is unique.

• Request and Response objects: Any web application deals with an
HTTP request and generates an HTTP response, which contain data
in various forms. For example, there are variables in the HTTP header,
some of the variables may contain cookies which may contain other
information, etc. There should be an automated way to write and
parse that data.

• Exception Catching and Logging: Any web application is going to have
bugs, not just in development mode, but also in production mode. All
exceptions have to be caught, logged and the user has to be notified
without exposing source code or any other information that may com-
promise the security of the system.

• Model-View-Controller: Most modern web applications are broken in
these three components represented by different types of files. The
Model files contain a representation of the data stored by the database
(loosely speaking the database tables). The View files contain a rep-
resentation of how data is presented to the user. The Controller files
contain a representation of the application logic and business flow. The
high-level patterns that we will discuss later are transversal in respect
to the MVC, since they require a model, a controller and a view in
order to work.

• Validation: All the input that comes from a user has to be validated by
the web application, since the user cannot be trusted. This is the most
import aspect of web applications security. Examples of validation
includes validation of the path in the URL string, validation of the
variables in the HTTP header, validation of variables returned via form
submission (GET and POST).

• Form Self-Submission (postback): It used to be common to create a
<form>...</form> that submits the form variables to a different
page. This is no longer considered good practice. Forms should submit
to the same page that generated the form, perform validation and, on

3

success, redirect the user to a target page. This is because it is cleaner
to implement a form as an object which implements self-awareness: the
form object knows how to serialize itself in HTML, receive submitted
variables, validate them, notify the user if there are errors, communi-
cate with the database in case of successful submission.

• Internationalization: Users visiting the web application coming from
different countries and speaking different languages may need to see
things in different ways. For example, the text generated by the ap-
plication (such as error messages) may need to be translated to their
language.

• Flash: There should be a single and unified way to notify the user about
things that happen e.g. “Your account was created”, “You search for
something that does not exist”, etc. .

• Streaming: Eventually any modern web application needs to upload
and download large files. This is done via streaming, i.e. breaking the
uploads/downloads into multiple HTTP requests/responses.

• Caching: Some pages may be requested very often and so often that
the information they contain does not change from one instance to the
other. In this case the application should be able to cache the page and
reuse the cached page, in order to minimize the workload. The output
of any function should be cachable, should have an expiration time,
and it should be possible to force any cache to expire at any time.

• Safe Uploads: When the user uploads a file, this must be dealt with
safely. The file must be renamed to prevent directory traversal attacks,
stored on the file system or in the database, and linked by the database
record. There should also be a mechanism to retrieve and download
the file.

• Protocols: There are some common protocols utilized on the web and
any modern web application should be able to support them. For
example: Atom, RSS, Wiki markup, JSON, XML, CAS, OpenID, etc.

The list above is certainly partial but it provides an example of what we
mean by low-level patterns. These are features that concern the implemen-
tation of any web application but the user does not need to know how they

4

work. These patterns are so common that they are implemented in various
ways and with various degrees of success by many modern web frameworks.

In this paper we will use as reference the web2py framework since it
implements all the patterns described above and it makes particularly easy
to implement the high-level patterns described in the next section.

3 High-Level Patterns

High-level patterns describe what the user sees from a functional point of
view. An example is a page that “allows the user to read and post comments”.

In order to catalogue patterns we need to break them into small but
general purpose components. We define “small” as something that can be
implemented in one single function (or class method). We define “general”
as something that can plugged-in into any new or existing application and
requires relatively minor customization.

Each of the patterns described below, even if it can be and will be imple-
mented into a single function, will require access to a model (data represen-
tation), a controller (application logic that exposes the patterns) and a view
(a visual presentation of the pattern).

We have identified the following patterns:

• Menu: Display a navigation menu

• Create: The user is presented with a Create form for inserting a new
record in a database table. All user input should be validated, the form
should display error messages (if any), and should only allow the user
to edit the values of some fields. Some fields may have default values.
A Create form may include file upload fields.

• Display: The user is presented with a visual representation of the data
in one database record.

• Update: The user is presented with an Update form for changing
the information in a database record. This is very similar to a Create
form except that the form is pre-populated. If the record contains an
uploaded media file (such as an image) it should show a preview of the
current value and allow its download.

5

• Delete: The user can delete a database record. (The previous four
items here are usually referred to as CRUD=Create, Read, Update,
and Delete.)

• Itemize: The user is presented with a list of database records selected
from a table. The list may contain results from one table or a JOIN
between multiple tables, based on the query criteria. Data should be
paginated if the list is too long.

• Search: The user is presented with an interface that allows filtering
and sorting of records.

• Attachments: A record may have attachments, that is files that are
uploaded and are associated to the record. The user may submit a new
attachment or delete existing ones. It should be possible to preview
and download attachments.

• Comments: A record may have comments, that is statements posted
by users about the record. The user can read previous comments and
post a new comment. Comments are organized in a tree-like structure.

• Reviews: A record may have reviews. These are like comments but
they are organized in sequential order (a review is not a response to
another review, while a comment may be) and each comment also in-
cludes an integer numerical rating (often visualized with stars).

• Login: The user should be able to login into the web application.

• Logout: The user should be able to logout from the web application.

• Require Login: Some pages require that the user is logged in.

• Group Management: Users are normally organized in Groups. The
same user can be member of multiple groups and groups can contain
many members. Group membership can be automatic, automatic upon
request, or requiring authorization. There may be different types of
membership. Group membership should be determined at login and
eventually updated as required.

• Access Management: Access to resources is granted on a per-group
basis. A user can access a given resource only if the user belongs to a

6

group that has access to the object. In general there are different types
of group membership and different types of accesses. Access should be
checked before any CRUD operation.

• File Download: Implements file download.

• Stamp: Automatically Stamp table records for creation date, author,
last modification date, and author of the last modification.

• On Error Redirection: If some error occurs due to invalid user input,
other than invalid form submission, redirect the user to an error page.

We have implemented each one of this patterns in a web2py plugin
called “plugin t2” (T2 stands for web2py tier two). For “tier” we adopt
this definition: ”a single layer of packages forming part of a unit load.”

In this context a plugin is set of modules, models, views, controllers and
static files that can be shared by multiple applications.

In particular we created a python module called t2.py that defines a class
called T2 and one instance of that class called t2. The methods implementing
the patterns described can be accessed via the t2 instance.

In the next chapter we discuss them one by one and provide examples
of usage but here we provide a simple example. Let’s consider the following
minimalist web2py application that is comprised of the following files:

• models/db.py

1 db=SQLDB(’sqlite://storage.db’)
2 db.define_table(’puppy’,
3 SQLField(’name’),
4 SQLField(’image’,’upload’))
5 db.puppy.name.requires=IS_NOT_EMPTY()
6 db.puppy.represent=lambda row: A(row.name,_href=t2.action(’

display_puppy’,[row.id]))
7

8 from applications.plugin_t2.modules.t2 import T2
9 t2=T2(request,response,session,cache,T,db)

Here line 5 sets a validator and lines 6-7 set a representation for a puppy
record. It displays the puppy by name with a link to a ”display puppy”
action.

• controllers/default.py

7

1 def create_puppy():
2 form=t2.create(db.puppy)
3 itemize=t2.itemize(db.puppy)
4 return dict(form=form,itemize=itemize)

• views/layout.htm (the provided layout, unmodified)

• views/default/create puppy.html (the view for the index action)

1 {{extend ’layout.html’}}
2 <div class="frame">
3 <h2>Post the image of a Puppy</h2>
4 {{=form}}
5 </div>
6 <div class="frame">
7 <h2>Puppies</h2>
8 {{=itemize}}
9 </div>

• The provided static files required by the default layout.

This complete program generates the following fully functional web ap-
plication that allows users to post images of puppies.

The program handles file uploads, form validation and user notification.
Let us now add two new controller actions to default.py

1 def create_puppy():
2 form=t2.create(db.puppy)
3 itemize=t2.itemize(db.puppy)
4 return dict(form=form,itemize=itemize)
5

8

6 def display_puppy():
7 puppy=t2.display(db.puppy)
8 search=t2.search(db.puppy)
9 return dict(puppy=puppy,search=search)

10

11 def download(): return t2.download()

And an a view views/default/display puppy.html associated to the
new view:

1 {{extend ’layout.html’}}
2 <div class="frame">
3 <h2>A Puppy</h2>
4 {{=puppy}}
5 </div>
6 <div class="frame">
7 <h2>Search Puppies</h2>
8 {{=search}}
9 </div>

Notice how display figures out which puppy to display from the record id
in the command line argument (REST). The t2.display function does not
just show the puppy, it also creates an image preview and the user can zoom-
in by clicking on it. The t2.search function creates a search widget that
can be used to search puppies by id, name, and image name (the only fields
that are exposed).

Here is a screen shot:

Now we can easily add authentication to our application by modifying
the default.py controller as follows:

9

1 response.menu=[
2 [’puppies’,False,t2.action(’create_puppy’)],
3 [’login’,False,t2.action(’login’)],
4 [’logout’,False,t2.action(’logout’)],
5 [’register’,False,t2.action(’register’)]
6]
7

8 def register(): return dict(form=t2.register())
9 def login(): return dict(form=t2.login())

10 def logout(): t2.logout(next=’login’)
11 def index(): t2.redirect(’create_puppy’)
12

13 @t2.requires_login(’login’)
14 def create_puppy():
15 form=t2.create(db.puppy)
16 itemize=t2.itemize(db.puppy)
17 return dict(form=form,itemize=itemize)
18

19 @t2.requires_login(’login’)
20 def display_puppy():
21 puppy=t2.display(db.puppy)
22 search=t2.search(db.puppy)
23 return dict(puppy=puppy,search=search)
24

25 @t2.requires_login(’login’)
26 def download(): return t2.download()

where the first 6 lines, create a menu, lines 8-11 create the registration
pages. For the latter to work properly we need to implement the following
views for login for login

1 {{extend ’layout.html’}}
2 <div class="frame">
3 <h2>Login</h2>
4 {{=form}}
5 </div>

and for register

1 {{extend ’layout.html’}}
2 <div class="frame">
3 <h2>Register</h2>
4 {{=form}}
5 </div>

Here is how the registration page looks like:

10

Following the same principles, adding

1 {{=t2.comments(db.puppy)}}

to the display puppy view will allow visitors to post comments and adding

1 {{=t2.attachments(db.puppy)}}

will allow users to post attachment (for example additional pictures).
The value of the next argument is used to specify the action where to go

upon success. The absolute path to any given action can be generated using
the shortcut t2.action(’index’).

t2.update, t2.delete, t2.itemize can also take additional parameters
for example to specify a query. t2.itemize can deal with joins. Both
t2.create and t2.update can have callbacks that are called after accept-
ing a user submission.

All required tables are generated as needed. The user can also define
tables himself.

4 A More Complex Example

Here is an example of db.py that re-defines t2 person, defines a puppy table,
and defines a relation of friendship between a person and a puppy.

1 db=SQLDB("sqlite://storage.db")
2

3 db.define_table(’t2_person’,
4 SQLField(’name’,requires=IS_NOT_EMPTY()),
5 SQLField(’password’,’password’,requires=CRYPT()),

11

6 SQLField(’email’,requires=IS_EMAIL()),
7 SQLField(’registration_key’))
8

9 db.define_table(’puppy’,
10 SQLField(’name’),
11 SQLField(’image’,’upload’))
12

13 db.define_table(’friendship’,
14 SQLField(’person_id’,db.t2_person),
15 SQLField(’puppy_id’,db.puppy))
16

17 friendship=db.t2_person.id==db.friendship.person_id \
18 and db.puppy.id==db.friendship.puppy_id
19

20 db.t2_person.represent=lambda person:\
21 person.name+’ is friend of ’
22 db.puppy.represent=lambda puppy:\
23 A(puppy.name,_href=t2.action(’display’,puppy.id))
24

25 from applications.plugin_t2.modules.t2 import T2
26 t2=T2(request,response,session,cache,T,db)

The following controller implements authentication (registration, login,
logout, login requirements), authorization (only the poster person can edit
a puppy info but everybody logged-in can comment and review the puppy)
and automatically associates as friend every person with the puppies he/she
posts. Persons and Puppies have a many-to-many relation and this reflects
in the search widget of the index action.

1 if t2.logged_in: response.menu=[
2 [’index’,False,t2.action(’index’)],
3 [’logout’,False,t2.action(’logout’)]]
4 else: response.menu=[
5 [’login’,False,t2.action(’login’)],
6 [’register’,False,t2.action(’register’)]]
7

8 def register(): return dict(form=t2.register())
9 def login(): return dict(form=t2.login())

10 def logout(): t2.logout(next=’login’)
11

12 @t2.requires_login(next=’login’)
13 def download(): return t2.download()
14

15

16 @t2.requires_login(next=’login’)

12

17 def index():
18 form=t2.create(db.puppy,callback=lambda form:\
19 t2.add_access(db.puppy,form.vars.id) and \
20 db.friendship.insert(person_id=t2.person_id,
21 puppy_id=form.vars.id))
22 search=t2.search(db.t2_person,db.puppy,query=friendship)
23 return dict(form=form,search=search)
24

25 @t2.requires_login(next=’login’)
26 def display():
27 display=t2.display(db.puppy)
28 comments=t2.comments(db.puppy)
29 reviews=t2.reviews(db.puppy)
30 return dict(display=display,comments=comments,reviews=

reviews)
31

32 @t2.requires_login(next=’login’)
33 def update():
34 if not t2.have_access(db.puppy,t2.id):
35 t2.redirect(’index’,flash=’No access’)
36 update=t2.update(db.puppy,next=’index’)
37 return dict(update=update)

5 API

5.1 State Variables

T2 defines the following state variables:

• t2.person id the id of the person logged in, or None

• t2.person name the name/alias of the person logged in, or None

• t2.person email the email address of the person logged in, or None

• t2.error action the action to call in case of error, defaults to ’error’

• t2.now the current date-time

• t2.request the web2py request object

• t2.response the web2py response object

13

• t2.session the web2py session object

• t2.cache the web2py cache object

• t2.T=T the web2py translation object

• t2.db the database to be used by T2

• t2.all in db True is binary data and sessions go in DB

• t2.is gae True is running on GAE

• t2.id the value of request.args[-1] if request.args else 0

• t2.logged in True is the person is logged in else False

• t2.my groups id list of record id’s of those groups the person is member
of

5.2 Text Messages

T2 defines the following messages that the user can redefine:

• t2.messages.record created="Record Created"

• t2.messages.record modified="Record Modified"

• t2.messages.record deleted="Record(s) Deleted"

• t2.messages.record was altered= "Record Could Not Be Saved Because

It Has Changed"

• t2.messages.invalid value="Invalid Entry"

• t2.messages.attachment posted="Attachment Posted"

• t2.messages.no comments="No Comments"

• t2.messages.no visible comments="No Visible Comments"

• t2.messages.review posted="Review Posted"

• t2.messages.register email body="... %(registration key)s ..."

14

• t2.messages.register email subject="Verify Registration"

• t2.messages.logged in="Logged In"

• t2.messages.invalid login="Invalid Login"

• t2.messages.logged out="Logged Out"

5.3 Methods

T2 defines the following methods.

5.3.1 The constructor

1 T2.__init__(self,request,response,session,cache,T,db,
2 all_in_db=False)

Use in at the bottom of your model as follows

1 from applications.plugin_t2.modules.t2 import T2
2 t2=T2(request,response,session,cache,T,db)

5.4 Authentication

T2 defines the following authentication methods

1 t2.register(self,verification=False,sender=’’,next=’login’,
onaccept=None)

2 t2.login(self,next=’index’,onlogin=None)
3 t2.logout(self,next=’index’)
4 t2.verify(self,next=’login’)
5 t2.requires_login(self,next=’login’)

They should be used to define corresponding authentication actions in
your controller:

1 def register(): return dict(form=t2.register())
2 def login(): return dict(form=t2.login())
3 def logout(): t2.logout()
4 def verify(): t2.verify()
5

6 def index(): return dict()
7

8 @t2.requires_login()
9 def private_page(): return dict()

15

All actions tagged with the @requires login() decorator are not public
unless the person is logged in.

By default registration does not perform verification.
If verification=True then the registrant is sent an notification email and
registration is not completed until the registrant visits the verify?key=KEY

action. KEY is in the email sent to registrant.

5.4.1 Utility Methods

They are

1 t2.action(self,f=None,args=[],vars={})
2 t2.redirect(self,f=None,args=[],vars={},flash=None)

t2.action(’index’) is a shortcut for

1 URL(r=request,f=’index’)

t2.redirect(’index’) is a shortcut for

1 redirect(URL(r=request,f=’index’))

5.4.2 View Helpers

They are

1 t2.include(self)
2 t2.menu(self,menu,style=’h’)

t2.include generates the part of the head of the HTML page which
includes required CSS and JS files (as listed in response.files), while

1 {{=t2.menu(menu)}}

generates a dropdown menu. Here is a minimalist T2 sample layout:

1 <html><head>
2 <title>{{=response.title or URL(r=request)}}</title>
3 <meta http-equiv="content-type" content="text/html; charset=utf

-8" />
4 <meta name="keywords" content="{{=response.keywords}}" />
5 <meta name="description" content="{{=response.description}}" />
6 <link href="/{{=request.application}}/static/t2/styles/style.css

"
7 rel="stylesheet" type="text/css" charset="utf-8" />
8 {{=t2.include()}}
9 </head><body>

16

10 <div class="menu">{{=t2.menu(response.menu)}}</div>
11 {{if response.flash:}}
12 <div id="flash">{{=response.flash}}<div>
13 {{pass}}
14 {{include}}
15 </body>

5.4.3 Download Control

1 t2.download(self)

Use it to define an action like in the following example:

1 def download(): return t2.download()

It will serve/stream files whose name is in request.args[0] Works even
if the data is stored in the database.
5.4.4 CRUD Controls

They are

1 t2.create(self,table,next=None,vars={},onaccept=None)
2 t2.update(self,table,query=None,next=None,
3 deletable=True,vars={},onaccept=None,ondelete=None)
4 t2.delete(self,table,query=None,next=None)
5 t2.read(self,table,query=None,
6 limitby=None,orderby=None)
7 t2.display(self,table,query=None)

To create a self processing create form just define

1 def create_form():
2 return dict(form=t2.create(db.mytable))

or directly in the view

1 {{=t2.create(db.mytable)}}

similarly for update and display controls. In general the first argument is
the table object the control acts on. For update, delete, read and display

the second argument is an optional web2py query to identify the record(s)
involved. If there is no query T2 picks the record with id equal to t2.id which
is parsed from the last argument of the URL.

The next argument is the name of action where to jump after the form
is accepted. If next is None, the same page is rendered again.

17

For create and update, vars is a dictionary of optional variables that
need to be passed to inserted in the form.vars before accepting; onaccept

and ondelete are optional callback functions called if the form is accepted
and if the form successfully deleted a record. These callback functions should
take a single argument, the form object itself.

Update also prevents concurrent updates. If two visitors try to update
the same record, the first to save will succeed. The second will get an error
“Record Could Not Be Saved Because It Has Changed”

5.4.5 List and Search Records

1 t2.itemize(self,*tables,**opts)
2 t2.search(self,*tables,**opts)

Both of them take a list of tables and some optional named arguments.
For example:

1 {{=t2.itemize(db.mytable,query=db.mytable.id>0,orderby=db.
mytable.id)}}

displays all records that match the query. If no limitby is specified, this
control paginates the items, 25 per page.

1 {{=t2.search(db.mytable)}}

creates a search widget and called itemize internally. One can optionally
specify a query as additional required condition.

If more than one table are specified, they perform an INNER JOIN.
The items are represented, by default, by the first field in the table. This

can be changed by

1 db.mytable.represent=lamnda row: ’%s %s’ % (row.myfield,row.id)

etc. One can also use helpers to change the representation of a row.
5.4.6 Additional Controls

1 t2.attachments(self,table,readable=True,writable=True,
2 deletable=False)
3 t2.comments(self,table,moderated=False,readable=True,
4 writable=True,deletable=False,hide=True)
5 t2.reviews(self,table,status=’approved’,readable=True,
6 writable=True,deletable=False,subtitle="You Review")

5.4.7 Membership Controls

18

1 t2.add_membership(self,person_id,group_id,membership_type=’
default’)

2 t2.del_membership(self,person_id,group_id,membership_type=’
default’)

3 t2.have_membership(self,group_id,membership_type=’default’)
4 t2.my_memberships(self)

add membership gives the person identified by person id membership of
the group identified by group id. Optionally one can specify a membershi type.

del membership deletes the membership.
have membership checks if the logged in person has membership if the

group.
my memberships returns a list of membership records for the person logged

in.
When a new person registers, a new group is automatically created with

the same name as that person and the person is made ’default’ member of
that group.
5.4.8 Access Controls

Persons have memberships of groups. Groups have access to resources. A
resource could be a table or a table record. The controls are:

1 t2.add_access(self,table,record_id=0,access_type=’default’,
group_id=None)

2 t2.del_access(self,table,record_id=0,access_type=’default’,
group_id=None)

3 t2.have_access(self,table,record_id=0,access_type=’default’)

add access gives access to a resource to the group identified by group id.
If record id==0 the resource is the entire table, else the resource is the record
in the table identified by record id. If no group id is specified T2 assumes
the group is the one uniquely associated with person logged in. Optionally
one can specify different types of access: ’read’, ’write’, etc.

del access removes the access.
have access checks if the logged in user belongs to a group (despite mem-

bership type) that has access type access to the resource (table,record id).
For example here is an example of code that allows only the person who

posts a document to update the document (assuming there is a table called
”document”).

1 @t2.requires_login()
2 def post_document():
3 form=t2.create(db.document,

19

4 onaccept=lambda form: t2.add_access(db.document,
5 form.vars.id))
6 return dict(form=form)
7

8 @t2.requires_login()
9 def edit_document():

10 if not t2.have_access(db.document,t2.id):
11 t2.error()
12 form=t2.update(db.document)
13 return dict(form=form)

5.4.9 Email Control

1 t2.email(self,sender,to,subject=’test’,message=’test’)

Can be used to send emails. Works on GAE too.
5.4.10 Widgets

Widgets override the way a field is rendered in a create/update form. T2
defines two widgets:

1 T2.rating_widget(self,value,callback=None)
2 T2.tag_widget(self,value,tags=[])

The first of them is used by t2.ratings. The latter allows multiple values
to be stored in a field. Here is an example:

1 db.mytable.myfield=T2.tag_widget([’red’,’green’,’blue’])

Values are stored as ”[red][green]”.

5.4.11 Google Checkout (experimental)

1 t2.clear_cart(self)
2 t2.add_to_cart(self,name,price,quantity=1,description=",weight

=0,height=0,length=0,depth=0,currency=’USD’,weight_unit=’LB’)
3 t2.checkout_cart(self,merchant_id,action_url,button_url,

continue_url,attributes={})

The first clears the cart (session.t2.cart). The second adds items to the
cart. The latter generates a form with hidden buttons and a “Google check-
out” button. On pressing the button, the control goes to Google Checkout
and the visitor can pay using the credit card. For details look at the Google
Checkout docs.

20

5.4.12 Other Issues

T2 uses and defines the following tables:

• t2 person

• t2 group

• t2 membership

• t2 access

• t2 attachment

• t2 comment

• t2 review

The user can override these tables by defining them before instantiating
T2. They must have at least the fields defined in the default.

User defined tables used with T2 CRUD will always be STAMPED if the
tables have the following fields

• created by ip

• created on

• created by

• created signature

• modified by ip

• modified on

• modified by

• modified signature

21

The created by stores the id of the person creating the record. created signature

stores the name of the person who created the record and avoids unnecessary
joins. created by ip is the IP address of the client who created the record.
Yes this is redundant but it is a trick to avoid joins and make everything
work on GAE.

If the field modified on is present, it is used by t2.update() to detect
conflict and notify the visitor when multiple clients are trying to update the
same record.

T2 also relies on additional special table and field attributes to customize
forms:

• db.mytable.myfield.label is the label to be used in forms.

• db.mytable.myfield.comment is the comment to be shown in the third
column of create/update forms.

• db.mytable.exposes is a list of fields that should appear in create/up-
date forms (None means all fields).

• db.mytable.displays is a list of fields that should appear in display
forms (None, means all fields).

• db.mytable.represent is a lambda function that takes a row for the
table and return a representation for that row.

6 Files in T2

1 __init__.py
2 ABOUT
3 cache
4 controllers
5 controllers/appadmin.py
6 controllers/default.py
7 databases
8 errors
9 languages

10 LICENSE
11 models
12 modules
13 modules/__init__.py

22

14 modules/t2.py
15 private
16 README
17 sessions
18 static
19 static/default
20 static/default/media
21 static/default/media/bl.gif
22 static/default/media/bl.png
23 static/default/media/bm.gif
24 static/default/media/bm.png
25 static/default/media/br.gif
26 static/default/media/br.png
27 static/default/media/closebox.gif
28 static/default/media/closebox.png
29 static/default/media/img01.jpg
30 static/default/media/img02.jpg
31 static/default/media/img03.jpg
32 static/default/media/img04.jpg
33 static/default/media/img05.jpg
34 static/default/media/metal.png
35 static/default/media/ml.gif
36 static/default/media/ml.png
37 static/default/media/mr.gif
38 static/default/media/mr.png
39 static/default/media/spacer.gif
40 static/default/media/t2.png
41 static/default/media/t2_192.png
42 static/default/media/title.png
43 static/default/media/tl.gif
44 static/default/media/tl.png
45 static/default/media/tm.gif
46 static/default/media/tm.png
47 static/default/media/tr.gif
48 static/default/media/tr.png
49 static/default/scripts
50 static/default/scripts/calendar.js
51 static/default/scripts/fancyzoom.min.js
52 static/default/scripts/jquery.js
53 static/default/scripts/sfmenu.js
54 static/default/styles
55 static/default/styles/calendar.css
56 static/default/styles/sfmenu.css
57 static/default/styles/style.css
58 tests

23

59 uploads
60 views
61 views/appadmin.html
62 views/default
63 views/default/create_puppy.html
64 views/default/display_puppy.html
65 views/default/login.html
66 views/default/register.html
67 views/generic.html
68 views/head.html
69 views/layout.html

24

